1
|
Wendlandt T, Britz B, Kleinow T, Hipp K, Eber FJ, Wege C. Getting Hold of the Tobamovirus Particle-Why and How? Purification Routes over Time and a New Customizable Approach. Viruses 2024; 16:884. [PMID: 38932176 PMCID: PMC11209083 DOI: 10.3390/v16060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and 'forgotten' or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Tatjana Kleinow
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany;
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| |
Collapse
|
2
|
Eckhardt D, Dieken H, Loewe D, Grein TA, Salzig D, Czermak P. Purification of oncolytic measles virus by cation-exchange chromatography using resin-based stationary phases. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1955267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dustin Eckhardt
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Hauke Dieken
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Daniel Loewe
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Faculty of Biology and Chemistry, University of Giessen, Giessen Germany
| | - Tanja A. Grein
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Department of cell culture technology, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Faculty of Biology and Chemistry, University of Giessen, Giessen Germany
| |
Collapse
|
3
|
Vitek R, do Nascimento FH, Masini JC. Polymer monoliths for the concentration of viruses from environmental waters: A review. J Sep Sci 2021; 45:134-148. [PMID: 34128332 DOI: 10.1002/jssc.202100282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
Even at low concentrations in environmental waters, some viruses are highly infective, making them a threat to human health. They are the leading cause of waterborne enteric diseases. In agriculture, plant viruses in irrigation and runoff water threat the crops. The low concentrations pose a challenge to early contamination detection. Thus, concentrating the virus particles into a small volume may be mandatory to achieve reliable detection in molecular techniques. This paper reviews the organic monoliths developments and their applications to concentrate virus particles from waters (waste, surface, tap, sea, and irrigation waters). Free-radical polymerization and polyaddition reactions are the most common strategies to prepare the monoliths currently used for virus concentration. Here, the routes for preparing and functionalizing both methacrylate and epoxy-based monoliths will be shortly described, following a revision of their retention mechanisms and applications in the concentration of enteric and plant viruses in several kinds of waters.
Collapse
Affiliation(s)
- Renan Vitek
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Cuiabá, Brazil
| | - Fernando H do Nascimento
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge C Masini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from macroporous hydrogels via oil-in-water high internal phase emulsion templates for specific capture of Enterovirus 71. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Towards the Development of a 3-D Biochip for the Detection of Hepatitis C Virus. SENSORS 2020; 20:s20092719. [PMID: 32397590 PMCID: PMC7249126 DOI: 10.3390/s20092719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The early diagnostics of hepatitis C virus (HCV) infections is currently one of the most highly demanded medical tasks. This study is devoted to the development of biochips (microarrays) that can be applied for the detection of HCV. The analytical platforms of suggested devices were based on macroporous poly(glycidyl methacrylate-co-di(ethylene glycol) dimethacrylate) monolithic material. The biochips were obtained by the covalent immobilization of specific probes spotted onto the surface of macroporous monolithic platforms. Using the developed biochips, different variants of bioassay were investigated. This study was carried out using hepatitis C virus-mimetic particles (VMPs) representing polymer nanoparticles with a size close to HCV and bearing surface virus antigen (E2 protein). At the first step, the main parameters of bioassay were optimized. Additionally, the dissociation constants were calculated for the pairs “ligand–receptor” and “antigen–antibody” formed at the surface of biochips. As a result of this study, the analysis of VMPs in model buffer solution and human blood plasma was carried out in a format of direct and “sandwich” approaches. It was found that bioassay efficacy appeared to be similar for both the model medium and real biological fluid. Finally, limit of detection (LOD), limit of quantification (LOQ), spot-to-spot and biochip-to-biochip reproducibility for the developed systems were evaluated.
Collapse
|
6
|
Zhao M, Vandersluis M, Stout J, Haupts U, Sanders M, Jacquemart R. Affinity chromatography for vaccines manufacturing: Finally ready for prime time? Vaccine 2019; 37:5491-5503. [DOI: 10.1016/j.vaccine.2018.02.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/22/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
|
7
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
8
|
Kucherenko E, Kanateva A, Pirogov A, Kurganov A. Recent advances in the preparation of adsorbent layers for thin-layer chromatography combined with matrix-assisted laser desorption/ionization mass-spectrometric detection. J Sep Sci 2018; 42:415-430. [DOI: 10.1002/jssc.201800625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Anastasiia Kanateva
- Russian Academy of Sciences; A.V. Topchiev Institute of Petrochemical Synthesis; Moscow Russia
| | - Andrey Pirogov
- Faculty of Chemistry; M.V. Lomonosov Moscow State University; Moscow Russia
| | - Alexander Kurganov
- Russian Academy of Sciences; A.V. Topchiev Institute of Petrochemical Synthesis; Moscow Russia
| |
Collapse
|
9
|
Krajacic M, Ravnikar M, Štrancar A, Gutiérrez-Aguirre I. Application of monolithic chromatographic supports in virus research. Electrophoresis 2017; 38:2827-2836. [DOI: 10.1002/elps.201700152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Mladen Krajacic
- Department of Biology; Faculty of Science; University of Zagreb; Zagreb Croatia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology; National Institute of Biology; Ljubljana Slovenia
| | | | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology; National Institute of Biology; Ljubljana Slovenia
| |
Collapse
|
10
|
Johnson SA, Brown MR, Lute SC, Brorson KA. Adapting viral safety assurance strategies to continuous processing of biological products. Biotechnol Bioeng 2016; 114:21-32. [DOI: 10.1002/bit.26060] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Sarah A. Johnson
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Matthew R. Brown
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Scott C. Lute
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Kurt A. Brorson
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| |
Collapse
|
11
|
Wu Y, Abraham D, Carta G. Comparison of perfusion media and monoliths for protein and virus-like particle chromatography. J Chromatogr A 2016; 1447:72-81. [DOI: 10.1016/j.chroma.2016.03.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 01/29/2023]
|
12
|
Rahmanian N, Bozorgmehr M, Torabi M, Akbari A, Zarnani AH. Cell separation: Potentials and pitfalls. Prep Biochem Biotechnol 2016; 47:38-51. [PMID: 27045194 DOI: 10.1080/10826068.2016.1163579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation techniques play an indispensable part in numerous basic biological studies and even clinical settings. Although various cell isolation methods with diverse applications have been devised so far, not all of them have been able to gain widespread popularity among researchers and clinicians. There is not a single method known to be advantageous over all cell isolation techniques, and in fact, it is the researcher's aim in performing a study that determines the most suitable method. A perfect method for one study might not be necessarily a proper choice for another and likewise, expensive and complex isolation methods might not always be the best choices. There are several criteria such as cell purity, viability, activation status, and frequency that need to be given serious thought before selecting an isolation technique. Moreover, time and cost are two of the key elements that should be taken into consideration before implementing a project. Hence, here we provide a succinct description of six more popular cell separation methods with respect to their principles, advantages, and disadvantages as well as their most common applications. We further provide several key features of each technique so that it helps the researchers to take the first step toward opting for the best method that fits well into their projects.
Collapse
Affiliation(s)
- Narges Rahmanian
- a Department of Molecular Medicine, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohmood Bozorgmehr
- b Oncopathology Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Monir Torabi
- c Department of Pathology, Shariati Hospital , Tehran University of Medical Sciences , Tehran , Iran
| | - Abolfazl Akbari
- d Colorectal Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Amir-Hassan Zarnani
- e Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran.,f Immunology Research Center , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
13
|
Herigstad MO, Dimartino S, Boi C, Sarti. GC. Experimental characterization of the transport phenomena, adsorption, and elution in a protein A affinity monolithic medium. J Chromatogr A 2015; 1407:130-8. [DOI: 10.1016/j.chroma.2015.06.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
|
14
|
Preparation of pure, high titer, pseudoinfectious Flavivirus particles by hollow fiber tangential flow filtration and anion exchange chromatography. Vaccine 2015; 33:4255-60. [DOI: 10.1016/j.vaccine.2014.09.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 11/23/2022]
|
15
|
Balique F, Lecoq H, Raoult D, Colson P. Can plant viruses cross the kingdom border and be pathogenic to humans? Viruses 2015; 7:2074-98. [PMID: 25903834 PMCID: PMC4411691 DOI: 10.3390/v7042074] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 04/06/2015] [Indexed: 12/30/2022] Open
Abstract
Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.
Collapse
Affiliation(s)
- Fanny Balique
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, 84140 Montfavet, France.
| | - Hervé Lecoq
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, 84140 Montfavet, France.
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance publique - hôpitaux de Marseille, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France.
| | - Philippe Colson
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, Facultés de Médecine et de Pharmacie, 27 boulevard Jean Moulin, 13385 Marseille cedex 05, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance publique - hôpitaux de Marseille, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France.
| |
Collapse
|
16
|
Ruščić J, Gutiérrez-Aguirre I, Tušek Žnidarič M, Kolundžija S, Slana A, Barut M, Ravnikar M, Krajačić M. A new application of monolithic supports: The separation of viruses from one another. J Chromatogr A 2015; 1388:69-78. [DOI: 10.1016/j.chroma.2015.01.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 11/29/2022]
|
17
|
Rački N, Kramberger P, Steyer A, Gašperšič J, Štrancar A, Ravnikar M, Gutierrez-Aguirre I. Methacrylate monolith chromatography as a tool for waterborne virus removal. J Chromatogr A 2015; 1381:118-24. [DOI: 10.1016/j.chroma.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/12/2014] [Accepted: 01/01/2015] [Indexed: 02/07/2023]
|
18
|
Svec F, Lv Y. Advances and Recent Trends in the Field of Monolithic Columns for Chromatography. Anal Chem 2014; 87:250-73. [DOI: 10.1021/ac504059c] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Frantisek Svec
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yongqin Lv
- International
Research Center
for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
19
|
Kattur Venkatachalam AR, Szyporta M, Kiener TK, Balraj P, Kwang J. Concentration and purification of enterovirus 71 using a weak anion-exchange monolithic column. Virol J 2014; 11:99. [PMID: 24884895 PMCID: PMC4042139 DOI: 10.1186/1743-422x-11-99] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/13/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV-71) is a neurotropic virus causing Hand, Foot and Mouth Disease (HFMD) in infants and children under the age of five. It is a major concern for public health issues across Asia-Pacific region. The most effective way to control the disease caused by EV-71 is by vaccination thus a novel vaccine is urgently needed. Inactivated EV-71 induces a strong, virus-neutralizing antibody response in animal models, protecting them against a lethal EV-71 challenge and it has been shown to elicit cross-neutralizing antibodies in human trials. Hence, the large-scale production of purified EV-71 is required for vaccine development, diagnosis and clinical trials. METHODS CIM® Monolith columns are single-piece columns made up of poly(glycidyl methacrylate co-ethylene dimethacrylate) as support matrix. They are designed as porous channels rather than beads with different chemistries for different requirements. As monolithic columns have a high binding capacity, flow rate and resolution, a CIM® DEAE-8f tube monolithic column was selected for purification in this study. The EV-71 infected Rhabdomyosarcoma (RD) cell supernatant was concentrated using 8% PEG 8000 in the presence of 400 mM sodium chloride. The concentrated virus was purified by weak anion exchange column using 50 mM HEPES + 1 M sodium chloride as elution buffer. RESULTS Highly pure viral particles were obtained at a concentration of 350 mM sodium chloride as confirmed by SDS-PAGE and electron microscopy. Presence of viral proteins VP1, VP2 and VP3 was validated by western blotting. The overall process achieved a recovery of 55%. CONCLUSIONS EV-71 viral particles of up to 95% purity can be recovered by a single step ion-exchange chromatography using CIM-DEAE monolithic columns and 1 M sodium chloride as elution buffer. Moreover, this method is scalable to purify several litres of virus-containing supernatant, using industrial monolithic columns with a capacity of up to 8 L such as CIM® cGMP tube monolithic columns.
Collapse
Affiliation(s)
- Ashok Raj Kattur Venkatachalam
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Milene Szyporta
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Tanja Kristin Kiener
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Premanand Balraj
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| |
Collapse
|
20
|
Banjac M, Roethl E, Gelhart F, Kramberger P, Jarc BL, Jarc M, Štrancar A, Muster T, Peterka M. Purification of Vero cell derived live replication deficient influenza A and B virus by ion exchange monolith chromatography. Vaccine 2014; 32:2487-92. [DOI: 10.1016/j.vaccine.2014.02.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022]
|
21
|
Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity. J Chromatogr A 2014; 1331:69-79. [DOI: 10.1016/j.chroma.2014.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 11/18/2022]
|
22
|
Emerging technologies for the integration and intensification of downstream bioprocesses. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.55] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Gerster P, Kopecky EM, Hammerschmidt N, Klausberger M, Krammer F, Grabherr R, Mersich C, Urbas L, Kramberger P, Paril T, Schreiner M, Nöbauer K, Razzazi-Fazeli E, Jungbauer A. Purification of infective baculoviruses by monoliths. J Chromatogr A 2013; 1290:36-45. [DOI: 10.1016/j.chroma.2013.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
24
|
Segura MM, Mangion M, Gaillet B, Garnier A. New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 2013; 13:987-1011. [PMID: 23590247 DOI: 10.1517/14712598.2013.779249] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lentiviruses are a very potent class of viral vectors for which there is presently a rapidly growing interest for a number of gene therapy. However, their construction, production and purification need to be performed according to state-of-the-art techniques in order to obtain sufficient quantities of high purity material of any usefulness and safety. AREAS COVERED The recent advances in the field of recombinant lentivirus vector design, production and purification will be reviewed with an eye toward its utilization for gene therapy. Such a review should be helpful for the potential user of this technology. EXPERT OPINION The principal hurdles toward the use of recombinant lentivirus as a gene therapy vector are the low titer at which it is produced as well as the difficulty to purify it at an acceptable level without degrading it. The recent advances in the bioproduction of this vector suggest these issues are about to be resolved, making the retrovirus gene therapy a mature technology.
Collapse
Affiliation(s)
- Maria Mercedes Segura
- Chemical Engineering Department, Universitat Autònoma de Barcelona, Campus Bellaterra, Cerdanyola del Vallès (08193), Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Fast purification of the filamentous Potato virus Y using monolithic chromatographic supports. J Chromatogr A 2013; 1272:33-40. [DOI: 10.1016/j.chroma.2012.11.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 11/22/2022]
|
26
|
Liu K, Wen Z, Li N, Yang W, Hu L, Wang J, Yin Z, Dong X, Li J. Purification and concentration of mycobacteriophage D29 using monolithic chromatographic columns. J Virol Methods 2012; 186:7-13. [DOI: 10.1016/j.jviromet.2012.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/16/2022]
|
27
|
Podgornik A, Krajnc NL. Application of monoliths for bioparticle isolation. J Sep Sci 2012; 35:3059-72. [DOI: 10.1002/jssc.201200387] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/19/2012] [Accepted: 07/16/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Aleš Podgornik
- The Centre of Excellence for Biosensors, Instrumentation and Process Control - COBIK; Solkan Slovenia
- BIA Separations d.o.o.; Ajdovščina Slovenia
| | - Nika Lendero Krajnc
- BIA Separations d.o.o.; Ajdovščina Slovenia
- The Centre of Excellence for Biosensors, Instrumentation and Process Control - COBIK; Solkan Slovenia
| |
Collapse
|
28
|
Burden CS, Jin J, Podgornik A, Bracewell DG. A monolith purification process for virus-like particles from yeast homogenate. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 880:82-9. [PMID: 22134039 DOI: 10.1016/j.jchromb.2011.10.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 11/19/2022]
Abstract
Monoliths are an alternative stationary phase format to conventional particle based media for large biomolecules. Conventional resins suffer from limited capacities and flow rates when used for viruses, virus-like particles (VLP) and other nanoplex materials. The monolith structure provides a more open pore structure to improve accessibility for these materials and better mass transport from convective flow and reduced pressure drops. To examine the performance of this format for bioprocessing we selected the challenging capture of a VLP from clarified yeast homogenate. Using a recombinant Saccharomyces cerevisiae host it was found hydrophobic interaction based separation using a hydroxyl derivatised monolith had the best performance. The monolith was then compared to a known beaded resin method, where the dynamic binding capacity was shown to be three-fold superior for the monolith with equivalent 90% recovery of the VLP. To understand the impact of the crude feed material confocal microscopy was used to visualise lipid contaminants, deriving from the homogenised yeast. It was seen that the lipid formed a layer on top of the column, even after regeneration of the column with isopropanol, resulting in increasing pressure drops with the number of operational cycles. Removal of the lipid pre-column significantly reduces the amount and rate of this fouling process. Using Amberlite/XAD-4 beads around 70% of the lipid was removed, with a loss of VLP around 20%. Applying a reduced lipid feed versus an untreated feed further increased the dynamic binding capacity of the monolith from 0.11 mg/mL column to 0.25 mg/mL column.
Collapse
Affiliation(s)
- Claire S Burden
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| | | | | | | |
Collapse
|
29
|
Koku H, Maier RS, Czymmek KJ, Schure MR, Lenhoff AM. Modeling of flow in a polymeric chromatographic monolith. J Chromatogr A 2011; 1218:3466-75. [PMID: 21529814 PMCID: PMC3109253 DOI: 10.1016/j.chroma.2011.03.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 11/18/2022]
Abstract
The flow behavior of a commercial polymeric monolith was investigated by direct numerical simulations employing the lattice-Boltzmann (LB) methodology. An explicit structural representation of the monolith was obtained by serial sectioning of a portion of the monolith and imaging by scanning electron microscopy. After image processing, the three-dimensional structure of a sample block with dimensions of 17.8 μm × 17.8 μm × 14.1 μm was obtained, with uniform 18.5 nm voxel size. Flow was simulated on this reconstructed block using the LB method to obtain the velocity distribution, and in turn macroscopic flow properties such as the permeability and the average velocity. The computed axial velocity distribution exhibits a sharp peak with an exponentially decaying tail. Analysis of the local components of the flow field suggests that flow is not evenly distributed throughout the sample geometry, as is also seen in geometries that exhibit preferential flow paths, such as sphere pack arrays with defects. A significant fraction of negative axial velocities are observed; the largest of these are due to flow along horizontal pores that are also slightly oriented in the negative axial direction. Possible implications for mass transfer are discussed.
Collapse
Affiliation(s)
- Harun Koku
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716
| | - Robert S. Maier
- Information Technology Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180
| | - Kirk J. Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Mark R. Schure
- Theoretical Separation Science Laboratory, The Dow Chemical Company, 727 Norristown Road, Spring House, PA 19477-0904
| | - Abraham M. Lenhoff
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
30
|
Sinitsyna E, Vlakh E, Rober M, Tennikova T. Hydrophilic methacrylate monoliths as platforms for protein microarray. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Concentration and purification of rubella virus using monolithic chromatographic support. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:981-6. [DOI: 10.1016/j.jchromb.2011.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/22/2011] [Accepted: 03/06/2011] [Indexed: 11/19/2022]
|
32
|
Urbas L, Jarc BL, Barut M, Zochowska M, Chroboczek J, Pihlar B, Szolajska E. Purification of recombinant adenovirus type 3 dodecahedric virus-like particles for biomedical applications using short monolithic columns. J Chromatogr A 2011; 1218:2451-9. [DOI: 10.1016/j.chroma.2011.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 02/07/2023]
|
33
|
Trauner A, Bennett MH, Williams HD. Isolation of bacterial ribosomes with monolith chromatography. PLoS One 2011; 6:e16273. [PMID: 21326610 PMCID: PMC3033897 DOI: 10.1371/journal.pone.0016273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022] Open
Abstract
We report the development of a rapid chromatographic method for the isolation of bacterial ribosomes from crude cell lysates in less than ten minutes. Our separation is based on the use of strong anion exchange monolithic columns. Using a simple stepwise elution program we were able to purify ribosomes whose composition is comparable to those isolated by sucrose gradient ultracentrifugation, as confirmed by quantitative proteomic analysis (iTRAQ). The speed and simplicity of this approach could accelerate the study of many different aspects of ribosomal biology.
Collapse
Affiliation(s)
- Andrej Trauner
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mark H. Bennett
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Huw D. Williams
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Mönster A, Hiller O, Grüger D, Blasczyk R, Kasper C. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns. J Chromatogr A 2011; 1218:706-10. [DOI: 10.1016/j.chroma.2010.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
35
|
Gutiérrez-Aguirre I, Steyer A, Banjac M, Kramberger P, Poljšak-Prijatelj M, Ravnikar M. On-site reverse transcription-quantitative polymerase chain reaction detection of rotaviruses concentrated from environmental water samples using methacrylate monolithic supports. J Chromatogr A 2010; 1218:2368-73. [PMID: 21040925 DOI: 10.1016/j.chroma.2010.10.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/01/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
Rotaviruses are the leading cause of gastroenteritis in children and they exist widely in water environments. Ingestion of 10-100 viral particles is enough to initiate disease, what calls for extremely sensitive detection methods. In this study we have confirmed the validity of a recently published method for rotavirus concentration and detection based on the combination of methacrylate monoliths and real-time reverse transcription-quantitative PCR (RT-qPCR). The method was used to concentrate rotaviruses from different tap water and environmental water samples collected in Slovenia within years 2007 and 2009. The performance of virus concentration using monolithic supports was improved in comparison to the one of tangential ultrafiltration upon application of both methods on a range of environmental samples. Several samples were successfully concentrated on-site after successful adaptation of the method to field requirements. In such on-site format, the combination of concentration using CIM and detection using RT-qPCR detected as low as 30 rotavirus particles/ml, spiked in an environmental water sample.
Collapse
Affiliation(s)
- Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
36
|
Kramberger P, Honour RC, Herman RE, Smrekar F, Peterka M. Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths. J Virol Methods 2010; 166:60-4. [DOI: 10.1016/j.jviromet.2010.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
37
|
Hu J, Ni Y, Dryman BA, Meng XJ, Zhang C. Purification of porcine reproductive and respiratory syndrome virus from cell culture using ultrafiltration and heparin affinity chromatography. J Chromatogr A 2010; 1217:3489-93. [PMID: 20371065 DOI: 10.1016/j.chroma.2010.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/10/2010] [Accepted: 03/15/2010] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus is the causative agent of the most significant infectious disease currently affecting the swine industry worldwide. Density gradient ultracentrifugation remains the most commonly used method for porcine reproductive and respiratory syndrome virus (PRRSV) purification. However, this technique has notable drawbacks including long processing time and limited processing volume in each run. To overcome these limitations, a scalable process was developed. PRRSV propagated in MARC-145 was released by three freeze/thaw cycles. After a low speed centrifugation step, the virus particles in the supernatant were concentrated twice by an ultrafiltration step. The ultrafiltration step concentrated the virions effectively with no detectable loss while some cultural/cellular proteins were removed. The virions in the ultrafiltration retentate were then applied to a heparin affinity column on a fast performance liquid chromatography unit. The combined ultrafiltration and heparin affinity chromatography process removed more than 96% of cellular and medium proteins. During a stepwise elution strategy, the viral particles were eluted at two separate peaks recovering 27.5% and 25.4% of viral particles loaded onto the column with a purity of 194 and 3917 particles/microg protein, respectively.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, 200 Seitz Hall, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
38
|
Horká M, Kubíček O, Kubesoví A, Kubíčková Z, Rosenbergová K, Šlais K. Testing of the influenza virus purification by CIEF. Electrophoresis 2010; 31:331-8. [DOI: 10.1002/elps.200900310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Roberts MWH, Ongkudon CM, Forde GM, Danquah MK. Versatility of polymethacrylate monoliths for chromatographic purification of biomolecules. J Sep Sci 2009; 32:2485-94. [PMID: 19603394 DOI: 10.1002/jssc.200900309] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.
Collapse
Affiliation(s)
- Michael W H Roberts
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | | | | | | |
Collapse
|
40
|
Application of conjoint liquid chromatography with monolithic disks for the simultaneous determination of immunoglobulin G and other proteins present in a cell culture medium. J Chromatogr A 2009; 1216:2671-5. [DOI: 10.1016/j.chroma.2008.09.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/15/2008] [Accepted: 09/29/2008] [Indexed: 11/20/2022]
|
41
|
Cheeks M, Kamal N, Sorrell A, Darling D, Farzaneh F, Slater N. Immobilized metal affinity chromatography of histidine-tagged lentiviral vectors using monolithic adsorbents. J Chromatogr A 2009; 1216:2705-11. [DOI: 10.1016/j.chroma.2008.08.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 11/30/2022]
|
42
|
Viral clearance using monoliths. J Chromatogr A 2009; 1216:2621-4. [DOI: 10.1016/j.chroma.2008.09.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/17/2008] [Accepted: 09/29/2008] [Indexed: 11/21/2022]
|
43
|
Peskoller C, Niessner R, Seidel M. Development of an epoxy-based monolith used for the affinity capturing of Escherichia coli bacteria. J Chromatogr A 2009; 1216:3794-801. [PMID: 19272606 DOI: 10.1016/j.chroma.2009.02.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/09/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
An epoxy-based monolith has been developed for use as hydrophilic support in bioseparation. This monolith is produced by self-polymerization of polyglycerol-3-glycidyl ether in organic solvents as porogens at room temperature within 1 h. One receives a highly cross-linked structure that provides useful mechanical properties. The porosity and pore diameter can be controlled by varying the composition of the porogen. In this work, an epoxy-based monolith with a high porosity (79%) and large pore size (22 microm) is prepared and used in affinity capturing of bacterial cells. These features allow the passage of bacterial cells through the column. As affinity ligand polymyxin B is used, which allows the binding of gram-negative bacteria. The efficiency of the monolithic affinity column is studied with Escherichia coli spiked in water. Bacterial cells are concentrated on the column at pH 4 and eluted with a recovery of 97+/-3% in 200 microL by changing the pH value without impairing viability of bacteria. The dynamic capacity for the monolithic column is nearly independent of the flow rate (4x10(9)cells/column). Thereby, it is possible to separate and enrich gram-negative bacterial cells, such as E. coli, with high flow rates (10 mL/min) and low back pressure (<1 bar) in a volume as low as 200 microL compatible for real-time polymerase chain reaction, microarray formats, and biosensors.
Collapse
Affiliation(s)
- Caroline Peskoller
- Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, D-81377 Munich, Germany
| | | | | |
Collapse
|
44
|
Plieva FM, Galaev IY, Noppe W, Mattiasson B. Cryogel applications in microbiology. Trends Microbiol 2008; 16:543-51. [PMID: 18835715 DOI: 10.1016/j.tim.2008.08.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/20/2008] [Accepted: 08/28/2008] [Indexed: 11/28/2022]
Abstract
There is a great demand for improved technologies with regard to rapid processing of nano- and microparticles. The handling of viruses in addition to microbial and mammalian cells requires the availability of appropriate adsorbents. Recent developments in macroporous gels produced at subzero temperatures (known as cryogels) have demonstrated an efficiency for processing cell and virus suspensions, cell separation and cell culture applications. Their unique combination of properties such as macroporosity, tissue-like elasticity and biocompatibility, physical and chemical stability and ease of preparation, renders these materials interesting candidates for a broad range of potential applications within microbiological research. This review describes current applications of macroporous cryogels in microbiology with a brief discussion of future perspectives.
Collapse
|
45
|
Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. J Chromatogr A 2008; 1216:2637-50. [PMID: 18929365 DOI: 10.1016/j.chroma.2008.09.090] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/22/2008] [Accepted: 09/25/2008] [Indexed: 11/23/2022]
Abstract
Monolithic columns were introduced in the early 1990s and have become increasingly popular as efficient stationary phases for most of the important chromatographic separation modes. Monoliths are functionally distinct from porous particle-based media in their reliance on convective mass transport. This makes resolution and capacity independent of flow rate. Monoliths also lack a void volume. This eliminates eddy dispersion and permits high-resolution separations with extremely short flow paths. The analytical value of these features is the subject of recent reviews. Nowadays, among other types of rigid macroporous monoliths, the polymethacrylate-based materials are the largest and most examined class of these sorbents. In this review, the applications of polymethacrylate-based monolithic columns are summarized for the separation, purification and analysis of low and high molecular mass compounds in the different HPLC formats, including micro- and large-scale HPLC modes.
