• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4667255)   Today's Articles (149)   Subscriber (51746)
For: Fatemi M, Abraham M, Poole C. Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. J Chromatogr A 2008;1190:241-52. [DOI: 10.1016/j.chroma.2008.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 11/17/2022]
Number Cited by Other Article(s)
1
Sagrado S, Pardo-Cortina C, Escuder-Gilabert L, Medina-Hernández MJ, Martín-Biosca Y. Intelligent Recommendation Systems Powered by Consensus Neural Networks: The Ultimate Solution for Finding Suitable Chiral Chromatographic Systems? Anal Chem 2024;96:12205-12212. [PMID: 38982948 PMCID: PMC11270524 DOI: 10.1021/acs.analchem.4c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
2
Singh YR, Shah DB, Maheshwari DG, Shah JS, Shah S. Advances in AI-Driven Retention Prediction for Different Chromatographic Techniques: Unraveling the Complexity. Crit Rev Anal Chem 2023;54:3559-3569. [PMID: 37672314 DOI: 10.1080/10408347.2023.2254379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
3
Singh YR, Shah DB, Kulkarni M, Patel SR, Maheshwari DG, Shah JS, Shah S. Current trends in chromatographic prediction using artificial intelligence and machine learning. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023;15:2785-2797. [PMID: 37264667 DOI: 10.1039/d3ay00362k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
4
Evaluation of Retention Range of Extractables Under Linear Gradient Conditions for Reversed-Phase Chromatographic Considerations and Requirements in Extractables Analytical Methods for Chemical Characterization of Medical Devices. Chromatographia 2022. [DOI: 10.1007/s10337-022-04185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
5
Biancolillo A, D'Archivio AA. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases. J Chromatogr A 2021;1663:462758. [PMID: 34954535 DOI: 10.1016/j.chroma.2021.462758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
6
Mert Ozupek N, Cavas L. Modelling of multilinear gradient retention time of bio-sweetener rebaudioside A in HPLC analysis. Anal Biochem 2021;627:114248. [PMID: 34022188 DOI: 10.1016/j.ab.2021.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
7
Prediction of liquid chromatographic retention time using quantitative structure-retention relationships to assist non-targeted identification of unknown metabolites of phthalates in human urine with high-resolution mass spectrometry. J Chromatogr A 2020;1634:461691. [PMID: 33221657 DOI: 10.1016/j.chroma.2020.461691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022]
8
Guo Z, Huang S, Wang J, Feng YL. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020;219:121339. [DOI: 10.1016/j.talanta.2020.121339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
9
Poole CF. Wayne State University experimental descriptor database for use with the solvation parameter model. J Chromatogr A 2020;1617:460841. [DOI: 10.1016/j.chroma.2019.460841] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023]
10
Biancolillo A, Maggi MA, Bassi S, Marini F, D’Archivio AA. Retention Modelling of Phenoxy Acid Herbicides in Reversed-Phase HPLC under Gradient Elution. Molecules 2020;25:molecules25061262. [PMID: 32168813 PMCID: PMC7144001 DOI: 10.3390/molecules25061262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/02/2022]  Open
11
Characterisation of Gas-Chromatographic Poly(Siloxane) Stationary Phases by Theoretical Molecular Descriptors and Prediction of McReynolds Constants. Int J Mol Sci 2019;20:ijms20092120. [PMID: 31035726 PMCID: PMC6539345 DOI: 10.3390/ijms20092120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/01/2022]  Open
12
Artificial Neural Network Prediction of Retention of Amino Acids in Reversed-Phase HPLC under Application of Linear Organic Modifier Gradients and/or pH Gradients. Molecules 2019;24:molecules24030632. [PMID: 30754702 PMCID: PMC6384946 DOI: 10.3390/molecules24030632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/29/2022]  Open
13
Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: A review. Anal Chim Acta 2017;1000:20-40. [PMID: 29289311 DOI: 10.1016/j.aca.2017.09.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/09/2023]
14
Applications of the solvation parameter model in reversed-phase liquid chromatography. J Chromatogr A 2017;1486:2-19. [DOI: 10.1016/j.chroma.2016.05.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022]
15
Kadlec K, Adamska K, Okulus Z, Voelkel A. Inverse liquid chromatography as a tool for characterisation of the surface layer of ceramic biomaterials. J Chromatogr A 2016;1468:116-125. [DOI: 10.1016/j.chroma.2016.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
16
Golubović J, Protić A, Otašević B, Zečević M. Quantitative structure–retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans. Talanta 2016;150:190-7. [DOI: 10.1016/j.talanta.2015.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
17
