1
|
Chen LC. High-Temperature Liquid Chromatography and the Hyphenation with Mass Spectrometry Using High-Pressure Electrospray Ionization. ACTA ACUST UNITED AC 2019; 8:S0079. [PMID: 32010544 PMCID: PMC6920344 DOI: 10.5702/massspectrometry.s0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
Increasing the operating temperature of the liquid chromatography (LC) column has the same effect as reducing the diameter of the packing particles on minimizing the contribution of C-term in the van Deemter equation, flattening the curve of plate height vs. linear velocity in the high-speed region, thus allowing a fast LC analysis without the loss of plate count. While the use of smaller particles requires a higher pumping pressure, operating the column at higher temperature reduces the pressure due to lower liquid viscosity. At present, the adoption of high-temperature LC lags behind the ultra-high-pressure LC. Nevertheless, the availability of thermally stable columns has steadily improved and new innovations in this area have continued to emerge. This paper gives a brief review and updates on the recent advances in high-temperature liquid chromatography (HTLC). Recent efforts of hyphenating the capillary HTLC with mass spectrometry via a super-atmospheric pressure electrospray ionization is also reported.
Collapse
Affiliation(s)
- Lee Chuin Chen
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| |
Collapse
|
2
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Escribà-Gelonch M, Shahbazali E, Honing M, Hessel V. Quality-In(Process)Line (QuIProLi) process intensification for a micro-flow UV-photo synthesis enabled by online UHPLC analysis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Heiland JJ, Lotter C, Stein V, Mauritz L, Belder D. Temperature Gradient Elution and Superheated Eluents in Chip-HPLC. Anal Chem 2017; 89:3266-3271. [DOI: 10.1021/acs.analchem.7b00142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Josef J. Heiland
- Institute
of Analytical Chemistry, Department of Chemistry and Mineralogy, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Carsten Lotter
- Institute
of Analytical Chemistry, Department of Chemistry and Mineralogy, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Volkmar Stein
- Fraunhofer ICT-IMM, Carl-Zeiss-Straße
18-20, 55129 Mainz, Germany
| | - Laura Mauritz
- Institute
of Analytical Chemistry, Department of Chemistry and Mineralogy, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute
of Analytical Chemistry, Department of Chemistry and Mineralogy, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
5
|
A Fast and Effective Method for Packing Nano-LC Columns with Solid-Core Nano Particles Based on the Synergic Effect of Temperature, Slurry Composition, Sonication and Pressure. Chromatographia 2013. [DOI: 10.1007/s10337-013-2514-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer. SENSORS 2012; 11:2246-56. [PMID: 22319407 PMCID: PMC3274021 DOI: 10.3390/s110202246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/24/2022]
Abstract
Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well.
Collapse
|
7
|
Daneyko A, Khirevich S, Höltzel A, Seidel-Morgenstern A, Tallarek U. From random sphere packings to regular pillar arrays: Effect of the macroscopic confinement on hydrodynamic dispersion. J Chromatogr A 2011; 1218:8231-48. [DOI: 10.1016/j.chroma.2011.09.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022]
|
8
|
Trusch M, Ehlert S, Bertsch A, Kohlbacher O, Hildebrand D, Schlüter H, Tallarek U. Improved particle-packed HPLC/MS microchips for proteomic analysis. J Sep Sci 2010; 33:3283-91. [DOI: 10.1002/jssc.201000474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Ehlert S, Trojer L, Vollmer M, van de Goor T, Tallarek U. Performance of HPLC/MS microchips in isocratic and gradient elution modes. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:313-320. [PMID: 20209581 DOI: 10.1002/jms.1719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We analyzed the chromatographic performance of particle-packed, all-polyimide high-performance liquid chromatography/mass spectrometry (HPLC/MS) microchips in terms of their hydraulic permeabilities and separation efficiency under isocratic and gradient elution conditions. The separation channels of the chips (with ca 50 microm x 75 microm trapezoidal cross-section and a length of 43 mm) were slurry packed with either 3.5 or 5 microm spherical porous C18-silica particles. A custom-built holder enveloped the chip during packing to prevent channel deformation and delamination from high pressures. It is shown that the packing conditions significantly impact the packing density of the HPLC/MS chips, which determines their performance in both, isocratic and gradient elution modes. Even with steep solvent gradients, peak shape and chromatographic resolution for the densely packed HPLC/MS chips are much improved. Our data show that the analytical power of the HPLC/MS chip is limited by the quality of the chromatographic separation.