Collapse
|
46
|
Barut M, Podgornik A, Urbas L, Gabor B, Brne P, Vidic J, Plevcak S, Strancar A. Methacrylate-based short monolithic columns: enabling tools for rapid and efficient analyses of biomolecules and nanoparticles. J Sep Sci 2008; 31:1867-80. [PMID: 18615813 DOI: 10.1002/jssc.200800189] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review describes the novel chromatography stationary phase--a porous monolithic methacrylate-based polymer--in terms of the design of the columns and some of the features that make these columns attractive for the purification of large biomolecules. We first start with a brief summary of the characteristics of these large molecules (more precisely large proteins like immunoglobulins G and M, plasmid deoxyribonucleic acid (DNA), and viral particles), and a list of some of the problems that were encountered during the development of efficient purification processes. We then briefly describe the structure of the methacrylate-based monolith and emphasize the features which make them more than suitable for dealing with large entities. The highly efficient structure on a small scale can be transferred to a large scale without the need of making column modifications, and the various approaches of how this is accomplished are briefly presented in this paper. This is followed by presenting some of the examples from the bioprocess development schemes, where the implementation of the methacrylate-based monolithic columns has resulted in a very efficient and productive process. Following this, we move back to the analytical scale and demonstrate the efficiency of the monolithic column--where the mass transfer between the stationary and mobile phase is greatly enhanced--for the in-process and final control of the new therapeutics. The combination of an efficient structure and the appropriate hardware results in separations of proteins with residence time less than 0.1 s.
Collapse
Affiliation(s)
- Milos Barut
- BIA Separations, Teslova 30, Ljubljana, Slovenia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wolff MW, Reichl U. Downstream Processing: From Egg to Cell Culture-Derived Influenza Virus Particles. Chem Eng Technol 2008; 31:846-857. [PMID: 32313385 PMCID: PMC7162065 DOI: 10.1002/ceat.200800118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 12/11/2022]
Abstract
The establishment of cell culture-derived vaccine production requires the development of appropriate downstream processes. Until today, many of the downstream methods applied originate from egg-derived production processes. These methods have often been slightly modified in order to account for the new demands. However, efforts are currently underway to optimize these processes focusing, for example, on ion exchange or affinity based membrane adsorption chromatography. This review covers the main aspects relevant for the downstream processing of egg and mammalian cell culture-derived whole influenza viruses.
Collapse
Affiliation(s)
- M W Wolff
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - U Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair of Bioprocess Engineering, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
48
|
Jungbauer A, Hahn R. Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. J Chromatogr A 2008; 1184:62-79. [DOI: 10.1016/j.chroma.2007.12.087] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/04/2007] [Accepted: 12/19/2007] [Indexed: 11/28/2022]
|
49
|
Kalashnikova I, Ivanova N, Tennikova T. Development of a Strategy of Influenza Virus Separation Based on Pseudoaffinity Chromatography on Short Monolithic Columns. Anal Chem 2008; 80:2188-98. [DOI: 10.1021/ac702258t] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I. Kalashnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - N. Ivanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - T. Tennikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
50
|
Smrekar F, Ciringer M, Peterka M, Podgornik A, Strancar A. Purification and concentration of bacteriophage T4 using monolithic chromatographic supports. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 861:177-80. [PMID: 17588505 DOI: 10.1016/j.jchromb.2007.05.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/21/2007] [Accepted: 05/27/2007] [Indexed: 11/21/2022]
Abstract
Phages are gaining importance due to their wide usage. In this work strong anion exchange monolithic chromatographic column was used for single step phage purification. Most of the proteins and DNA were removed and recovery of approximately 70% of infective virus was reproducibly achieved. 30 ml of phage sample was purified in around 10 min.
Collapse
Affiliation(s)
- F Smrekar
- BIA Separations d.o.o., Teslova 30, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|