Adamska K, Kadlec K, Voelkel A. Application of Inverse Liquid Chromatography for Surface Characterization of Biomaterials. Chromatographia 2016;79:473-480. [PMID: 27069275 PMCID: PMC4803825 DOI: 10.1007/s10337-016-3049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 10/28/2022]
18
Kadlec K, Adamska K, Voelkel A. Characterization of ceramic hydroxyapatite surface by inverse liquid chromatography in aquatic systems. Talanta 2016;147:44-9. [DOI: 10.1016/j.talanta.2015.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 11/16/2022]
19
Mizera M, Talaczyńska A, Zalewski P, Skibiński R, Cielecka-Piontek J. Prediction of HPLC retention times of tebipenem pivoxyl and its degradation products in solid state by applying adaptive artificial neural network with recursive features elimination. Talanta 2015;137:174-81. [DOI: 10.1016/j.talanta.2015.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
20
Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters. Anal Bioanal Chem 2014;407:1181-90. [DOI: 10.1007/s00216-014-8317-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/26/2022]
21
D'Archivio AA, Maggi MA, Ruggieri F. Prediction of the retention ofs-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions. J Sep Sci 2014;37:1930-6. [DOI: 10.1002/jssc.201400346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/05/2022]
22
Development of Gradient Retention Model in Ion Chromatography. Part II: Artificial Intelligence QSRR Approach. Chromatographia 2014. [DOI: 10.1007/s10337-014-2654-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
23
Poole CF, Ariyasena TC, Lenca N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr A 2013;1317:85-104. [DOI: 10.1016/j.chroma.2013.05.045] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/15/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
24
Fatemi MH, Elyasi M. Quantitative structure-retention relationship prediction of Kováts retention index of some organic acids. ACTA CHROMATOGR 2013. [DOI: 10.1556/achrom.25.2013.3.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
25
D’Archivio AA, Maggi MA, Ruggieri F. Quantitative structure/eluent–retention relationships in reversed-phase high-performance liquid chromatography based on the solvatochromic method. Anal Bioanal Chem 2012;405:755-66. [DOI: 10.1007/s00216-012-6191-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022]
26
D’Archivio AA, Giannitto A, Maggi MA, Ruggieri F. Cross-column retention prediction in reversed-phase high-performance liquid chromatography by artificial neural network modelling. Anal Chim Acta 2012;717:52-60. [DOI: 10.1016/j.aca.2011.12.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/18/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022]
27
Liu T, Nicholls IA, Öberg T. Comparison of theoretical and experimental models for characterizing solvent properties using reversed phase liquid chromatography. Anal Chim Acta 2011;702:37-44. [DOI: 10.1016/j.aca.2011.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/11/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
28
D’Archivio AA, Maggi MA, Ruggieri F. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: A comparison between curvilinear and artificial neural network regression. Anal Chim Acta 2011;690:35-46. [DOI: 10.1016/j.aca.2011.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/29/2010] [Accepted: 01/27/2011] [Indexed: 11/17/2022]
29
Garkani-Nejad Z, Ahmadvand M. Comparative QSRR Modeling of Nitrobenzene Derivatives Based on Original Molecular Descriptors and Multivariate Image Analysis Descriptors. Chromatographia 2011. [DOI: 10.1007/s10337-011-1969-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
30
D'Archivio AA, Maggi MA, Ruggieri F. Multiple-column RP-HPLC retention modelling based on solvatochromic or theoretical solute descriptors. J Sep Sci 2010;33:155-66. [DOI: 10.1002/jssc.200900537] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
31
Poole CF, Atapattu SN, Poole SK, Bell AK. Determination of solute descriptors by chromatographic methods. Anal Chim Acta 2009;652:32-53. [DOI: 10.1016/j.aca.2009.04.038] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 11/24/2022]
32
Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water–acetonitrile mobile phase. Anal Chim Acta 2009;646:47-61. [DOI: 10.1016/j.aca.2009.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/12/2009] [Accepted: 05/15/2009] [Indexed: 11/18/2022]
33
Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions. J Chromatogr A 2009;1216:5030-8. [DOI: 10.1016/j.chroma.2009.04.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 11/17/2022]
34
Fatemi MH, Ghorbanzad’e M. In silico prediction of nematic transition temperature for liquid crystals using quantitative structure–property relationship approaches. Mol Divers 2009;13:483-91. [DOI: 10.1007/s11030-009-9135-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 02/25/2009] [Indexed: 12/01/2022]
35
Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors. Anal Chim Acta 2008;628:162-72. [DOI: 10.1016/j.aca.2008.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/05/2008] [Accepted: 09/08/2008] [Indexed: 11/24/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA