1
|
Ambrožič R, Mravljak R, Podgornik A. Rapid, Direct, Noninvasive Method to Determine the Amount of Immobilized Protein. Anal Chem 2023; 95:5643-5651. [PMID: 36939216 PMCID: PMC10077329 DOI: 10.1021/acs.analchem.2c05402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Protein immobilization is of utmost importance in many areas, where various proteins are used for selective detection of target compounds. Despite the importance given to determine the amount of immobilized protein, there is no simple method that allows direct, noninvasive detection. In this work, a method based on pH transition, occurring during change of solution ionic strength, was developed. The method utilized the ionic character of the immobilized protein while implementing biologically compatible buffers. Five different proteins, namely, glucose oxidase, horseradish peroxidase, bovine serum albumin, lysozyme, and protein A, were immobilized in different amounts on a porous polymeric matrix, and their pH transition was measured using lactate buffer of various concentrations and pH values. A linear correlation was found between the amount of immobilized protein and the amplitude of the pH transition, allowing the detection down to 2 nmol of immobilized protein. By changing the buffer concentration and pH, the sensitivity of the method could be tailored. Criteria based on the symmetry of the pH transition peak have been developed to determine if a particular measurement is within a linear range. In addition, a mathematical model was developed enabling prediction of pH transition profiles based solely on the protein amino acid sequence, the buffer pKa value(s), and the amount of immobilized protein.Hence, it can be used to design pH transition method experiments to achieve the required sensitivity for a target sample. Since the proposed method is noninvasive, it can be routinely applied during optimization of the immobilization protocol, for quality control, and also as an in-process monitoring tool.
Collapse
Affiliation(s)
- Rok Ambrožič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia
| | - Rok Mravljak
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia
| | - Aleš Podgornik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia.,COBIK, Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
2
|
Poplewska I, Zimoch P, Antos D. Dissociation events during processing of monoclonal antibodies on strong cation exchange resins. J Chromatogr A 2022; 1670:462969. [DOI: 10.1016/j.chroma.2022.462969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
|
3
|
An X, Hayat A, Lee JW, Qamar S, Warnecke G, Seidel-Morgenstrern A. Analysis and experimental demonstration of temperature step gradients in preparative liquid chromatography. J Chromatogr A 2022; 1665:462831. [DOI: 10.1016/j.chroma.2022.462831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
4
|
Separation of charge variants of a monoclonal antibody by overloaded ion exchange chromatography. J Chromatogr A 2021; 1658:462607. [PMID: 34656842 DOI: 10.1016/j.chroma.2021.462607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022]
Abstract
A procedure for adjusting the content of charge variants of monoclonal antibody by ion exchange chromatography has been developed. The band splitting phenomenon was utilized to split the protein load into two parts, i.e., the flowthrough and bound fractions, which were either enriched or depleted with some of variants. The phenomenon was triggered by thermodynamic effects resulting from oversaturation of the resin binding sites at high column loadings as well as from kinetic effects arising from limited rates of mass transport. Cation exchange chromatography (CEX) and anion exchange chromatography (AEX) separations were examined, with the reverse order of the variant elution: acidic, main, basic in CEX, and basic, main, acidic in AEX, and the corresponding reverse enrichment tendency in the collected fractions. The separations were performed by pH gradient, whose course was simplified to two stages: isocratic loading and washing at mild pH to load and partly elute the protein, followed by a rapid pH change towards non-binding conditions to desorb the remains of the protein load. To improve yield of the operation, possibility of recycling of waste fractions was considered. To predict the process performance, a dynamic model was developed, which accounted for both adsorption kinetics and thermodynamics.
