1
|
Söllner J, Neimark AV, Thommes M. Development and Application of an Advanced Percolation Model for Pore Network Characterization by Physical Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23146-23168. [PMID: 39432323 DOI: 10.1021/acs.langmuir.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Physical adsorption is one of the most widely used techniques to characterize porous materials because it is reliable and able to assess micro- and mesopores within one approach. Challenges and open questions persist in characterizing disordered and hierarchically structured porous materials. This study introduces a pore network model aimed at enhancing the textural characterization of nanoporous materials. The model, based on percolation theory on a finite-sized Bethe lattice, includes all mechanisms known to contribute to adsorption hysteresis in mesoporous pore networks. The model accounts for delayed and initiated condensation during adsorption as well as equilibrium evaporation, pore blocking, and cavitation during desorption. Coupled with dedicated nonlocal-density functional theory kernels, the proposed method provides a unified framework for modeling the entire experimental adsorption-desorption isotherm, including desorption hysteresis scans. The applicability of the method is demonstrated on a selected set of nanoporous silica materials exhibiting distinct types of hysteresis loops (types H1, H2a, H1/H2a, and H5), including ordered mesoporous silica networks (KIT-6 and SBA-15/MCM-41 hybrid silica with plugged pores) and disordered mesoporous silica networks (hierarchical meso-macroporous monolith and porous Vycor glass). For all materials, a good correlation is found between calculated and experimental primary isotherms as well as desorption scans. The model allows us to determine key pore network characteristics such as pore connectivity and pore size distributions as well as a parameter correlated with the impact of pore network disorder on the adsorption behavior. The versatility and enriched textural insights provided by the proposed novel network model allow for a comprehensive characterization previously inaccessible and hence will contribute to further advancement in the textural characterization of novel nanoporous materials. It has the potential to provide important guidance for the design and selection of porous materials for optimizing various applications, including separation processes such as chromatography, heterogeneous catalysis and gas and energy storage.
Collapse
Affiliation(s)
- Jakob Söllner
- Institute of Thermal Separation Science (TVT), Department of Chemical and Biochemical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Bavaria, Germany
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Matthias Thommes
- Institute of Thermal Separation Science (TVT), Department of Chemical and Biochemical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Bavaria, Germany
| |
Collapse
|
2
|
Sultan U, Götz A, Schlumberger C, Drobek D, Bleyer G, Walter T, Löwer E, Peuker UA, Thommes M, Spiecker E, Apeleo Zubiri B, Inayat A, Vogel N. From Meso to Macro: Controlling Hierarchical Porosity in Supraparticle Powders. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300241. [PMID: 36932894 DOI: 10.1002/smll.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.
Collapse
Affiliation(s)
- Umair Sultan
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
- Institute of Chemical Reaction Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Alexander Götz
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Carola Schlumberger
- Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dominik Drobek
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Teresa Walter
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Erik Löwer
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Urs Alexander Peuker
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Alexandra Inayat
- Institute of Chemical Reaction Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| |
Collapse
|
3
|
He J, Liu F, Xiao C, Sun H, Li J, Zhu Z, Liang W, Li A. Fe 3O 4/PPy-Coated Superhydrophilic Polymer Porous Foam: A Double Layered Photothermal Material with a Synergistic Light-to-Thermal Conversion Effect toward Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12397-12408. [PMID: 34633189 DOI: 10.1021/acs.langmuir.1c02013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar steam generation has been considered as one of the most promising strategies for production of fresh water using renewable solar energy. Herein, we prepared a polymer porous foam (HPSS) by a facile hydrothermal method. The HPSS presents a superhydrophilic wettability, an interpenetrating macroporous structure, and low thermal conductivity, which can well satisfy the criteria as an ideal candidate for photothermal materials. The HPSS/Fe3O4/PPy (polypyrrole) evaporator, of which a Fe3O4/PPy binary optical system served as a light absorption layer and HPSS was used as a porous substrate, was constructed through in situ growth of Fe3O4 particles followed by interfacial polymerization of PPy on the surface of HPSS. HPSS/Fe3O4/PPy shows an excellent light absorption capacity (92%) and photothermal conversion performance, with the solar energy conversion efficiency reaching up to 94.7% under 1 sun irradiation, which is much higher than that of HPSS/PPy (84.8%) composed of a unitary PPy light absorption layer. Interestingly, the presence of Fe3O4 particles could make directional migration in a magnetic field possible, thus facilitating its recovery as a self-floating solar generator in an open water area. Moreover, the HPSS/Fe3O4/PPy evaporator displays outstanding salt resistance properties and stability in various saline solutions, thus having great potential in practical desalination.
