1
|
Gu X, Cui M, Wang B, Liu G, Zhang J, Wang R, Zhang X. Effects of Ionic Liquids on Piezoelectric Properties of Electrospun Poly(L-lactic acid) Nanofiber Membranes. ACS OMEGA 2024; 9:4957-4965. [PMID: 38313531 PMCID: PMC10831963 DOI: 10.1021/acsomega.3c08789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
The development of environmentally friendly, degradable piezoelectric materials is of great significance for the environment. Poly(L-lactic acid) (PLLA) is a promising piezoelectric material as a degradable material. Here, we have introduced a series of ionic liquids (ILs) into PLLA spinning solution, and the PLLA/IL composite nanofiber membranes are prepared by electrospinning method. When the conductivity of the spinning solution is below 400 μS·cm-1, the addition of ILs, especially [EMIm][PF6], can significantly improve the morphology and piezoelectric properties of the PLLA/IL composite nanofiber membrane with the output voltage of 2.3 V under the pressure of 5 N, which is 4 times that of the PLLA nanofiber membrane. The improvement of the piezoelectric properties of PLLA/IL nanofiber membrane may be due to the high dipole moment generated by the C=O dipole after the interaction between the O atom in C=O on the PLLA molecular chain and the [EMIm]+ cation in the IL. This work has elucidated the effects of ILs on the properties of spinning solution and the piezoelectric properties of PLLA, which can provide a theoretical basis for the selection of the preparation system of piezoelectric polymer and inspire the development of environmentally friendly flexible piezoelectric materials.
Collapse
Affiliation(s)
- Xiaoxia Gu
- Beijing Key Laboratory of
Clothing Materials R&D and Assessment, Beijing Engineering Research
Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Meng Cui
- Beijing Key Laboratory of
Clothing Materials R&D and Assessment, Beijing Engineering Research
Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Bin Wang
- Beijing Key Laboratory of
Clothing Materials R&D and Assessment, Beijing Engineering Research
Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Guyue Liu
- Beijing Key Laboratory of
Clothing Materials R&D and Assessment, Beijing Engineering Research
Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jing Zhang
- Beijing Key Laboratory of
Clothing Materials R&D and Assessment, Beijing Engineering Research
Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Rui Wang
- Beijing Key Laboratory of
Clothing Materials R&D and Assessment, Beijing Engineering Research
Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Xiuqin Zhang
- Beijing Key Laboratory of
Clothing Materials R&D and Assessment, Beijing Engineering Research
Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
2
|
Yang Y, Li Y, Long Z, Han L, Quan K, Chen J, Liu X, Qiu H. A C4-modified bipyridinium multi-mode stationary phase for reversed phase, hydrophilic interaction and ion exchange chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6286-6293. [PMID: 37965679 DOI: 10.1039/d3ay01796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A novel C4-modified bipyridinium stationary phase (Sil-DPC4) was prepared and characterized by elemental analysis (EA) and Fourier transform infrared spectrometry (FT-IR) and further investigated for multi-mode liquid chromatography. The chromatographic performances of Sil-DPC4 were evaluated by reversed-phase chromatography using polycyclic aromatic hydrocarbons (PAHs), phenylamines and phenols, hydrophilic interaction chromatography using nucleosides and nucleobases, and ion exchange chromatography using inorganic ions and organic ions. The effects of the acetonitrile content, salt concentration and pH value of the mobile phase on the retention of Sil-DPC4 were also investigated. Sil-DPC4 showed multiple retention mechanisms including π-π, hydrophobic and electrostatic interactions for PAHs, phenylamines and phenols compared with a dipyridine modified silica stationary phase (Sil-DP) and C18 in RPLC, faster separation for nucleosides and nucleobases compared with Sil-DP, and higher hydrophilicity than HILIC in HILIC, and stronger retention and better separation ability for inorganic ions and organic ions in comparison to Sil-DP in IEC. Besides, Sil-DPC4 was used successfully to detect iodide in artificial seawater and had the potential to analyze radionuclide iodine-131 in seawater. In conclusion, multiple retention mechanisms of Sil-DPC4 could make it have potential applications in complex samples.
Collapse
Affiliation(s)
- Yali Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan Li
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi 830000, China
| | - Zelong Long
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi 830000, China
| | - Lingling Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
Carapito R, Bernardo SC, Pereira MM, Neves MC, Freire MG, Sousa F. Multimodal ionic liquid-based chromatographic supports for an effective RNA purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
C. F. Nunes J, Almeida MR, de Paiva GB, Pedrolli DB, Santos-Ebinuma VC, Neves MC, Freire MG, P. M. Tavares A. A flow-through strategy using supported ionic liquids for L-asparaginase purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Capela EV, Bairos J, Pedro AQ, Neves MC, Raquel Aires-Barros M, Azevedo AM, Coutinho JA, Tavares AP, Freire MG. Supported ionic liquids as customizable materials to purify immunoglobulin G. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Bernardo SC, Carapito R, Neves MC, Freire MG, Sousa F. Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation-An Overview. Molecules 2022; 27:1618. [PMID: 35268719 PMCID: PMC8911583 DOI: 10.3390/molecules27051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.