Collapse
|
5
|
Gama MDS, Barreto AG, Tavares FW. The binding interaction of protein on a charged surface using Poisson–Boltzmann equation: lysozyme adsorption onto SBA-15. ADSORPTION 2021. [DOI: 10.1007/s10450-021-00344-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Sánchez-Trasviña C, Flores-Gatica M, Enriquez-Ochoa D, Rito-Palomares M, Mayolo-Deloisa K. Purification of Modified Therapeutic Proteins Available on the Market: An Analysis of Chromatography-Based Strategies. Front Bioeng Biotechnol 2021; 9:717326. [PMID: 34490225 PMCID: PMC8417561 DOI: 10.3389/fbioe.2021.717326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
Proteins, which have inherent biorecognition properties, have long been used as therapeutic agents for the treatment of a wide variety of clinical indications. Protein modification through covalent attachment to different moieties improves the therapeutic's pharmacokinetic properties, affinity, stability, confers protection against proteolytic degradation, and increases circulation half-life. Nowadays, several modified therapeutic proteins, including PEGylated, Fc-fused, lipidated, albumin-fused, and glycosylated proteins have obtained regulatory approval for commercialization. During its manufacturing, the purification steps of the therapeutic agent are decisive to ensure the quality, effectiveness, potency, and safety of the final product. Due to the robustness, selectivity, and high resolution of chromatographic methods, these are recognized as the gold standard in the downstream processing of therapeutic proteins. Moreover, depending on the modification strategy, the protein will suffer different physicochemical changes, which must be considered to define a purification approach. This review aims to deeply analyze the purification methods employed for modified therapeutic proteins that are currently available on the market, to understand why the selected strategies were successful. Emphasis is placed on chromatographic methods since they govern the purification processes within the pharmaceutical industry. Furthermore, to discuss how the modification type strongly influences the purification strategy, the purification processes of three different modified versions of coagulation factor IX are contrasted.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Miguel Flores-Gatica
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Daniela Enriquez-Ochoa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| |
Collapse
|
7
|
Poplewska I, Piątkowski W, Antos D. A case study of the mechanism of unfolding and aggregation of a monoclonal antibody in ion exchange chromatography. J Chromatogr A 2020; 1636:461687. [PMID: 33246679 DOI: 10.1016/j.chroma.2020.461687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
A mechanistic model for describing unfolding of a monoclonal antibody (mAb) in ion exchange chromatography has been developed. The model reproduced retention behavior characteristic for conformational changes of antibodies upon adsorption, including: multi-peak elution, aggregate formation, and recovery reduction. Two competitive paths in the adsorption mechanism of the unfolded protein were assumed: refolding in the adsorbed phase to the native form followed by its desorption, or direct desorption followed by instantaneous aggregation in the liquid phase. The reduction in recovery of the eluted protein was attributed to spreading of the unfolded protein on the adsorbent surface, which enhanced the binding affinity. The model was formulated based on the analysis of retention behavior of a model mAb that was eluted in pH gradients on a strong cation exchange resin. The pH profile was found to be distorted in the presence of the protein, which was ascribed to dissociation of ionizable groups of the protein in the adsorbed phase. Since the protein retention was strongly pH dependent, that phenomenon was also accounted for in mathematical modeling. A series of independent experiments was designed to evaluate the model parameters that quantified the process thermodynamics and kinetics: the Henry constants of the native, unfolded, spread and aggregated forms of the protein along with underlying kinetic coefficients. The model was efficient in reproducing the retention pattern of the protein and the aggregate content in eluting band profiles. After proper calibration, the model can potentially be used to quantify protein unfolding and elution in other ion exchange systems.
Collapse
Affiliation(s)
- Izabela Poplewska
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Wojciech Piątkowski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, Powstańców Warszawy Ave. 6, 35-959 Rzeszów, Poland.
| |
Collapse
|
8
|
Nicoud L, Gonzalez KV, Portier A, Nicoud RM. Using Mechanistic Modeling for Understanding Antibiotics Purification with Ion Exchange Chromatography. SOLVENT EXTRACTION AND ION EXCHANGE 2020. [DOI: 10.1080/07366299.2020.1765491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
|
10
|
Wittkopp F, Peeck L, Hafner M, Frech C. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model. J Chromatogr A 2018. [DOI: 10.1016/j.chroma.2018.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
12
|
Tassi M, De Vos J, Chatterjee S, Sobott F, Bones J, Eeltink S. Advances in native high-performance liquid chromatography and intact mass spectrometry for the characterization of biopharmaceutical products. J Sep Sci 2017; 41:125-144. [DOI: 10.1002/jssc.201700988] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Tassi
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Jelle De Vos
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Sneha Chatterjee
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
- School of Molecular and Cellular Biology; University of Leeds; Leeds UK
| | - Jonathan Bones
- The National Institute for Bioprocessing Research and Training (NIBRT); Dublin Ireland
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| |
Collapse
|
13
|
Podgornik A, Hamachi M, Isakari Y, Yoshimoto N, Yamamoto S. Effect of pore size on performance of monolithic tube chromatography of large biomolecules. Electrophoresis 2017; 38:2892-2899. [DOI: 10.1002/elps.201700258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Ales Podgornik
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Ljubljana Slovenia
- Center of Excellence; COBIK; Ajdovščina Slovenia
| | - Masataka Hamachi
- Bio-Process Engineering Laboratory, Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Yu Isakari
- Bio-Process Engineering Laboratory, Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Noriko Yoshimoto
- Bio-Process Engineering Laboratory, Graduate School of Medicine; Yamaguchi University; Ube Japan
- Biomedical Engineering Center (YUBEC); Yamaguchi University; Ube Japan
| | - Shuichi Yamamoto
- Bio-Process Engineering Laboratory, Graduate School of Medicine; Yamaguchi University; Ube Japan
- Biomedical Engineering Center (YUBEC); Yamaguchi University; Ube Japan
| |
Collapse
|
14
|
Lee YF, Kluters S, Hillmann M, von Hirschheydt T, Frech C. Modeling of bispecific antibody elution in mixed-mode cation-exchange chromatography. J Sep Sci 2017; 40:3632-3645. [DOI: 10.1002/jssc.201700313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yi Feng Lee
- Institute of Biochemistry; University of Applied Sciences Mannheim; Mannheim Germany
| | - Simon Kluters
- Institute of Biochemistry; University of Applied Sciences Mannheim; Mannheim Germany
| | - Mirjam Hillmann
- Institute of Biochemistry; University of Applied Sciences Mannheim; Mannheim Germany
| | - Thomas von Hirschheydt
- Roche Pharma Research and Early Development; Roche Innovation Center Munich; Penzberg Germany
| | - Christian Frech
- Institute of Biochemistry; University of Applied Sciences Mannheim; Mannheim Germany
| |
Collapse
|
15
|
Antos D, Piątkowski W. Band deformation in non-isocratic liquid chromatography. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kluters S, Wittkopp F, Jöhnck M, Frech C. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates. J Sep Sci 2015; 39:663-75. [DOI: 10.1002/jssc.201500994] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Simon Kluters
- Institute of Biochemistry; Mannheim University of Applied Sciences; Mannheim Germany
| | - Felix Wittkopp
- Institute of Biochemistry; Mannheim University of Applied Sciences; Mannheim Germany
| | - Matthias Jöhnck
- Biopharm Process Solutions; Merck Millipore; Darmstadt Germany
| | - Christian Frech
- Institute of Biochemistry; Mannheim University of Applied Sciences; Mannheim Germany
| |
Collapse
|
17
|
Kluters S, Hafner M, von Hirschheydt T, Frech C. Solvent modulated linear pH gradient elution for the purification of conventional and bispecific antibodies: Modeling and application. J Chromatogr A 2015; 1418:119-129. [PMID: 26431858 DOI: 10.1016/j.chroma.2015.09.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 01/03/2023]
Abstract
Classical ion-exchange chromatography using a linear salt gradient to elute the adsorbed protein at fixed pH is the most common method to separate product-related impurities during downstream processing of biopharmaceuticals. Linear pH gradient elution provides a useful alternative by separating proteins in a linear pH gradient at fixed salt concentration. Although linear pH gradient elution provides excellent selectivity, it is rarely encountered in industrial purification processes. Here, a stoichiometric displacement model is used to characterize pH gradient elution based on simple linear gradient elution experiments. Protein retention behavior is described with respect to the pH dependencies of the characteristic binding charge and the equilibrium constant of the ion exchange reaction. Furthermore, the influence of solvent composition using PEG as a mobile phase modifier is investigated. Validity and applicability of the model are demonstrated for the purification of a conventional monoclonal antibody from soluble aggregates and for a novel bispecific antibody format containing a unique product-related impurity profile. pH step elution protocols are derived from model calculations without further optimization experiments necessary.
Collapse
Affiliation(s)
- Simon Kluters
- Institute of Biochemistry, University of Applied Sciences Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular Biology and Cell Culture Technology, University of Applied Sciences Mannheim, Germany
| | - Thomas von Hirschheydt
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center, Penzberg, Germany
| | - Christian Frech
- Institute of Biochemistry, University of Applied Sciences Mannheim, Germany.
| |
Collapse
|
18
|
Vetter TA, Ferreira G, Robbins D, Carta G. Resolution of Protein Charge Variants in Mixed-Bed Chromatography Columns with Step-Induced pH Gradients at High Protein Loadings. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Gagnon P, Nian R, Tan L, Cheong J, Yeo V, Yang Y, Gan HT. Chromatin-mediated depression of fractionation performance on electronegative multimodal chromatography media, its prevention, and ramifications for purification of immunoglobulin G. J Chromatogr A 2014; 1374:145-155. [DOI: 10.1016/j.chroma.2014.11.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022]
|
20
|
Talebi M, Shellie RA, Hilder EF, Lacher NA, Haddad PR. Semiautomated pH Gradient Ion-Exchange Chromatography of Monoclonal Antibody Charge Variants. Anal Chem 2014; 86:9794-9. [DOI: 10.1021/ac502372r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Talebi
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Robert A. Shellie
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Emily F. Hilder
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Nathan A. Lacher
- Analytical R&D, Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017, United States
| | - Paul R. Haddad
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| |
Collapse
|
21
|
Borg N, Brodsky Y, Moscariello J, Vunnum S, Vedantham G, Westerberg K, Nilsson B. Modeling and robust pooling design of a preparative cation-exchange chromatography step for purification of monoclonal antibody monomer from aggregates. J Chromatogr A 2014; 1359:170-81. [DOI: 10.1016/j.chroma.2014.07.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 06/19/2014] [Accepted: 07/14/2014] [Indexed: 01/14/2023]
|
22
|
Vetter TA, Ferreira G, Robbins D, Carta G. Predicting Retention and Resolution of Protein Charge Variants in Mixed-Beds of Strong and Weak Anion Exchange Resins with Step-Induced pH Gradients. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.907810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior. J Chromatogr A 2014; 1356:117-28. [DOI: 10.1016/j.chroma.2014.06.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022]
|
24
|
Vetter TA, Ferreira G, Robbins D, Carta G. Mixed-Beds of Strong and Weak Anion Exchange Resins for Protein Separations with Step-Induced pH Gradients. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.860169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Marek W, Muca R, Woś S, Piątkowski W, Antos D. Isolation of monoclonal antibody from a Chinese hamster ovary supernatant. II: Dynamics of the integrated separation on ion exchange and hydrophobic interaction chromatography media. J Chromatogr A 2013; 1305:64-75. [DOI: 10.1016/j.chroma.2013.06.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 01/13/2023]
|
26
|
Isolation of monoclonal antibody from a Chinese hamster ovary supernatant. I: Assessment of different separation concepts. J Chromatogr A 2013; 1305:55-63. [DOI: 10.1016/j.chroma.2013.06.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022]
|
27
|
Kang X, Kutzko JP, Hayes ML, Frey DD. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems. J Chromatogr A 2013; 1283:89-97. [DOI: 10.1016/j.chroma.2013.01.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 11/15/2022]
|
28
|
Zhang L, Patapoff T, Farnan D, Zhang B. Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength. J Chromatogr A 2013; 1272:56-64. [DOI: 10.1016/j.chroma.2012.11.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/18/2012] [Accepted: 11/23/2012] [Indexed: 11/25/2022]
|
29
|
Hahn R. Methods for characterization of biochromatography media. J Sep Sci 2012; 35:3001-32. [DOI: 10.1002/jssc.201200770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Rainer Hahn
- Department of Biotechnology; University of Natural Resources and Life Sciences; Vienna Austria
- Austrian Centre of Industrial Biotechnology; Vienna Austria
| |
Collapse
|
30
|
Holstein MA, Nikfetrat AA, Gage M, Hirsh AG, Cramer SM. Improving selectivity in multimodal chromatography using controlled pH gradient elution. J Chromatogr A 2012; 1233:152-5. [DOI: 10.1016/j.chroma.2012.01.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
|
31
|
Effects of resin ligand density on yield and impurity clearance in preparative cation exchange chromatography. II. Process characterization. J Chromatogr A 2012; 1225:70-8. [DOI: 10.1016/j.chroma.2011.12.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/02/2011] [Accepted: 12/15/2011] [Indexed: 11/22/2022]
|
32
|
Ng PK, Snyder MA. pH-based cation exchange chromatography in the capture and elution of monoclonal antibodies. J Sep Sci 2011; 35:29-35. [DOI: 10.1002/jssc.201100720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 11/10/2022]
|
33
|
Lienqueo ME, Mahn A, Salgado JC, Shene C. Mathematical Modeling of Protein Chromatograms. Chem Eng Technol 2011. [DOI: 10.1002/ceat.201100282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Ly L, Wasinger VC. Protein and peptide fractionation, enrichment and depletion: Tools for the complex proteome. Proteomics 2011; 11:513-34. [DOI: 10.1002/pmic.201000394] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/03/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022]
|
35
|
Behavior of human serum albumin on strong cation exchange resins: I. Experimental analysis. J Chromatogr A 2010; 1217:5484-91. [DOI: 10.1016/j.chroma.2010.06.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 11/23/2022]
|
36
|
von Lieres E, Andersson J. A fast and accurate solver for the general rate model of column liquid chromatography. Comput Chem Eng 2010. [DOI: 10.1016/j.compchemeng.2010.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Guélat B, Ströhlein G, Lattuada M, Morbidelli M. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A. J Chromatogr A 2010; 1217:5610-21. [DOI: 10.1016/j.chroma.2010.06.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/19/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
|
38
|
Bhut BV, Christensen KA, Husson SM. Membrane chromatography: Protein purification from E. coli lysate using newly designed and commercial anion-exchange stationary phases. J Chromatogr A 2010; 1217:4946-57. [DOI: 10.1016/j.chroma.2010.05.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/22/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
|
39
|
Harscoat-Schiavo C, Raminosoa F, Ronat-Heit E, Vanderesse R, Marc I. Modeling the separation of small peptides by cation-exchange chromatography. J Sep Sci 2010; 33:2447-57. [DOI: 10.1002/jssc.201000112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
A theoretical study of continuous counter-current chromatography for adsorption isotherms with inflection points. Comput Chem Eng 2010. [DOI: 10.1016/j.compchemeng.2009.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Fogle J, Hsiung J. Understanding and mitigating conductivity transitions in weak cation exchange chromatography. J Chromatogr A 2010; 1217:660-6. [DOI: 10.1016/j.chroma.2009.11.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/07/2009] [Accepted: 11/30/2009] [Indexed: 11/30/2022]
|
42
|
Rozhkova A. Quantitative analysis of monoclonal antibodies by cation-exchange chromatofocusing. J Chromatogr A 2009; 1216:5989-94. [DOI: 10.1016/j.chroma.2009.06.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/10/2009] [Accepted: 06/12/2009] [Indexed: 11/30/2022]
|
43
|
Ng PK, He J, Snyder MA. Separation of protein mixtures using pH-gradient cation-exchange chromatography. J Chromatogr A 2009; 1216:1372-6. [DOI: 10.1016/j.chroma.2008.12.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/16/2008] [Accepted: 12/22/2008] [Indexed: 11/26/2022]
|
44
|
|
45
|
Pabst TM, Carta G, Ramasubramanyan N, Hunter AK, Mensah P, Gustafson ME. Separation of protein charge variants with induced pH gradients using anion exchange chromatographic columns. Biotechnol Prog 2008; 24:1096-106. [DOI: 10.1002/btpr.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|