Collapse
Affiliation(s)
- Jingxian He
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
- School of Chemistry and Chemical Engineering, Lanzhou City University, Jiefang Road 11, Lanzhou 730070, P. R. China
| | - Fang Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
- School of Chemistry and Chemical Engineering, Lanzhou City University, Jiefang Road 11, Lanzhou 730070, P. R. China
| | - Chaohu Xiao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|
4
|
Hara T, Baron GV, Hata K, Izumi Y, Bamba T, Desmet G. Performance of functionalized monolithic silica capillary columns with different mesopore sizes using radical polymerization of octadecyl methacrylate. J Chromatogr A 2021; 1651:462282. [PMID: 34144397 DOI: 10.1016/j.chroma.2021.462282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
We report on the possibility to enhance the phase ratio and retention factor in silica monoliths. According to pioneering work done by Núñez et al. [1], this enhancement is pursued by applying a stationary phase layer via radical polymerization with octadecyl methacrylate (ODM) as an alternative to the customary octadecylsilylation (C18-derivatization). The difference in band broadening, retention factor and separation selectivity between both approaches was compared. Different hydrothermal treatment temperatures for the column preparation were applied to produce monolithic silica structures with three different mesopore sizes (resp. 10, 13, and 16 nm, as determined by argon physisorption) while maintaining similar domain size (sum of through-pore and skeleton size). It has been found that the columns with the poly(octadecyl methacrylate)-phase (ODM columns) provided a 60 to 80% higher retention factor in methanol-water mixture compared to the octadecylsilylated (ODS) columns produced by starting from similar silica backbone structures. In acetonitrile-water mixture, the enhancement is smaller (15 to 30% times higher), yet significant. By adjusting the fabrication conditions (for both the preparation of the monolithic backbones and the surface functionalization), the achieved retention factors (up k = 4.89 for pentylbenzene in 80:20% (v/v) methanol/water) are obviously higher than obtained in the pioneering study on ODM monoliths of Núñez et al. [1], and column clogging could be completely avoided. In addition, also separation efficiencies were significantly higher than shown in Ref. [1], with plate heights as low as 5.8 μm. These plate heights are however inferior to those observed on the ODS-modified sister columns. The difference can be explained by the slower intra-skeleton diffusion displayed by the ODM-modified columns, in turn caused by the larger obstruction to diffusion originating from the thicker stationary phase layer.
Collapse
Affiliation(s)
- Takeshi Hara
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; GL Sciences Inc., 237-2 Sayamagahara, Iruma, Saitama 358-0032, Japan
| | - Gino V Baron
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, Brussels B-1050, Belgium
| | - Kosuke Hata
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, Brussels B-1050, Belgium.
| |
Collapse
|
5
|
Abstract
Detailed analysis of textural properties, e.g., pore size and connectivity, of nanoporous materials is essential to identify correlations of these properties with the performance of gas storage, separation, and catalysis processes. The advances in developing nanoporous materials with uniform, tailor-made pore structures, including the introduction of hierarchical pore systems, offer huge potential for these applications. Within this context, major progress has been made in understanding the adsorption and phase behavior of confined fluids and consequently in physisorption characterization. This enables reliable pore size, volume, and network connectivity analysis using advanced, high-resolution experimental protocols coupled with advanced methods based on statistical mechanics, such as methods based on density functional theory and molecular simulation. If macro-pores are present, a combination of adsorption and mercury porosimetry can be useful. Hence, some important recent advances in understanding the mercury intrusion/extrusion mechanism are discussed. Additionally, some promising complementary techniques for characterization of porous materials immersed in a liquid phase are introduced.