Collapse
Affiliation(s)
- Sandra C. Bernardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Márcia C. Neves
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| |
Collapse
|
7
|
Mallik AK, Moktadir MA, Rahman MA, Shahruzzaman M, Rahman MM. Progress in surface-modified silicas for Cr(VI) adsorption: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127041. [PMID: 34488103 DOI: 10.1016/j.jhazmat.2021.127041] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Various toxic chemicals are discharging to the environment due to rapid industrialization and polluting soil, water, and air causing numerous diseases including life-threatening cancer. Among these pollutants, Cr(VI) or hexavalent chromium is one of the most carcinogenic and toxic contaminants hostile to human health and other living things. Therefore, along with other contaminants, the removal of Cr(VI) efficiently is very crucial to keep our environment neat and clean. On the other hand, silica has a lot of room to modify its surfaces as it is available with various sizes, shapes, pore sizes, surface areas etc. and the surface silanol groups are susceptible to design and prepare adsorbents for Cr(VI). This review emphases on the progress in the development of different types of silica-based adsorbents by modifying the surfaces of silica and their application for the removal of Cr(VI) from wastewater. Toxicity of Cr(VI), different silica surface modification processes, and removal techniques are also highlighted. The adsorption capacities of the surface-modified silica materials with other parameters are discussed extensively to understand how to select the best condition, silica and modifiers to achieve optimum removal performance. The adsorption mechanisms of various adsorbents are also discussed. Finally, future prospects are summarized and some suggestions are given to enhance the adsorption capacities of the surface-modified silica materials.
Collapse
Affiliation(s)
- Abul K Mallik
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Md Abdul Moktadir
- Institute of Leather Engineering and Technology, University of Dhaka, Dhaka 1209, Bangladesh.
| | - Md Ashiqur Rahman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Md Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh; Institute of Leather Engineering and Technology, University of Dhaka, Dhaka 1209, Bangladesh.
| |
Collapse
|
8
|
Nunes JCF, Almeida MR, Bento RMF, Pereira MM, Santos-Ebinuma VC, Neves MC, Freire MG, Tavares APM. Enhanced Enzyme Reuse through the Bioconjugation of L-Asparaginase and Silica-Based Supported Ionic Liquid-like Phase Materials. Molecules 2022; 27:929. [PMID: 35164193 PMCID: PMC8838661 DOI: 10.3390/molecules27030929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme's single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase-SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10-3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase-SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- João C. F. Nunes
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Mafalda R. Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Rui M. F. Bento
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Matheus M. Pereira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Valéria C. Santos-Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Mara G. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| | - Ana P. M. Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.C.F.N.); (M.R.A.); (R.M.F.B.); (M.M.P.); (M.C.N.); (M.G.F.)
| |
Collapse
|
9
|
Han Y, Wang S, Liu Y, Bai L, Yan H, Liu H. Preparation of poly(ionic liquid@MOF) composite monolithic column and its application in the online enrichment and purification of tectochrysin in medicinal plants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:401-409. [PMID: 35006229 DOI: 10.1039/d1ay01954f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, a poly(ionic liquid@MOF) composite monolithic column was prepared via in situ radical polymerization using ionic liquid (1-allyl-3-methylimidazolium hexafluorophosphate) and MOF (derivatized UIO66-2COOH) as copolymer monomers. The composite monolithic column was characterized via scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherms and mercury intrusion porosimetry. Subsequently, the composite monolithic column combined with high performance liquid chromatography (HPLC) was used as a solid-phase extraction (SPE) absorbent for online purification and enrichment of tectochrysin in medicinal plants. The results indicated that the addition of the ionic liquid and MOF not only increased the surface area but also increased the adsorption capacity of the monolith for tectochrysin. The method showed good linearity in the concentration range of 0.01-500 μg mL-1. The calibration equation was y = 2154.6x - 8.3785 and the limit of detection (LOD, S/N = 3) and the limit of quantification (LOQ, S/N = 10) were 3.33 ng mL-1 and 10 ng mL-1, respectively. The relative standard deviation (RSD) of the intra-day and inter-day precision was less than 2.62%, the RSD of inter-column was less than 3.16%, and the recoveries ranged from 100.58% to 105.00%. Thus, results showed that this method is simple, accurate and convenient for the online enrichment and purification of tectochrysin from medicinal plants.
