1
|
Gritti F, Meyyappan S. Physical origin of the peak tailing of monoclonal antibodies in size-exclusion chromatography using bio-compatible systems and columns. Anal Bioanal Chem 2024; 416:1281-1291. [PMID: 38236392 DOI: 10.1007/s00216-023-05119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
The analysis of mixtures containing monoclonal antibody (mAb) (approximately 150 kDa molecular weight) and sub-unit impurities (approximately 100 kDa) is challenging, even when adopting the latest ultra-high-pressure liquid chromatography (UHPLC) columns (4.6 mm [Formula: see text] 150 mm coated hardware, 1.7 [Formula: see text]m 250 BEH[Formula: see text] Surface-modified Particles) and systems (ACQUITY[Formula: see text] UPLC[Formula: see text] I-class Bio Plus). The main issue still encountered is a persistent tail of the mAb peak. Here, the physical origin(s) of such peak tailing in size-exclusion chromatography (SEC) are investigated from both fundamental and practical approaches. Up to five relevant physical origins are analyzed: sample heterogeneity (glycoforms), UHPLC system dispersion, strong residual binding of the mAb to the SEC particles (via hydrophobic and/or electrostatic interactions) and to the stainless steel column/system hardware, slow escape kinetics of the mAb from the SEC particles, and flow heterogeneity caused by the non-ideal slurry packing of SEC columns. Experiments (testing sample heterogeneity, system dispersion, and strong residual interactions) and calculations (predicting the transient absorption/escape kinetics in a single SEC particle and the two-dimensional peak concentration profiles) altogether unambiguously demonstrate that the observed mAb peak tailing is caused primarily by the long-range velocity biases across the SEC column combined with the slow transverse dispersion of mAbs. Therefore, improvement in the resolution between mAb and sub-unit fragment impurities can only be achieved by increasing the column length, e.g., by applying recycling chromatography at acceptable pressures.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.
| | | |
Collapse
|
2
|
Kim KH, Lee JE, Lee JC, Maharjan R, Oh H, Lee K, Kim NA, Jeong SH. Optimization of HPLCCAD method for simultaneous analysis of different lipids in lipid nanoparticles with analytical QbD. J Chromatogr A 2023; 1709:464375. [PMID: 37734240 DOI: 10.1016/j.chroma.2023.464375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Since lipid nanoparticles (LNP) have emerged as a potent drug delivery system, the objective of this study was to develop and optimize a robust high-performance liquid chromatography with charged aerosol detectors (HPLCCAD) method to simultaneously quantify different lipids in LNPs using the analytical quality by design (AQbD) approach. After defining analytical target profile (ATP), critical method attributes (CMAs) were established as a resolution between the closely eluting lipid peaks and the total analysis time. Thus, potential high-risk method parameters were identified through the initial risk assessment. These parameters were screened using Plackett-Burman design, and three critical method parameters (CMPs)-MeOH ratio, flow rate, and column temperature-were selected for further optimization. Box-Behnken design was employed to develop the quadratic models that explain the relationship between the CMPs and CMAs and to determine the optimal operating conditions. Moreover, to ensure the robustness of the developed method, a method operable design region (MODR) was established using the Monte Carlo simulation. The MODR was identified within the probability map, where the risk of failure to achieve the desired CMAs was less than 1%. The optimized method was validated according to the ICH guidelines (linearity: R2 > 0.995, accuracy: 97.15-100.48% recovery, precision: RSD < 5%) and successfully applied for the analysis of the lipid in the LNP samples. The development of the analytical method to quantify the lipids is essential for the formulation development and quality control of LNP-based drugs since the potency of LNPs is significantly dependent on the compositions and contents of the lipids in the formation.
Collapse
Affiliation(s)
- Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ji Eun Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Jae Chul Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ravi Maharjan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Hyunsuk Oh
- Inventage Lab Inc., Seongnam, Gyeonggi 13438, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Nam Ah Kim
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
3
|
Gritti F. Resolution limits of size exclusion chromatography columns identified from flow reversal and overcome by recycling liquid chromatography to improve the characterization of manufactured monoclonal antibodies. J Chromatogr A 2023; 1705:464219. [PMID: 37499525 DOI: 10.1016/j.chroma.2023.464219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
The flow reversal (FR) technique consists of reversing the flow direction along a chromatographic column. It is used to reveal the origin (such as poor column packing, active sites, or slow absorption/escape kinetics) for the resolution limit of 4.6 mm × 150 mm long columns packed with 1.7 μm 200 Å Bridge-Ethylene-Hybrid (BEHTM) Particles. These columns are used to separate manufactured monoclonal antibodies (mAb, ∼ 150 kDa) from their close impurities (or IdeS fragments, ∼ 100 kDa) by size exclusion chromatography (SEC). FR unambiguously demonstrates that the resolution limit of these SEC columns is primarily due to long-range flow velocity biases covering distances of at least 500 μm across the column diameter. This confirms the existence of center-to-wall flow heterogeneities which cause undesirable tailing for the mAb peak. Because the transverse dispersion coefficient (Dt=1.1 × 10-6 cm2/s) of mAbs across the column diameter is intrinsically low, the bandspreading of the mAb in a single flow direction is in part reversible upon reversing the flow direction. For the very same residence time in the column, the column efficiency is found to increase by +85% relative to that observed under conventional elution mode. The observed peak tailing of the mAb and its sub-units is not caused by active surface sites or by slow absorption/escape from the BEH Particles. Therefore, the most critical mAb impurities (hydrolytic degradation Fab/c and IdeS [Formula: see text] fragments) can only be successfully separated and quantified with acceptable accuracy by adopting alternate pumping recycling liquid chromatography (APRLC). APRLC enables the full baseline separation of the mAb and 100 kDa mAb fragments and partial separation of Fab/c and [Formula: see text] fragments after increasing the number of cycles to ten. It was made possible to accurately measure the relative abundances of the mAb (99.0 ± 0.1%), [Formula: see text] fragment (0.88 ± 0.03%), and Fab/c immunogenic fragment (0.13 ± 0.02%) in less than 45 min for a total mAb sample load of only 5 μg. Still, further improvements are needed to increase the sensitivity of the APRLC method and to reduce the solvent consumption by adopting narrow-bore 2.1 mm i.d. SEC columns.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.
| |
Collapse
|
4
|
Bharati A, Chi KB, Trunov D, Sedlářová I, Belluati A, Šoóš M. Effective lipase immobilization on crosslinked functional porous polypyrrole aggregates. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Olsen C, Wang C, Abadpour S, Lundanes E, Hansen AS, Skottvoll FS, Scholz H, Wilson SR. Determination of insulin secretion from stem cell-derived islet organoids with liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123577. [PMID: 36542899 DOI: 10.1016/j.jchromb.2022.123577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Organoids are laboratory-grown 3D organ models, mimicking human organs for e.g. drug development and personalized therapy. Islet organoids (typically 100-200 µm), which can be grown from the patient́s own cells, are emerging as prototypes for transplantation-based therapy of diabetes. Selective methods for quantifying insulin production from islet organoids are needed, but sensitivity and carry-over have been major bottlenecks in previous efforts. We have developed a reverse phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method for studying the insulin secretion of islet organoids. In contrast to our previous attempts using nano-scale LC columns, conventional 2.1 mm inner diameter LC column (combined with triple quadrupole mass spectrometry) was well suited for sensitive and selective measurements of insulin secreted from islet organoids with low microliter-scale samples. Insulin is highly prone to carry-over, so standard tubings and injector parts were replaced with shielded fused silica connectors. As samples were expected to be very limited, an extended Box-Behnken experimental design for the MS settings was conducted to maximize performance. The finale method has excellent sensitivity, accuracy and precision (limit of detection: ≤0.2 pg/µL, relative error: ≤±10%, relative standard deviation: <10%), and was well suited for measuring 20 µL amounts of Krebs buffer containing insulin secreted from islet organoids.
Collapse
Affiliation(s)
- Christine Olsen
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway; Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chencheng Wang
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| | | | | | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway; Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Lenčo J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholouš P, Urban J, Broeckhoven K, Nováková L, Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J Proteome Res 2022; 21:2846-2892. [PMID: 36355445 DOI: 10.1021/acs.jproteome.2c00407] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Denis K Naplekov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Oleg V Krokhin
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, WinnipegR3E 3P4, Manitoba, Canada
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Ken Broeckhoven
- Department of Chemical Engineering (CHIS), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussel, Belgium
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Sun G, Lu Y. Polystyrene Immobilized Sol-Gel Ground Silica Monolith Particles Using One-Pot Reaction of Enhanced Separation Efficiency. J Chromatogr Sci 2021; 59:949-955. [PMID: 33778859 DOI: 10.1093/chromsci/bmab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/14/2022]
Abstract
The stationary phase based on sol-gel ground silica monolith particles has been produced by one-pot polymerization method incorporation of styrene and ethylene dimethacrylate. First, the ground silica monolith particles were prepared by a sol-gel process followed by sedimentation. The particles were then subjected to modify with styrene ligand via one-pot polymerization, whereas ethylene dimethacrylate was used as the cross-linker. The glass lined stainless steel columns (1 mm internal diameter, 150 mm length) were packed with the above phase for estimation of the chromatographic performance in high-performance liquid chromatography. An average number of theoretical plates of as high as 39,300 plates/column was obtained under the optimized elution condition. The column-to-column reproducibility was proved satisfactory in separation efficiency and retention factor. The experimental results indicate that sol-gel ground silica particles prepared by an aid of one-pot modification can provide a better way for preparation of highly efficient stationary phase.
Collapse
Affiliation(s)
- Genlin Sun
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yao Lu
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
8
|
Luo C, DeStefano JJ, Langlois TJ, Boyes BE, Schuster SA, Godinho JM. Fundamental to achieving fast separations with high efficiency: A review of chromatography with superficially porous particles. Biomed Chromatogr 2021; 35:e5087. [PMID: 33566360 DOI: 10.1002/bmc.5087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023]
Abstract
Types of particles have been fundamental to LC separation technology for many years. Originally, LC columns were packed with large-diameter (>100 μm) calcium carbonate, silica gel, or alumina particles that prohibited fast mobile-phase speeds because of the slow diffusion of sample molecules inside deep pores. During the birth of HPLC in the 1960s, superficially porous particles (SPP, ≥30 μm) were developed as the first high-speed stationary-phase support structures commercialized, which permitted faster mobile-phase flowrates due to the fast movement of sample molecules in/out of the thin shells. These initial SPPs were displaced by smaller totally porous particles (TPP) in the mid-1970s. But SPP history repeated when UHPLC emerged in the 2000s. Stationary-phase support structures made from sub-3-μm SPPs were introduced to chromatographers in 2006. The initial purpose of this modern SPP was to enable chromatographers to achieve fast separations with high efficiency using conventional HPLCs. Later, the introduction of sub-2-μm SPPs with UHPLC instruments pushed the separation speed and efficiency to a very fast zone. This review aims at providing readers a comprehensive and up-to-date view on the advantages of SPP materials over TPPs historically and theoretically from the material science angle.
Collapse
Affiliation(s)
- Chuping Luo
- Advanced Materials Technology, Inc, Wilmington, Delaware, USA
| | | | | | - Barry E Boyes
- Advanced Materials Technology, Inc, Wilmington, Delaware, USA
| | | | | |
Collapse
|
9
|
Evaluation of a linear free energy relationship for the determination of the column void volume in hydrophilic interaction chromatography. J Chromatogr A 2021; 1638:461849. [PMID: 33472106 DOI: 10.1016/j.chroma.2020.461849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
Abstract
The application of a linear free energy relationship (LFER) to a variety of hydrophilic interaction chromatography columns with different bonded ligands and pore sizes was studied in order to determine their void volume Vm. The method was based on the determination of the elution volume of a series of alkylbenzene standards from C1 (toluene) to C17 (heptadecylbenzene). Results were compared with those obtained by injection of toluene alone, which has traditionally been used as a simple Vm marker. Vm was smaller when derived from the LFER plot than when measured with toluene with differences between the two methods ranging from 2.7 to 12.7 % for the columns studied. This result could be due to the small but appreciable retention of toluene due to its solubility in the water rich layer, which partially constitutes the stationary phase in HILIC. Larger pore size columns showed less difference in Vm between LFER and toluene procedures. This result may be due to size sieving effects of non-excluded solutes in the pores of the stationary phase, or to differences in phase ratio between columns of different pore size.
Collapse
|
10
|
Godinho JM, Naese JA, Toler AE, Boyes BE, Henry RA, DeStefano JJ, Grinias JP. Importance of Particle Pore Size in Determining Retention and Selectivity in Reversed Phase Liquid Chromatography. J Chromatogr A 2020; 1634:461678. [PMID: 33221655 DOI: 10.1016/j.chroma.2020.461678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/09/2023]
Abstract
Column selection often centers on the identification of a stationary phase that increases resolution for a certain class of compounds. While gains in resolution are most affected by selectivity of the stationary phase or modifications of the mobile phase, enhancements can still be made with an intentional selection of the packing material's microstructure. Unrestricted mass transfer into the particle's porous structure minimizes band broadening associated with hindered access to stationary phase. Increased efficiency, especially when operating above the optimal flow rates, can be gained if the pore size is significantly larger than the solvated analyte. Less studied are the effects of reduced access to pores due to physical hindrance and its impact on retention. This article explores the relationship between pore size and reversed phase retention, and specifically looks at a series of particle architectures with reversed phase and size exclusion modes to study retention associated with access to stationary phase surface area.
Collapse
Affiliation(s)
- Justin M Godinho
- Advanced Materials Technology, Inc., 3521 Silverside Road, Wilmington, DE, 19810, USA.
| | - Joseph A Naese
- Rowan University, Department of Chemistry & Biochemistry, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA
| | - Alexander E Toler
- Rowan University, Department of Chemistry & Biochemistry, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA
| | - Barry E Boyes
- Advanced Materials Technology, Inc., 3521 Silverside Road, Wilmington, DE, 19810, USA
| | - Richard A Henry
- Independent Consultant, 983 Greenbriar Dr., State College, PA, 16801, USA
| | - Joseph J DeStefano
- Advanced Materials Technology, Inc., 3521 Silverside Road, Wilmington, DE, 19810, USA
| | - James P Grinias
- Rowan University, Department of Chemistry & Biochemistry, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA.
| |
Collapse
|
11
|
Bagge J, Enmark M, Leśko M, Limé F, Fornstedt T, Samuelsson J. Impact of stationary-phase pore size on chromatographic performance using oligonucleotide separation as a model. J Chromatogr A 2020; 1634:461653. [PMID: 33171435 DOI: 10.1016/j.chroma.2020.461653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 11/15/2022]
Abstract
A combined experimental and theoretical study was performed to understand how the pore size of packing materials with pores 60-300 Å in size affects the separation of 5-50-mer oligonucleotides. For this purpose, we developed a model in which the solutes were described as thin rods to estimate the accessible surface area of the solute as a function of the pore size and solute size. First, an analytical investigation was conducted in which we found that the selectivity increased by a factor of 2.5 when separating 5- and 15-mer oligonucleotides using packing with 300 Å rather than 100 Å pores. We complemented the analytical investigation by theoretically demonstrating how the selectivity is dependent on the column's accessible surface area as a function of solute size. In the preparative investigation, we determined adsorption isotherms for oligonucleotides using the inverse method for separations of a 9- and a 10-mer. We found that preparative columns with a 60 Å-pore-size packing material provided a 10% increase in productivity as compared with a 300 Å packing material, although the surface area of the 60 Å packing is as much as five time larger.
Collapse
Affiliation(s)
- Joakim Bagge
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Martin Enmark
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Marek Leśko
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden
| | | | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden.
| | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden.
| |
Collapse
|
12
|
Gritti F, Hochstrasser J, Svidrytski A, Hlushkou D, Tallarek U. Morphology-transport relationships in liquid chromatography: Application to method development in size exclusion chromatography. J Chromatogr A 2020; 1620:460991. [DOI: 10.1016/j.chroma.2020.460991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
|
13
|
Ali F, Malik AR, Cheong WJ, Rehman NUR. Demonstration of high separation efficiency for polystyrene-modified sub-1 µm particles originating from silica monolith under isocratic elution mode in liquid chromatography. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1665539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Faiz Ali
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
- Department of Chemistry, Faculty of Basic and Applied Sciences, University of the Poonch, Rawalakot, Pakistan
- Department of Chemistry, Inha University, Incheon, South Korea
| | - Aamra Rafique Malik
- Department of Chemistry, Faculty of Basic and Applied Sciences, University of the Poonch, Rawalakot, Pakistan
| | - Won Jo Cheong
- Department of Chemistry, Inha University, Incheon, South Korea
| | | |
Collapse
|
14
|
Grozdev L, Kaiser J, Berensmeier S. One-Step Purification of Microbially Produced Hydrophobic Terpenes via Process Chromatography. Front Bioeng Biotechnol 2019; 7:185. [PMID: 31417900 PMCID: PMC6681792 DOI: 10.3389/fbioe.2019.00185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Novel and existing terpenes are already being produced by genetically modified microorganisms, leading to new process challenges for the isolation and purification of these terpenes. Here, eight different chromatographic resins were characterized for the packed bed adsorption of the model terpene β-caryophyllene, showing their applicability on an Escherichia coli fermentation mixture. The polystyrenic Rensa® RP (Ø 50 μm) shows the highest affinity, with a maximum capacity of >100 g L-1 and the best efficiency, with a height equivalent of a theoretical plate (HETP) of 0.022 cm. With this material, an optimized adsorption-based purification of β-caryophyllene from a fermentation mixture was developed, with the green solvent ethanol for desorption. A final yield of >80% and a purity of >99% were reached after only one process step with a total productivity of 0.83 g h-1 L-1. The product solution was loaded with a volume ratio (feed to column) of >500 and the adapted gradient elution yielded a 40 times higher concentration of β-caryophyllene. The adsorption-based chromatography represents therefore a serious alternative to the liquid-liquid extraction and achieves desired purities without the utilization of hazardous solvents.
Collapse
Affiliation(s)
| | | | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
15
|
Devitt NM, Moran RE, Godinho JM, Wagner BM, Schure MR. Measuring porosities of chromatographic columns utilizing a mass-based total pore-blocking method: Superficially porous particles and pore-blocking critical pressure mechanism. J Chromatogr A 2019; 1595:117-126. [DOI: 10.1016/j.chroma.2019.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/01/2022]
|
16
|
Sedimentation assisted preparation of ground particles of silica monolith and their C18 modification resulting in a chromatographic phase of improved separation efficiency. J Chromatogr A 2017; 1525:79-86. [DOI: 10.1016/j.chroma.2017.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023]
|
17
|
Relating saturation capacity to charge density in strong cation exchangers. J Chromatogr A 2017; 1507:95-103. [DOI: 10.1016/j.chroma.2017.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/29/2023]
|
18
|
Zhu Y, Zhu R, Wang M, Wu B, He X, Qian Y, Wang S. Anti-Metastatic and Anti-Angiogenic Activities of Core-Shell SiO 2@LDH Loaded with Etoposide in Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600229. [PMID: 27980999 PMCID: PMC5102674 DOI: 10.1002/advs.201600229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/13/2016] [Indexed: 05/29/2023]
Abstract
Currently, nanoparticles have gained a great attention in the anti-tumor research area. However, to date, studies on the anti-metastasis action of core-shell SiO2@LDH (LDH: layered double hydroxide) nanoparticles remain untouched. Two emerging aspects considered are establishing research on the controlling delivery effect of SiO2@LDH combined with anti-cancer medicine from a new perspective. The fine properties synthetic SiO2@LDH-VP16 (VP16: etoposide) are practiced to exhibit the nanoparticle's suppression on migration and invasion of non-small cell lung cancer (NSCLC). Both in vitro and in vivo inspection shows that SiO2@LDH can help VP16 better function as an anti-metastasis agent. On the other hand, anti-angiogenic efficiency, co-localization, as well as western blot are investigated to explain the possible mechanism. A clear mergence of SiO2@LDH-VP16 and cytomembrane/microtubule may be observed from co-location images. Results offer evidence that SiO2@LDH-VP16 plays positions on cytomembrane and microtubules. It efficiently inhibits metastasis on NSCLC by reducing vascularization, and eliciting depression of the PI3K-AKT and FAK-Paxillin signaling pathways. SiO2@LDH-VP16, the overall particle morphology, and function on anti-metastasis and anti-angiogenic may be tuned to give new opportunities for novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Yanjing Zhu
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Rongrong Zhu
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Mei Wang
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Bin Wu
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Xiaolie He
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Yechang Qian
- Department of Respiratory DiseaseBaoshan District Hospital of Integrated Traditional Chinese and Western MedicineShanghai201900China
| | - Shilong Wang
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| |
Collapse
|
19
|
Astefanei A, Dapic I, Camenzuli M. Different Stationary Phase Selectivities and Morphologies for Intact Protein Separations. Chromatographia 2016; 80:665-687. [PMID: 28529348 PMCID: PMC5413533 DOI: 10.1007/s10337-016-3168-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
The central dogma of biology proposed that one gene encodes for one protein. We now know that this does not reflect reality. The human body has approximately 20,000 protein-encoding genes; each of these genes can encode more than one protein. Proteins expressed from a single gene can vary in terms of their post-translational modifications, which often regulate their function within the body. Understanding the proteins within our bodies is a key step in understanding the cause, and perhaps the solution, to disease. This is one of the application areas of proteomics, which is defined as the study of all proteins expressed within an organism at a given point in time. The human proteome is incredibly complex. The complexity of biological samples requires a combination of technologies to achieve high resolution and high sensitivity analysis. Despite the significant advances in mass spectrometry, separation techniques are still essential in this field. Liquid chromatography is an indispensable tool by which low-abundant proteins in complex samples can be enriched and separated. However, advances in chromatography are not as readily adapted in proteomics compared to advances in mass spectrometry. Biologists in this field still favour reversed-phase chromatography with fully porous particles. The purpose of this review is to highlight alternative selectivities and stationary phase morphologies that show potential for application in top-down proteomics; the study of intact proteins.
Collapse
Affiliation(s)
- A. Astefanei
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - I. Dapic
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M. Camenzuli
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
20
|
Gritti F, Guiochon G. The quantitative impact of the mesopore size on the mass transfer mechanism of the new 1.9 μm fully porous Titan-C18 particles. I: Analysis of small molecules. J Chromatogr A 2015; 1384:76-87. [DOI: 10.1016/j.chroma.2015.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
21
|
Comparison of core–shell particles and sub-2μm fully porous particles for use as ultrafast second dimension columns in two-dimensional liquid chtomatography. J Chromatogr A 2015; 1386:31-8. [DOI: 10.1016/j.chroma.2014.11.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/24/2023]
|
22
|
Gritti F, Guiochon G. The rationale for the optimum efficiency of columns packed with new 1.9μm fully porous Titan-C18 particles-a detailed investigation of the intra-particle diffusivity. J Chromatogr A 2014; 1355:164-78. [PMID: 24969087 DOI: 10.1016/j.chroma.2014.05.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/01/2022]
Abstract
In a previous report, it was reported that columns packed with fully porous 1.9μm Titan-C18 particles provided a minimum reduced plate height as small as 1.7 for the most retained compound (n-octanophenone) under RPLC conditions. These particles are characterized by a relatively narrow size distribution with a relative standard deviation (RSD) of only 10%. A column packed with classical 5μm Symmetry-C18 particles, used as a reference RPLC column, generated a minimum reduced plate height of 2.1 for the same retained compound. This work demonstrates that this was due to an unusually low intra-particle diffusivity across these particles, which leads to a small longitudinal diffusion coefficient along the column. The demonstration is based on the combination of accurate measurements of the height equivalent to a theoretical plate (HETP), inverse size exclusion chromatography (ISEC), peak parking (PP), and minor disturbance method (MDM) experiments. The experimental results show that the reduced eddy dispersion HETP term (A=0.8 for a reduced velocity of 5), the internal particle porosity (ϵp=0.35), and the enrichment of acetonitrile in the pore volume (75% acetonitrile in the bulk, 85% inside the mesoporous volume) are identical on both the Titan-C18 and Symmetry-C18 columns. The difference between the internal structures of these two brands of RPLC-C18 fully porous particles lies in the values of the internal obstruction factor γp, which is 0.42 for the Symmetry-C18 but only 0.26 for the Titan-C18 particles. This is in part related to the diffusion hindrance due to the small average pore size of the Titan-C18 particles, around 59Å versus 77Å for Symmetry-C18 particles. A simple model of constriction along diffusion paths having the shape of a truncated cone suggests that the width of the pore size distribution (RSD of 30% and 20% for Titan-C18 and Symmetry-C18 particles) is mostly responsible for the difference in their obstruction factors.
Collapse
Affiliation(s)
- Fabrice Gritti
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600, USA
| | - Georges Guiochon
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600, USA.
| |
Collapse
|
23
|
Adsorption of cations onto positively charged surface mesopores. J Chromatogr A 2013; 1318:72-83. [DOI: 10.1016/j.chroma.2013.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 11/23/2022]
|
24
|
Huang Z, Wu H, Wang F, Yan W, Guo W, Zhu Y. Polystyrene-divinylbenzene stationary phases agglomerated with quaternized multi-walled carbon nanotubes for anion exchange chromatography. J Chromatogr A 2013; 1294:152-6. [DOI: 10.1016/j.chroma.2013.04.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/26/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
|
25
|
Gritti F, Guiochon G. Effect of the pH and the ionic strength on overloaded band profiles of weak bases onto neutral and charged surface hybrid stationary phases in reversed-phase liquid chromatography. J Chromatogr A 2013; 1282:113-26. [DOI: 10.1016/j.chroma.2013.01.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
|
26
|
Gritti F, Guiochon G. Adsorption behaviors of neutral and ionizable compounds on hybrid stationary phases in the absence (BEH-C18) and the presence (CSH-C18) of immobile surface charges. J Chromatogr A 2013; 1282:58-71. [DOI: 10.1016/j.chroma.2013.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/19/2012] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
|
27
|
Speed-resolution properties of columns packed with new 4.6 μm Kinetex-C18 core–shell particles. J Chromatogr A 2013; 1280:35-50. [DOI: 10.1016/j.chroma.2013.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/20/2012] [Accepted: 01/03/2013] [Indexed: 11/21/2022]
|
28
|
D'Hondt M, Gevaert B, Stalmans S, Van Dorpe S, Wynendaele E, Peremans K, Burvenich C, De Spiegeleer B. Reversed-phase fused-core HPLC modeling of peptides. J Pharm Anal 2012; 3:93-101. [PMID: 29403802 PMCID: PMC5760978 DOI: 10.1016/j.jpha.2012.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/20/2012] [Indexed: 11/17/2022] Open
Abstract
Different fused-core stationary phase chemistries (C18, Amide, Phenyl-hexyl and Peptide ES-C18) were used for the analysis of 21 structurally representative model peptides. In addition, the effects of the mobile phase composition (ACN or MeOH as organic modifier; formic acid or acetic acid, as acidifying component) on the column selectivity, peak shape and overall chromatographic performance were evaluated. The RP-amide column, combined with a formic acid–acetonitrile based gradient system, performed as best. A peptide reversed-phase retention model is proposed, consisting of 5 variables: log SumAA, log Sv, clog P, log nHDon and log nHAcc. Quantitative structure-retention relationship (QSRR) models were constructed for 16 different chromatographic systems. The accuracy of this peptide retention model was demonstrated by the comparison between predicted and experimentally obtained retention times, explaining on average 86% of the variability. Moreover, using an external set of 5 validation peptides, the predictive power of the model was also demonstrated. This peptide retention model includes the novel in-silico calculated amino acid descriptor, AA, which was calculated from log P, 3D-MoRSE, RDF and WHIM descriptors.