Collapse
Affiliation(s)
- M Thommes
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany;
| | - C Schlumberger
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany;
| |
Collapse
|
6
|
Hara T, Izumi Y, Hata K, V. Baron G, Bamba T, Desmet G. Performance of small-domain monolithic silica columns in nano-liquid chromatography and comparison with commercial packed bed columns with 2 µm particles. J Chromatogr A 2020; 1616:460804. [DOI: 10.1016/j.chroma.2019.460804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
|
7
|
Futagami S, Hara T, Ottevaere H, Terryn H, Baron GV, Desmet G, De Malsche W. Chromatographic study of the structural properties of mesoporous silica layers deposited on radially elongated pillars. J Chromatogr A 2019; 1595:58-65. [DOI: 10.1016/j.chroma.2019.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/16/2023]
|
8
|
Hara T, Izumi Y, Nakao M, Hata K, Baron GV, Bamba T, Desmet G. Silica-based hybrid porous layers to enhance the retention and efficiency of open tubular capillary columns with a 5 μm inner diameter. J Chromatogr A 2018; 1580:63-71. [DOI: 10.1016/j.chroma.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022]
|
9
|
Svidrytski A, Rathi A, Hlushkou D, Ford DM, Monson PA, Tallarek U. Morphology of Fluids Confined in Physically Reconstructed Mesoporous Silica: Experiment and Mean Field Density Functional Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9936-9945. [PMID: 30070853 DOI: 10.1021/acs.langmuir.8b01971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three-dimensional physical reconstruction of the random mesopore network in a hierarchically structured, macroporous-mesoporous silica monolith via electron tomography has been used to generate a lattice model of amorphous, mesoporous silica. This geometrical model has subsequently been employed in mean field density functional theory (MFDFT) calculations of adsorption and desorption. Comparison of the results with experimental sorption isotherms for nitrogen at 77 K shows a good qualitative agreement, with both experiment and theory producing isotherms characterized by type H2 hysteresis. In addition to the isotherms, MFDFT provides the three-dimensional density distribution for the fluid in the porous material for each state studied. We use this information to map the phase distribution in the mesopore network in the hysteresis region. Phase distributions on the desorption boundary curve are compared to those on the adsorption boundary curve for both fixed pressure and fixed density, revealing insights into the relationship between phase distribution and hysteresis.
Collapse
Affiliation(s)
- Artur Svidrytski
- Department of Chemistry , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| | - Ashutosh Rathi
- Department of Chemical Engineering , University of Massachusetts , Amherst , Massachusetts 01003-9303 , United States
| | - Dzmitry Hlushkou
- Department of Chemistry , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| | - David M Ford
- Department of Chemical Engineering , University of Arkansas , Fayetteville , Arkansas 72701-1201 , United States
| | - Peter A Monson
- Department of Chemical Engineering , University of Massachusetts , Amherst , Massachusetts 01003-9303 , United States
| | - Ulrich Tallarek
- Department of Chemistry , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| |
Collapse
|
10
|
Lee YR, Row KH. Ionic liquid-modified mesoporous silica stationary phase for separation of polysaccharides with size exclusion chromatography. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Futagami S, Hara T, Ottevaere H, Baron GV, Desmet G, De Malsche W. Preparation and evaluation of mesoporous silica layers on radially elongated pillars. J Chromatogr A 2017; 1523:234-241. [DOI: 10.1016/j.chroma.2017.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022]
|
12
|
Cychosz KA, Guillet-Nicolas R, García-Martínez J, Thommes M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev 2017; 46:389-414. [DOI: 10.1039/c6cs00391e] [Citation(s) in RCA: 603] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on important aspects of applying physisorption for the pore structural characterization of hierarchical materials such as mesoporous zeolites.
Collapse
Affiliation(s)
| | | | - Javier García-Martínez
- University of Alicante
- Department of Inorganic Chemistry
- Campus de San Vicente del Raspeig
- Alicante
- Spain
| | | |
Collapse
|
13
|
Hara T, Futagami S, Eeltink S, De Malsche W, Baron GV, Desmet G. Very High Efficiency Porous Silica Layer Open-Tubular Capillary Columns Produced via in-Column Sol-Gel Processing. Anal Chem 2016; 88:10158-10166. [PMID: 27642813 DOI: 10.1021/acs.analchem.6b02713] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is demonstrated that 5 μm i.d. capillaries can be coated with mesoporous silica layers up to 550 nm thickness. All the columns produced using in-column sol-gel synthesis with tetramethoxysilane provide plate height curves that closely follow the Golay-Aris theory. In 60 cm long columns, efficiencies as high as N = 150 000 and N = 120 000 were obtained, respectively, for a 300 and 550 nm thick porous layer. An excellent retention and plate height reproducibility was obtained when the recipes were subsequently applied to produce very long (1.9 and 2.5 m) capillaries. These columns produced efficiencies up to N = 600 000 plates for a retained and around N = 1 000 000 plates for an unretained component. Given the good reproducibility on the long capillaries, and considering that mesoporous silica is still the preferred support for LC, it is believed the present study could spur a renewed interest in open-tubular LC.
Collapse
Affiliation(s)
- Takeshi Hara
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Shunta Futagami
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Wim De Malsche
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Enke D, Gläser R, Tallarek U. Sol-Gel and Porous Glass-Based Silica Monoliths with Hierarchical Pore Structure for Solid-Liquid Catalysis. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201600049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Hara T, Desmet G, Baron GV, Minakuchi H, Eeltink S. Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns. J Chromatogr A 2016; 1442:42-52. [DOI: 10.1016/j.chroma.2016.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
|
16
|
Guillet-Nicolas R, Ahmad R, Cychosz KA, Kleitz F, Thommes M. Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica – recent advances by combining physical adsorption with mercury porosimetry. NEW J CHEM 2016. [DOI: 10.1039/c5nj03466c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The first successful example of Hg porosimetry on KIT-6 silicas is demonstrated. This study provides a more thorough understanding of the textural properties of the mesostructures of KIT-6 and SBA-15 silicas.