Collapse
Affiliation(s)
- Yamei Han
- College of Pharmacy, Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Shan Wang
- College of Pharmacy, Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Yijie Liu
- College of Pharmacy, Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Ligai Bai
- College of Pharmacy, Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Hongyuan Yan
- College of Pharmacy, Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Haiyan Liu
- College of Pharmacy, Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
10
|
SEDYOHUTOMO A, SUZUKI H, FUJIMOTO C. The Utilization of Triacontyl-Bonded Silica Coated with Imidazolium Ions for Capillary Ion Chromatographic Determination of Inorganic Anions. CHROMATOGRAPHY 2021. [DOI: 10.15583/jpchrom.2021.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Hiroshi SUZUKI
- Department of Chemistry, Hamamatsu University School of Medicine
| | - Chuzo FUJIMOTO
- Department of Chemistry, Hamamatsu University School of Medicine
| |
Collapse
|
11
|
Adsorption and Purification of Baicalin from Scutellaria baicalensis Georgi Extract by Ionic Liquids (ILs) Grafted Silica. Molecules 2021; 26:molecules26082322. [PMID: 33923637 PMCID: PMC8073518 DOI: 10.3390/molecules26082322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
Baicalin which has multiple biological activities is the main active component of the root of Scutellaria baicalensis Georgi (SBG). Although its isolation and purification by adsorption methods have aroused much interest of the scientific community, it suffered from the poor selectivity of the adsorbents. In this work, an environmentally benign method was developed to prepare ionic liquids (ILs) grafted silica by using IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim]NTf2) and ethanol as reaction media. The IL 1-propyl-3-methylimidazolium chloride ([C3mim]Cl) grafted silica ([C3mim]+Cl−@SiO2) was used to adsorb and purify baicalin from the root extract of Scutellaria baicalensis Georgi (SBG). Experimental results indicated that the adsorption equilibrium can be quickly achieved (within 10 min). The adsorption behavior of [C3mim]+Cl−@SiO2 for baicalin was in good agreement with Langmuir and Freundlich models and the adsorption was a physisorption process as suggested by Dubinin–Radushkevich model. Compared with commercial resins, [C3mim]+Cl−@SiO2 showed the strongest adsorption ability and highest selectivity. After desorption and crystallization, a purity of baicalin as high as 96.5% could be obtained. These results indicated that the ILs grafted silica materials were promising adsorbents for the adsorption and purification of baicalin and showed huge potential in the purification of other bioactive compounds from natural sources.
Collapse
|
12
|
Hosseini ES, Tabar Heydar K. Preparation and evaluation a mixed-mode stationary phase with C 18 and 2-methylindole for HPLC. Biomed Chromatogr 2021; 35:e5068. [PMID: 33450065 DOI: 10.1002/bmc.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/11/2022]
Abstract
A modified C18 column (Silpr-2MI-C18) was prepared using 2-methylindole and C18 reagent. The extent of C18 hydrocarbon chain, conjugative rings and anion exchange site provided multiple retention mechanisms, including reversed-phase liquid chromatography (RPLC), π-π interaction, hydrophilic interaction liquid chromatography (HILIC) and anion exchange chromatography (AEC). The separation of protected amino acids was investigated on the commercial C18 and Silpr-2MI-C18 columns, while the chromatographic conditions, including methanol content and pH of the mobile phase, were studied. The separation arrangement of the hydrophilic amino acids was different on the Silpr-2MI-C18 column compared to the commercial C18 column under RPLC mode. Furthermore, these amino acids were separated on the Silpr-2MI-C18 column under HILIC mode. The modified C18 column was employed to separate amino acids, alkylbenzenes and polycyclic aromatic hydrocarbons under RPLC mode and inorganic anion under AEC mode. The results confirm that this new stationary phase of RPLC/HILIC/AEC has multiple interactions with different analytes. Effective retention of biological samples was found on the Silpr-2MI-C18 column by comparing the results obtained from the commercial C18 column.