Collapse
Affiliation(s)
- Matthias D'Hondt
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Sylvia Van Dorpe
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Kathelijne Peremans
- Departments of Medical Imaging and Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| | - Christian Burvenich
- Departments of Medical Imaging and Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| |
Collapse
|
29
|
Ali I, AL-Othman ZA, Nagae N, Gaitonde VD, Dutta KK. Recent trends in ultra-fast HPLC: New generation superficially porous silica columns. J Sep Sci 2012. [DOI: 10.1002/jssc.201200454] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry; Jamia Millia Islamia (Central University); Jamia Nagar; New Delhi; India
| | - Zeid A. AL-Othman
- Department of Chemistry College of Science; King Saud University; Riyadh; Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
30
|
Gritti F, Guiochon G. Theoretical and experimental impact of the bed aspect ratio on the axial dispersion coefficient of columns packed with 2.5μm particles. J Chromatogr A 2012; 1262:107-21. [DOI: 10.1016/j.chroma.2012.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 11/30/2022]
|
31
|
How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography. J Chromatogr A 2012; 1263:84-98. [DOI: 10.1016/j.chroma.2012.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022]
|
32
|
Gétaz D, Hariharan SB, Butté A, Morbidelli M. Modeling of ion-pairing effect in peptide reversed-phase chromatography. J Chromatogr A 2012; 1249:92-102. [DOI: 10.1016/j.chroma.2012.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/02/2012] [Indexed: 11/24/2022]
|
33
|
Chen S, Gao F, Wang Q, Su Z, Ma G. Double emulsion-templated microspheres with flow-through pores at micrometer scale. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2717-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Excess adsorption of binary aqueous organic mixtures on various reversed-phase packing materials. J Chromatogr A 2012; 1240:104-12. [DOI: 10.1016/j.chroma.2012.03.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 11/24/2022]
|
35
|
Gritti F, Guiochon G. Kinetic performance of narrow-bore columns on a micro-system for high performance liquid chromatography. J Chromatogr A 2012; 1236:105-14. [DOI: 10.1016/j.chroma.2012.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
|
36
|
Wang X, Barber WE, Long WJ. Applications of superficially porous particles: High speed, high efficiency or both? J Chromatogr A 2012; 1228:72-88. [DOI: 10.1016/j.chroma.2011.07.083] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 02/07/2023]
|
37
|
Ali I, AL-Othman ZA, Al-Za'abi M. Superficially porous particles columns for super fast HPLC separations. Biomed Chromatogr 2012; 26:1001-8. [DOI: 10.1002/bmc.2690] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/04/2011] [Accepted: 12/04/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry; Jamia Millia Islamia (Central University); New Delhi; 110025; India
| | - Zeid A. AL-Othman
- Department of Chemistry; College of Science, King Saud University; Riyadh; 11451; Kingdom of Saudi Arabia
| | - Mohammed Al-Za'abi
- Department of Pharmacology and Clinical Pharmacy; College of Medicine, Sultan Qaboos University; PO Box 35; Post Code 123; Muscat; Oman
| |
Collapse
|
38
|
Gritti F, Guiochon G. Experimental validation of physico-chemical models of effective diffusion in chromatographic columns packed with superficially porous particles. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.08.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Blue LE, Jorgenson JW. 1.1μm superficially porous particles for liquid chromatography. Part I: Synthesis and particle structure characterization. J Chromatogr A 2011; 1218:7989-95. [DOI: 10.1016/j.chroma.2011.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
|
40
|
Yang P, McCabe T, Pursch M. Practical comparison of LC columns packed with different superficially porous particles for the separation of small molecules and medium size natural products. J Sep Sci 2011; 34:2975-82. [PMID: 21936054 DOI: 10.1002/jssc.201100530] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/01/2011] [Accepted: 08/02/2011] [Indexed: 11/12/2022]
Abstract
Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column.
Collapse
Affiliation(s)
- Peilin Yang
- The Dow Chemical Company, Analytical Technologies, Midland, MI 48667, USA.
| | | | | |
Collapse
|
41
|
Diffusion models in chromatographic columns packed with fully and superficially porous particles. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.04.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Schuster SA, Boyes BE, Wagner BM, Kirkland JJ. Fast high performance liquid chromatography separations for proteomic applications using Fused-Core® silica particles. J Chromatogr A 2011; 1228:232-41. [PMID: 21855080 DOI: 10.1016/j.chroma.2011.07.082] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
The separation range of superficially porous particles (Fused-Core®) has been extended by design of particles with 160 Å pores. These particles show superior kinetics (lower resistance to mass transfer), allowing fast separations of peptides and small proteins (molecular weights of <15,000). The high efficiency and relatively low back pressure of these 2.7 μm Fused-Core particles has been maintained so that separations can be performed with conventional HPLC instruments. Longer columns can be used for higher resolution of complex mixtures of peptides, such as proteolytic digests. Highly reproducible separations of peptides at elevated temperatures with low pH mobile phases are maintained as a result of a stable bonded stationary phase. The utility of such highly stable materials is exemplified by separations of problematic amyloid peptides at low pH (TFA mobile phase) at an operational temperature of 100 °C. To address the issue of poor peptide peak shape in formic acid-containing mobile phases we show that the addition of 10-20 mM ammonium formate improves peak shape, retention and load tolerance of peptides. Use of the Fused-Core particle materials for separations of synthetic peptides and tryptic digests yields peak capacities that are comparable to those obtained using columns packed with sub-2-μm particles, but with less than one-half of the operating back pressure. A peak capacity of 530 was obtained in 150 min on coupled columns of HALO Peptide ES-C18 with a combined length of 250 mm.
Collapse
Affiliation(s)
- Stephanie A Schuster
- Advanced Materials Technology Inc., 3521 Silverside Rd., Quillen Bldg, Wilmington, DE 19810, USA.
| | | | | | | |
Collapse
|
43
|
Gritti F, Guiochon G. Theoretical investigation of diffusion along columns packed with fully and superficially porous particles. J Chromatogr A 2011; 1218:3476-88. [DOI: 10.1016/j.chroma.2011.03.063] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 11/29/2022]
|
44
|
Gétaz D, Dogan N, Forrer N, Morbidelli M. Influence of the pore size of reversed phase materials on peptide purification processes. J Chromatogr A 2011; 1218:2912-22. [DOI: 10.1016/j.chroma.2011.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
45
|
Fanigliulo A, Cabooter D, Bellazzi G, Tramarin D, Allieri B, Rottigni A, Desmet G. Comparison of performance of high-performance liquid chromatography columns packed with superficially and fully porous 2.5 μm particles using kinetic plots. J Sep Sci 2011; 33:3655-65. [PMID: 21104797 DOI: 10.1002/jssc.201000463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A recently introduced 2.5 μm fully porous support (Kromasil Eternity) is compared with three different brands of superficially porous material (Kinetex, Halo and Poroshell 120) by means of the kinetic plot method using pharmaceutical compounds from GlaxoSmithKline as probe molecules. The kinetic plot method immediately shows the range of plate numbers wherein a support performs better than another. Results from experiments carried out at pH 4.5 and 8.0 are presented in order to assess the pH stability of the tested phases. Moreover, since all supports are able to withstand pressures higher than 400 bar, they have been evaluated both on HPLC and UHPLC instrumentation. True average particle sizes were determined by SEM images taken from loose stationary phases. Kinetex outperforms the other columns in HPLC conditions for practically relevant efficiencies, but shows poor packing quality in the 100×2.1-mm format. Kromasil is advantageous for simple and fast separations on short columns both in HPLC and in UHPLC conditions. Halo achieves the highest efficiencies of all columns at the lowest pressure cost and shows a noticeable lower axial diffusion. Poroshell 120 has the best packing quality reproducibility across the tested formats. All columns preserve their performance at high pH.
Collapse
|
46
|
Omamogho JO, Glennon JD. Comparison between the Efficiencies of sub-2 μm C18 Particles Packed in Narrow Bore Columns. Anal Chem 2011; 83:1547-56. [DOI: 10.1021/ac102139a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jesse O. Omamogho
- Innovative Chromatography Research Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Jeremy D. Glennon
- Innovative Chromatography Research Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| |
Collapse
|
47
|
MIYABE K, NOIRI K, KOBAYASHI K. Moment Analysis of Chromatographic Behavior of Superficially Porous Particles. ANAL SCI 2011; 27:1097-105. [DOI: 10.2116/analsci.27.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kanji MIYABE
- Graduate School of Science and Engineering for Research, University of Toyama
| | | | | |
Collapse
|
48
|
MIYABE K. Moment Equations for Chromatography Using Superficially Porous Spherical Particles. ANAL SCI 2011; 27:1007-17. [DOI: 10.2116/analsci.27.1007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kanji MIYABE
- Graduate School of Science and Engineering for Research, University of Toyama
| |
Collapse
|
49
|
Ruta J, Guillarme D, Rudaz S, Veuthey JL. Comparison of columns packed with porous sub-2 microm particles and superficially porous sub-3 microm particles for peptide analysis at ambient and high temperature. J Sep Sci 2010; 33:2465-77. [PMID: 20658489 DOI: 10.1002/jssc.201000023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to evaluate various chromatographic approaches for peptide analysis. Initially, the ultra-HPLC (UHPLC) strategy, which consists of using columns packed with sub-2 microm particles at a maximal pressure of 1000 bar, was tested. To limit the backpressure generated by small particles, columns packed with superficially porous sub-3 microm particles (fused-core technology) that should theoretically improve mass transfer, particularly beneficial for large biomolecules, were investigated. To evaluate these claims, kinetic plots were constructed in both isocratic and gradient modes at ambient and elevated temperature (up to 90 degrees C). For peptide analysis, both UHPLC and fused-core technologies showed a significant gain in peak capacity when compared with conventional HPLC using 5 mum particles and monolithic supports. Additionally, it has been shown that high temperature was of utmost interest to further improve kinetic performance and peak shape due to the improvement of secondary interaction kinetics. Finally, the best conditions developed for UHPLC using the gradient kinetic plot methodology were applied to the analysis of a complex tryptic digest of various proteins. The expected and experimental peak capacity values obtained were similar. In addition, the resolving power of UHPLC at 60 degrees C was appropriate for resolving complex mixtures of peptides.
Collapse
Affiliation(s)
- Josephine Ruta
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | | | | |
Collapse
|
50
|
Relationship between the particle size distribution of commercial fully porous and superficially porous high-performance liquid chromatography column packings and their chromatographic performance. J Chromatogr A 2010; 1217:7074-81. [DOI: 10.1016/j.chroma.2010.09.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 11/23/2022]
|