Collapse
Affiliation(s)
- Steffen Ehlert
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
10
|
Haapala M, Saarela V, Pól J, Kolari K, Kotiaho T, Franssila S, Kostiainen R. Integrated liquid chromatography-heated nebulizer microchip for mass spectrometry. Anal Chim Acta 2010; 662:163-9. [PMID: 20171315 DOI: 10.1016/j.aca.2010.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/18/2009] [Accepted: 01/03/2010] [Indexed: 11/29/2022]
Abstract
A new integrated microchip for liquid chromatography-mass spectrometry (LC-MS) is presented. The chip is made from bonded silicon and glass wafers with structures for a packed LC column channel, a micropillar frit, a channel for optional optical detection, and a heated vaporizer section etched in silicon and platinum heater elements on the glass cover. LC eluent is vaporized and mixed with nebulizer gas in the vaporizer section and the vapor is sprayed out from the chip. Nonpolar and polar analytes can be efficiently ionized in the gas phase by atmospheric pressure photoionization (APPI) as demonstrated with polycyclic aromatic hydrocarbons (PAHs) and selective androgen receptor modulators (SARMs). This is not achievable with present LC-MS chips, since they are based on electrospray ionization, which is not able to ionize nonpolar compounds efficiently. The preliminary quantitative performance of the new chip was evaluated in terms of limit of detection (down to 5 ng mL(-1)), linearity (r>0.999), and repeatability of signal response (RSD=2.6-4.0%) and retention time (RSD=0.3-0.5%) using APPI for ionization and PAHs as standard compounds. Determination of fluorescent compounds is demonstrated by using laser-induced fluorescence (LIF) for detection in the optical detection channel before the vaporizer section.
Collapse
Affiliation(s)
- Markus Haapala
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
11
|
McMullen JP, Jensen KF. Integrated microreactors for reaction automation: new approaches to reaction development. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:19-42. [PMID: 20636032 DOI: 10.1146/annurev.anchem.111808.073718] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Applications of microsystems (microreactors) in continuous-flow chemistry have expanded rapidly over the past two decades, with numerous reports of higher conversions and yields compared to conventional batch benchtop equipment. Synthesis applications are enhanced by chemical information gained from integrating microreactor components with sensors, actuators, and automated fluid handling. Moreover, miniaturized systems allow experiments on well-defined samples at conditions not easily accessed by conventional means, such as reactions at high pressure and temperatures. The wealth of synthesis information that could potentially be acquired through use of microreactors integrated with physical sensors and analytical chemistry techniques for online reaction monitoring has not yet been well explored. The increased efficiency resulting from use of continuous-flow microreactor platforms to automate reaction screening and optimization encourages a shift from current batchwise chemical reaction development to this new approach. We review advances in this new area and provide application examples of online monitoring and automation.
Collapse
Affiliation(s)
- Jonathan P McMullen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA.
| | | |
Collapse
|
12
|
Jung S, Höltzel A, Ehlert S, Mora JA, Kraiczek K, Dittmann M, Rozing GP, Tallarek U. Impact of Conduit Geometry on the Performance of Typical Particulate Microchip Packings. Anal Chem 2009; 81:10193-200. [DOI: 10.1021/ac902069x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie Jung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Steffen Ehlert
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Jose-Angel Mora
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Karsten Kraiczek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Monika Dittmann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Gerard P. Rozing
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| |
Collapse
|
13
|
Reinsberg KG, Effelsberg U, Tallarek U. Microchip electrospray performance during gradient elution with bulk conductivity changes. LAB ON A CHIP 2009; 9:2914-2923. [PMID: 19789744 DOI: 10.1039/b905052c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This work identifies dynamic changes in bulk conductivity during reversed-phase HPLC gradient elution as a major source for spray mode changes and instabilities observed in ESI-MS. A commercial microchip-HPLC/ESI-MS configuration was modified to enable electrospray diagnostics based on frequency analysis of the microchip emitter current combined with spray imaging. This approach facilitated detection of different spray modes together with their onset potentials. Water/acetonitrile mixtures containing formic acid were selected as the electrosprayed solutions to represent typical conditions in reversed-phase HPLC. Experimental data are complemented by computational fluid dynamics simulations, treating the electrosprayed solution as leaky dielectric fluid, to address the influence of bulk conductivity and applied potential difference on the developing cone-jet morphology and stability.
Collapse
Affiliation(s)
- Klaus-Georg Reinsberg
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | |
Collapse
|
14
|
Khirevich S, Höltzel A, Ehlert S, Seidel-Morgenstern A, Tallarek U. Large-Scale Simulation of Flow and Transport in Reconstructed HPLC-Microchip Packings. Anal Chem 2009; 81:4937-45. [DOI: 10.1021/ac900631d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siarhei Khirevich
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Steffen Ehlert
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Andreas Seidel-Morgenstern
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
15
|
Jung S, Ehlert S, Mora JA, Kraiczek K, Dittmann M, Rozing GP, Tallarek U. Packing density, permeability, and separation efficiency of packed microchips at different particle-aspect ratios. J Chromatogr A 2009; 1216:264-73. [DOI: 10.1016/j.chroma.2008.11.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
16
|
Khirevich S, Höltzel A, Hlushkou D, Seidel-Morgenstern A, Tallarek U. Structure-transport analysis for particulate packings in trapezoidal microchip separation channels. LAB ON A CHIP 2008; 8:1801-1808. [PMID: 18941678 DOI: 10.1039/b810688f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This article investigates the efficiency of particulate beds confined in quadrilateral microchannels by analyzing the three-dimensional fluid flow velocity field and accompanying hydrodynamic dispersion with quantitative numerical simulation methods. Random-close packings of uniform, solid (impermeable), spherical particles of diameter d(p) were generated by a modified Jodrey-Tory algorithm in eighteen different conduits with quadratic, rectangular, or trapezoidal cross-section at an average bed porosity (interparticle void fraction) of epsilon = 0.48. Velocity fields were calculated by the lattice Boltzmann method, and axial hydrodynamic dispersion of an inert tracer was simulated at Péclet numbers Pe = u(av)d(p)/D(m) (where u(av) is the average fluid flow velocity through a packing and D(m) the bulk molecular diffusion coefficient) from Pe = 5 to Pe = 30 by a Lagrangian particle-tracking method. All conduits had a cross-sectional area of 100d(p)(2) and a length of 1200d(p), translating to around 10(5) particles per packing. We present lateral porosity distribution functions and analyze fluid flow profiles and velocity distribution functions with respect to the base angle and the aspect ratio of the lateral dimensions of the different conduits. We demonstrate significant differences between the top and bottom parts of trapezoidal packings in their lateral porosity and velocity distribution functions, and show that these differences increase with decreasing base angle and increasing base-aspect ratio of a trapezoidal conduit, i.e., with increasing deviation from regular rectangular geometry. Efficiencies are investigated in terms of the axial hydrodynamic dispersion coefficients as a function of the base angle and base-aspect ratio of the conduits. The presented data support the conclusion that the efficiency of particulate beds in trapezoidal microchannels strongly depends on the lateral dimensions of the conduit and that cross-sectional designs based on large side-aspect-ratio rectangles with limited deviations from orthogonality are favorable.
Collapse
Affiliation(s)
- Siarhei Khirevich
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032, Marburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Ohno KI, Tachikawa K, Manz A. Microfluidics: Applications for analytical purposes in chemistry and biochemistry. Electrophoresis 2008; 29:4443-53. [DOI: 10.1002/elps.200800121] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Pappa-Louisi A, Nikitas P, Zisi C, Papachristos K. Combined effect of temperature and organic modifier concentration on the retention under single mode gradient conditions in reversed-phase HPLC. J Sep Sci 2008; 31:2953-61. [DOI: 10.1002/jssc.200800302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Ehlert S, Kraiczek K, Mora JA, Dittmann M, Rozing GP, Tallarek U. Separation Efficiency of Particle-Packed HPLC Microchips. Anal Chem 2008; 80:5945-50. [DOI: 10.1021/ac800576v] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steffen Ehlert
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies GmbH, 76337 Waldbronn, Germany
| | - Karsten Kraiczek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies GmbH, 76337 Waldbronn, Germany
| | - Jose-Angel Mora
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies GmbH, 76337 Waldbronn, Germany
| | - Monika Dittmann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies GmbH, 76337 Waldbronn, Germany
| | - Gerard P. Rozing
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies GmbH, 76337 Waldbronn, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Agilent Technologies GmbH, 76337 Waldbronn, Germany
| |
Collapse
|
20
|
Topographic structures and chromatographic supports in microfluidic separation devices. J Chromatogr A 2008; 1184:560-72. [DOI: 10.1016/j.chroma.2007.09.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/24/2007] [Accepted: 09/27/2007] [Indexed: 01/16/2023]
|