Collapse
Affiliation(s)
- Elham Sadat Hosseini
- Faculty of Clean Technologies, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Kourosh Tabar Heydar
- Faculty of Clean Technologies, Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
13
|
Fabrication of spherical silica amino-functionalized microporous organic network composites for high performance liquid chromatography. Talanta 2021; 221:121570. [DOI: 10.1016/j.talanta.2020.121570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023]
|
14
|
Hosseini ES, Heydar KT. Silica modification with 9-methylacridine and 9-undecylacridine as mixed-mode stationary phases in HPLC. Talanta 2021; 221:121445. [PMID: 33076069 DOI: 10.1016/j.talanta.2020.121445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022]
Abstract
In this research, 9-methylacridine and 9-undecylacridine were synthesized through Bernthsen's reaction and well characterized using gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). Two mixed-mode stationary phases were developed by functionalizing silica with 9-methylacridine and 9-undecylacridine. Then, two modified silicas were characterized by elemental analysis, thermogravimetric analysis (TGA), and fourier transform-infrared spectroscopy (FT-IR). Due to the extent of conjugative rings, the hydrophobic hydrocarbon chain, and anion exchange sites of 9-methylacridinium and 9-undecylacridinium group on the silica gel of columns, mixed-mode stationary phases were designed with multiple interactions including π-π stacking interaction, reverse phase, hydrophilic interaction, and anion exchange. According to the type of acridine, different interactions may be formed in the target column. Polycyclic aromatic hydrocarbons (PAHs), alkylbenzenes, pyridines and parabens were chromatographed on π-π stacking modes and RPLC, where anion exchange sites can be applied for the separation of inorganic anions on AEC mode. Considering the structure of the stationary phases, these columns were used to separate organic compounds with higher polarity on the HILIC retention. The performance of the columns was investigated by the chromatographic parameters in terms of column efficiency (N/m), asymmetry factor (Af), retention factor (k), and resolution (Rs). The mixed-mode stationary phases can be successfully employed to conduct chromatographic separation on a wide range of samples with a single column.
Collapse
|
15
|
Paranamana N, El Rassi Z. Imidazolium ionic liquid bonded silica stationary phases. Part II. 1-Ethylimidazolium stationary phase. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1827427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nilushi Paranamana
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
16
|
Pajewska-Szmyt M, Buszewski B, Gadzała-Kopciuch R. Supported ionic liquid adsorbent and ELSD–HPLC method as an alternative procedure for exogenous fatty acid analysis in breast milk. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Guo D, Yang C, Qiu R, Huang S. A novel imidazolium bonding stationary phase derived from N-(3-aminopropyl)-imidazole for hydrophilic interaction liquid chromatography. J Chromatogr A 2020; 1625:461331. [DOI: 10.1016/j.chroma.2020.461331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/16/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
|
18
|
Supported Ionic Liquids for the Efficient Removal of Acetylsalicylic Acid from Aqueous Solutions. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Flieger J, Feder-Kubis J, Tatarczak-Michalewska M. Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation Techniques. Int J Mol Sci 2020; 21:E4253. [PMID: 32549300 PMCID: PMC7352568 DOI: 10.3390/ijms21124253] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Ionic liquids (ILs) are chemical compounds composed of ions with melting points below 100 °C exhibiting a design feature. ILs are commonly used as the so-called green solvents, reagents or highly efficient catalysts in varied chemical processes. The huge application potential of ionic liquids (IL) justifies the growing interest in these compounds. In the last decade, increasing attention has been devoted to the development of new methods in the synthesis of stable chiral ionic liquids (CILs) and their application in various separation techniques. The beginnings of the successful use of CILs to separate enantiomers date back to the 1990 s. Most chiral ILs are based on chiral cations or chiral anions. There is also a limited number of CILs possessing both a chiral cation and a chiral anion. Due to the high molecular diversity of both ions, of which at least one has a chiral center, we have the possibility to design a large variety of optically active structures, thus expanding the range of CIL applications. Research utilizing chiral ionic liquids only recently has become more popular. However, it is the area that still has great potential for future development. This review aimed to describe the diversity of structures, properties and examples of applications of chiral ionic liquids as new chiral solid materials and chiral components of the anisotropic environment, providing chiral recognition of enantiomeric analytes, which is useful in liquid chromatography, countercurrent chromatography and other various CIL-based extraction techniques including aqueous biphasic (ABS) extraction systems, solid-liquid two-phase systems, liquid-liquid extraction systems with hydrophilic CILs, liquid-liquid extraction systems with hydrophobic CILs, solid-phase extraction and induced-precipitation techniques developed in the recent years. The growing demand for pure enantiomers in the pharmaceutical and food industries sparks further development in the field of extraction and separation systems modified with CILs highlighting them as affordable and environmentally friendly both chiral selectors and solvents.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Feder-Kubis
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | | |
Collapse
|
20
|
Sobańska AW. Emerging or Underestimated Silica-Based Stationary Phases in Liquid Chromatography. Crit Rev Anal Chem 2020; 51:631-655. [PMID: 32482079 DOI: 10.1080/10408347.2020.1760782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several newly synthesized or forgotten silica-based stationary phases proposed for liquid chromatography are described, including non-endcapped, short-chain alkyl phases; hydrophilic and polar-endcapped stationary phases; polar-embedded alkyl phases; long-chain alkyl phases. Stationary phases with aromatic, cyanopropyl, diol and aminopropyl functionalities are also reviewed. Stationary phases of particular interest are biomolecular materials - based on immobilized cholesterol, aminoacids, peptides, proteins or lipoproteins. Packing materials involving macrocyclic chemistry (crown ethers; calixarenes; aza-macrocycles; oligo-and polysaccharides including these of marine origin - chitin- or chitosan-based; macrocyclic antibiotics) are discussed. Since many stationary phases developed for one type of applications (e.g. chiral separation) have been found useful in solving other analytical problems (e.g. drug's plasma protein binding ability), it seemed reasonable to discuss particular chemistries behind the stationary phases presented in this review rather than specific types of interactions or chromatographic modes.
Collapse
Affiliation(s)
- Anna W Sobańska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Zhou H, Chen J, Li H, Quan K, Zhang Y, Qiu H. Imidazolium ionic liquid-enhanced poly(quinine)-modified silica as a new multi-mode chromatographic stationary phase for separation of achiral and chiral compounds. Talanta 2020; 211:120743. [DOI: 10.1016/j.talanta.2020.120743] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/04/2023]
|
22
|
|
23
|
Konshina DN, A. Lupanova I, Mazur AS, Konshin VV. Ion-exchange Extraction of Palladium(II) from Chloride Solutions Using a Silica Gel-Immobilized Imidazolium Salt. SOLVENT EXTRACTION AND ION EXCHANGE 2019. [DOI: 10.1080/07366299.2019.1665242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dzhamilya N. Konshina
- Department of Chemistry and High Technologies, Kuban State University, Krasnodar, Russia
| | - Ida A. Lupanova
- Department of Chemistry and High Technologies, Kuban State University, Krasnodar, Russia
| | - Anton S. Mazur
- Center for Magnetic Resonance, Saint Petersburg State University, Peterhof, Russia
| | - Valeriy V. Konshin
- Department of Chemistry and High Technologies, Kuban State University, Krasnodar, Russia
| |
Collapse
|
24
|
Cui G, Yu H, Ma Y. Ionic liquids as mobile phase additives for determination of thiocyanate and iodide by liquid chromatography. J Sep Sci 2019; 42:1733-1739. [DOI: 10.1002/jssc.201801277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Ge Cui
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Hong Yu
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| | - Ya‐jie Ma
- Heilongjiang Province Key Laboratory of Photochemical Biomaterials and Energy Storage MaterialsCollege of Chemistry and Chemical EngineeringHarbin Normal University Harbin P. R. China
| |
Collapse
|
25
|
Li G, Ho Row K. Ionic liquid based on imidazolium cation to modify functional materials on separation of active compounds. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1541805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guizhen Li
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|
26
|
Zhang Y, Wang H, Sun N, Chi R. Experimental and computational study on mechanism of dichromate adsorption by ionic liquid-bonded silica gel. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Han M, Li W, Chen R, Han Y, Liu X, Wang T, Guo H, Qiao X. Amino acid and ionic liquid modified polyhedral oligomeric silsesquioxane-based hybrid monolithic column for high-efficiency capillary liquid chromatography. J Chromatogr A 2018; 1572:82-89. [DOI: 10.1016/j.chroma.2018.08.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 02/01/2023]
|
28
|
Zhang YN, Yu H, Ma YJ, Cui G. Imidazolium ionic liquids as mobile phase additives in reversed phase liquid chromatography for the determination of iodide and iodate. Anal Bioanal Chem 2018; 410:7347-7355. [DOI: 10.1007/s00216-018-1347-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
|
29
|
Bai Q, Liu Y, Wang Y, Zhao K, Yang F, Liu J, Shen J, Zhao Q. Protein separation using a novel silica-based RPLC/IEC mixed-mode stationary phase modified with N-methylimidazolium ionic liquid. Talanta 2018; 185:89-97. [DOI: 10.1016/j.talanta.2018.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 01/04/2023]
|
30
|
Lee YR, Row KH. Ionic liquid-modified mesoporous silica stationary phase for separation of polysaccharides with size exclusion chromatography. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Lee YR, Ma W, Row KH. Determination of Polysaccharides in Undaria pinnatifida by Ionic Liquid-Modified Silica Gel Size Exclusion Chromatography. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1413384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yu Ri Lee
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Wanwan Ma
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|
32
|
Wu Q, Sun Y, Gao J, Chen L, Dong S, Luo G, Li H, Wang L, Zhao L. Ionic liquid-functionalized graphene quantum dot-bonded silica as multi-mode HPLC stationary phase with enhanced selectivity for acid compounds. NEW J CHEM 2018. [DOI: 10.1039/c7nj05200f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel IL/GQD/SiO2 stationary phase for reversed-phase/normal-phase/ionic exchange and hydrophilic interaction liquid chromatography.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yaming Sun
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Jie Gao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Lixiao Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Shuqing Dong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Guoying Luo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hui Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Litao Wang
- Department of Pharmacy
- Jining Medical University
- Rizhao
- China
| | - Liang Zhao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
33
|
Dasthaiah K, Selvan BR, Suneesh AS, Venkatesan KA, Antony MP, Gardas RL. Studies on the uptake of Am(III) and Eu(III) on ionic liquid modified polystyrene-divinyl benzene. RADIOCHIM ACTA 2017. [DOI: 10.1515/ract-2017-2784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Imidazolium bis(2-ethylhexyl)phosphate ionic liquid was anchored on a polystyrene-divinylbenzene (PS-DVB) copolymer and the product (R-Im-DEHP) was studied for the extraction of Am(III) and Eu(III) from dilute nitric acid medium to examine the feasibility using the anchored adsorbent for their mutual separation. The effect of various parameters such as the duration of equilibration, concentration of nitric acid, europium ion, and diethylenetriaminepentaacetic acid (DTPA) in aqueous phase on the distribution coefficient (K
d) of Am(III) and Eu(III) was studied. The distribution coefficient of Am(III) and Eu(III) decreased with increase in the concentration of nitric acid. Rapid extraction of metal ions in the initial stages of equilibration followed by the establishment of equilibrium occurred within 4 h. The data on the rate of uptake of Am(III) and Eu(III) were fitted into pseudo-first order and pseudo-second order rate equation. The extraction isotherm was fitted to Langmuir and Freundlich adsorption models and the apparent europium extraction capacity was determined. The mechanism of extraction was elucidated and the conditions needed for efficient separation of Am(III) from Eu(III) was optimized using DTPA. The study indicated the possibility of using R-Im-DEHP for the separation of Eu(III) from Am(III) with high separation factors.
Collapse
Affiliation(s)
- K. Dasthaiah
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - B. Robert Selvan
- Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - A. S. Suneesh
- Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - K. A. Venkatesan
- Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India , Fax: +91 44 27480065, Tel: +91 44 27480098
| | - M. P. Antony
- Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - R. L. Gardas
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600 036 , India
| |
Collapse
|
34
|
Noguchi H, Liu T, Nozato S, Kuwahara Y, Takafuji M, Nagaoka S, Ihara H. Novel Black Organic Phase for Ultra Selective Retention by Surface Modification of Porous Silica. CHEM LETT 2017. [DOI: 10.1246/cl.170449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Noguchi
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555
| | - Tianhang Liu
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555
| | - Shoji Nozato
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555
- Kumamoto Institute for Photo-Electro Organics (PHOENICS), 3-11-38 Higashimachi, Higashi-ku, Kumamoto 862-0901
| | - Shoji Nagaoka
- Kumamoto Institute for Photo-Electro Organics (PHOENICS), 3-11-38 Higashimachi, Higashi-ku, Kumamoto 862-0901
- Materials and Regional Resources Laboratory, Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashi-ku, Kumamoto 862-0901
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555
- Kumamoto Institute for Photo-Electro Organics (PHOENICS), 3-11-38 Higashimachi, Higashi-ku, Kumamoto 862-0901
| |
Collapse
|
35
|
Liu H, Li Z, Takafuji M, Ihara H, Qiu H. Octadecylimidazolium ionic liquid-modified magnetic materials: Preparation, adsorption evaluation and their excellent application for honey and cinnamon. Food Chem 2017; 229:208-214. [DOI: 10.1016/j.foodchem.2017.02.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
36
|
Dier TKF, Rauber D, Durneata D, Hempelmann R, Volmer DA. Sustainable Electrochemical Depolymerization of Lignin in Reusable Ionic Liquids. Sci Rep 2017; 7:5041. [PMID: 28698638 PMCID: PMC5505966 DOI: 10.1038/s41598-017-05316-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 11/23/2022] Open
Abstract
Lignin's aromatic building blocks provide a chemical resource that is, in theory, ideal for substitution of aromatic petrochemicals. Moreover, degradation and valorization of lignin has the potential to generate many high-value chemicals for technical applications. In this study, electrochemical degradation of alkali and Organosolv lignin was performed using the ionic liquids 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and triethylammonium methanesulfonate. The extensive degradation of the investigated lignins with simultaneous almost full recovery of the electrolyte materials provided a sustainable alternative to more common lignin degradation processes. We demonstrate here that both the presence (and the absence) of water during electrolysis and proton transport reactions had significant impact on the degradation efficiency. Hydrogen peroxide radical formation promoted certain electrochemical mechanisms in electrolyte systems "contaminated" with water and increased yields of low molecular weight products significantly. The proposed mechanisms were tentatively confirmed by determining product distributions using a combination of liquid chromatography-mass spectrometry and gas-chromatography-mass spectrometry, allowing measurement of both polar versus non-polar as well as volatile versus non-volatile components in the mixtures.
Collapse
Affiliation(s)
- Tobias K F Dier
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | - Daniel Rauber
- Institute of Physical Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | - Dan Durneata
- Institute of Physical Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | - Rolf Hempelmann
- Institute of Physical Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany.
| |
Collapse
|
37
|
Caban M, Stepnowski P. The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants. Anal Chim Acta 2017; 967:102-110. [DOI: 10.1016/j.aca.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 03/04/2017] [Indexed: 11/30/2022]
|
38
|
A new route for synthesis of N-methylimidazolium-grafted silica stationary phase and reevaluation in hydrophilic interaction liquid chromatography. Talanta 2017; 164:137-140. [DOI: 10.1016/j.talanta.2016.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/13/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022]
|
39
|
Ali I, Suhail M, Sanagi MM, Aboul-Enein HY. Ionic Liquids in HPLC and CE: A Hope for Future. Crit Rev Anal Chem 2017; 47:332-339. [DOI: 10.1080/10408347.2017.1294047] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Mohd. Marsin Sanagi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
40
|
Li H, Zhang X, Zhang L, Wang X, Kong F, Fan D, Li L, Wang W. Preparation of a silica stationary phase co-functionalized with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography. Anal Chim Acta 2017; 962:104-113. [PMID: 28231874 DOI: 10.1016/j.aca.2017.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
A silica stationary phase was designed and synthesized through the co-functionalization of silica with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography applications. The as-synthesized stationary phase was characterized by elemental analysis and Fourier Transform-InfraRed Spectroscopy (FT-IR). Retention mechanisms, including boronate affinity (BA), reversed-phase (RP) and anion-exchange (AE), were involved. Retention mechanism switching was easily realized by adjustment of the mobile phase constitution. Cis-diol compounds could be selectively captured under neutral conditions in BA mode and off-line separated in RP mode. Neutral, basic, acidic and amphiprotic compounds were chromatographed on the column in RP chromatography, while inorganic anions were chromatographed in AE chromatography to characterize the mixed-mode nature of the prepared stationary phase. In addition, the RP performance was compared with an octadecyl silica column in terms of column efficiency (N/m), asymmetry factor (Af), retention factor (k) and resolution (Rs). The prepared stationary phase offered multiple interactions with analytes in addition to hydrophobic interactions under RP elution conditions. Based on the mixed-mode properties, off-line 2D-LC, for selective capture and separation of urinary nucleosides, was successfully realized on a single column, demonstrating its powerful application potential for complex samples.
Collapse
Affiliation(s)
- Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Xuemeng Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Lin Zhang
- Yancheng Entry-Exit Inspection and Quarantine Bureau, Yancheng, 224000, China
| | - Xiaojin Wang
- Huai'an Entry-Exit Inspection and Quarantine Bureau, Huai'an, 223001, China
| | - Fenying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Dahe Fan
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Lei Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224000, China.
| |
Collapse
|
41
|
Dier TKF, Rauber D, Jauch J, Hempelmann R, Volmer DA. Novel Mixed-Mode Stationary Phases for Chromatographic Separation of Complex Mixtures of Decomposed Lignin. ChemistrySelect 2017. [DOI: 10.1002/slct.201601673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tobias K. F. Dier
- Institute of Bioanalytical Chemistry; Saarland University; 66123 Saarbrücken Germany
| | - Daniel Rauber
- Institute of Physical Chemistry; Saarland University; 66123 Saarbrücken Germany
| | - Johann Jauch
- Institute of Organic Chemistry; Saarland University; 66123 Saarbrücken Germany
| | - Rolf Hempelmann
- Institute of Physical Chemistry; Saarland University; 66123 Saarbrücken Germany
| | - Dietrich A. Volmer
- Institute of Bioanalytical Chemistry; Saarland University; 66123 Saarbrücken Germany
| |
Collapse
|
42
|
Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography. Anal Bioanal Chem 2017; 409:2401-2410. [DOI: 10.1007/s00216-017-0187-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
|
43
|
Cheng T, Zhang Y, Liu X, Zhang X, Zhang H. Surfactant assisted enrichment of nucleosides by using a sorbent consisting of magnetic polysulfone capsules and mesoporous silica nanoparticles modified with phenylboronic acid. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2016-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Yang B, Liu H, Chen J, Guan M, Qiu H. Preparation and evaluation of 2-methylimidazolium-functionalized silica as a mixed-mode stationary phase for hydrophilic interaction and anion-exchange chromatography. J Chromatogr A 2016; 1468:79-85. [DOI: 10.1016/j.chroma.2016.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 02/09/2023]
|
45
|
Wang T, Yang H, Qiu R, Huang S. Synthesis of novel chiral imidazolium stationary phases and their enantioseparation evaluation by high-performance liquid chromatography. Anal Chim Acta 2016; 944:70-77. [PMID: 27776641 DOI: 10.1016/j.aca.2016.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/11/2016] [Accepted: 09/17/2016] [Indexed: 11/17/2022]
Abstract
Two novel chiral stationary phases (CSPs) were prepared by bonding chiral imidazoliums on the surface of silica gel. The chiral imidazoles were derivatized from chiral amines, 1-phenylethylamine and 1-(1-naphthyl)ethylamine. The obtained CSPs were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis (EA), demonstrating the bonding densities of CSP 1 and CSP 2 were 0.43 mmol g-1 and 0.40 mmol g-1, respectively. These two CSPs could be used to availably separate 8 pharmaceuticals, 7 mandelic acid/its derivatives, 2 1-phenylethylamine derivatives, 1 1,1'-bi-2-naphthol, and 1 camphorsulfonic acid in high-performance liquid chromatography (HPLC). It is found that CSP 1 could effectively enantioseparate most chiral analytes, especially the acidic components, while CSP 2 could enantiorecognize all chiral analytes, although a number of components did not achieve baseline separation. Additionally, the effects of mobile phase composition, mobile phase pH and salt content, chiral selector structures, and analyte structures on the enantiorecognitions of the two CSPs were investigated. It is found that high acetonitrile content in mobile phases was conducive to enantiorecognition. Mobile phase pH and salt content could alter the retention behaviors of different enantiomers of the same chiral compound, resulting in better enantioresolution. Moreover, both chiral selector structures and substituted groups of analytes played a significant role in the separation of chiral solutes.
Collapse
Affiliation(s)
- Tao Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haiyan Yang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ruchen Qiu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaohua Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
46
|
Soares B, Passos H, Freire CSR, Coutinho JAP, Silvestre AJD, Freire MG. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:4582-4604. [PMID: 27667965 PMCID: PMC5034900 DOI: 10.1039/c6gc01778a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction-separation processes using IL aqueous solutions are suggested within a green chemistry perspective.
Collapse
|
47
|
Marwani HM, Alsafrani AE, Asiri AM, Rahman MM. Silica-gel Particles Loaded with an Ionic Liquid for Separation of Zr(IV) Prior to Its Determination by ICP-OES. SENSORS 2016; 16:s16071001. [PMID: 27367692 PMCID: PMC4970051 DOI: 10.3390/s16071001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/29/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
Abstract
A new ionic liquid loaded silica gel amine (SG-APTMS-N,N-EPANTf₂) was developed, as an adsorptive material, for selective adsorption and determination of zirconium, Zr(IV), without the need for a chelating intermediate. Based on a selectivity study, the SG-APTMS-N,N-EPANTf₂ phase showed a perfect selectivity towards Zr(IV) at pH 4 as compared to other metallic ions, including gold [Au(III)], copper [Cu(II)], cobalt [Co(II)], chromium [Cr(III)], lead [Pb(II)], selenium [Se(IV)] and mercury [Hg(II)] ions. The influence of pH, Zr(IV) concentration, contact time and interfering ions on SG-APTMS-N,N-EPANTf₂ uptake for Zr(IV) was evaluated. The presence of incorporated donor atoms in newly synthesized SG-APTMS-N,N-EPANTf₂ phase played a significant role in enhancing its uptake capacity of Zr(IV) by 78.64% in contrast to silica gel (activated). The equilibrium and kinetic information of Zr(IV) adsorption onto SG-APTMS-N,N-EPANTf₂ were best expressed by Langmuir and pseudo second-order kinetic models, respectively. General co-existing cations did not interfere with the extraction and detection of Zr(IV). Finally, the analytical efficiency of the newly developed method was also confirmed by implementing it for the determination of Zr(IV) in several water samples.
Collapse
Affiliation(s)
- Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Amjad E Alsafrani
- Chemistry department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
48
|
Qiao L, Zhou X, Zhang Y, Yu A, Hu K, Zhang S, Wu Y. 4-Chloro-6-pyrimidinylferrocene modified silica gel: A novel multiple-function stationary phase for mixed-mode chromatography. Talanta 2016; 153:8-16. [DOI: 10.1016/j.talanta.2016.02.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 11/25/2022]
|
49
|
Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap. Talanta 2016; 153:392-400. [DOI: 10.1016/j.talanta.2016.03.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/03/2016] [Accepted: 03/12/2016] [Indexed: 11/22/2022]
|
50
|
Calixarene ionic liquid modified silica gel: A novel stationary phase for mixed-mode chromatography. Talanta 2016; 152:392-400. [DOI: 10.1016/j.talanta.2016.02.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 11/22/2022]
|