Collapse
Affiliation(s)
| | - Riaz Ahmad
- Quantachrome Instruments
- Boynton Beach
- USA
| | | | - Freddy Kleitz
- Department of Chemistry and CERMA
- Université Laval
- Québec
- Canada
| | | |
Collapse
|
17
|
Hormann K, Baranau V, Hlushkou D, Höltzel A, Tallarek U. Topological analysis of non-granular, disordered porous media: determination of pore connectivity, pore coordination, and geometric tortuosity in physically reconstructed silica monoliths. NEW J CHEM 2016. [DOI: 10.1039/c5nj02814k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Different approaches are applied and compared, which are universally applicable to quantify pore coordination, pore and pore-throat connectivity, and geometric tortuosity.
Collapse
Affiliation(s)
- Kristof Hormann
- Department of Chemistry
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Vasili Baranau
- Department of Chemistry
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Dzmitry Hlushkou
- Department of Chemistry
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Alexandra Höltzel
- Department of Chemistry
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| | - Ulrich Tallarek
- Department of Chemistry
- Philipps-Universität Marburg
- D-35032 Marburg
- Germany
| |
Collapse
|
18
|
Stoeckel D, Kübel C, Loeh MO, Smarsly BM, Tallarek U. Morphological Analysis of Physically Reconstructed Silica Monoliths with Submicrometer Macropores: Effect of Decreasing Domain Size on Structural Homogeneity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7391-7400. [PMID: 25654337 DOI: 10.1021/la5046018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silica monoliths are increasingly used as fixed-bed supports in separation and catalysis because their bimodal pore space architecture combines excellent mass transport properties with a large surface area. To optimize their performance, a quantitative relationship between morphology and transport characteristics has to be established, and synthesis conditions that lead to a desired morphology optimized for a targeted application must be identified. However, the effects of specific synthesis parameters on the structural properties of silica monoliths are still poorly understood. An important question is how far the macropore and domain size can be reduced without compromising the structural homogeneity. We address this question with quantitative morphological data derived for a set of eight macroporous-mesoporous silica monoliths with an average macropore size (d(macro)) of between 3.7 and 0.1 μm, prepared following an established route involving the sol-gel transition and phase separation. The macropore space of the silica monolith samples is reconstructed using focused ion beam scanning electron microscopy followed by a quantitative assessment of geometrical and topological properties based on chord length distributions (CLDs) and branch-node analysis of the pore network, respectively. We observe a significant increase in structural heterogeneity, indicated by a decrease in the parameter k derived from fitting a k-gamma function to the CLDs, when d(macro) reaches the submicrometer range. The compromised structural homogeneity of silica monoliths with submicrometer macropores could possibly originate from early structural freezing during the competitive processes of sol-gel transition and phase separation. It is therefore questionable if the common approach of reducing the morphological features of silica monoliths into the submicrometer regime by changing the point of sol-gel transition can be successful. Alternative strategies and a better understanding of the involved competitive processes should be the focus of future research.
Collapse
Affiliation(s)
- Daniela Stoeckel
- †Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- ‡Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Christian Kübel
- §Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Marc O Loeh
- ‡Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Bernd M Smarsly
- ‡Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Ulrich Tallarek
- †Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
19
|
Kinoshita T, Fan HJ, Furuya E. An innovative method for determining micro pore volume of synthetic resins. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Meinusch R, Hormann K, Hakim R, Tallarek U, Smarsly BM. Synthesis and morphological characterization of phenyl-modified macroporous–mesoporous hybrid silica monoliths. RSC Adv 2015. [DOI: 10.1039/c4ra16519e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We present a comprehensive approach to characterize the one-pot synthesis, macropore space morphology, and chromatographic performance of phenyl-modified macro–mesoporous silica monoliths.
Collapse
Affiliation(s)
- Rafael Meinusch
- Institute of Physical Chemistry
- Justus-Liebig-Universität Giessen
- 35392 Giessen
- Germany
| | - Kristof Hormann
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Romana Hakim
- Institute of Physical Chemistry
- Justus-Liebig-Universität Giessen
- 35392 Giessen
- Germany
- Thermo Fisher Scientific
| | - Ulrich Tallarek
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Bernd M. Smarsly
- Institute of Physical Chemistry
- Justus-Liebig-Universität Giessen
- 35392 Giessen
- Germany
| |
Collapse
|
21
|
Stoeckel D, Kübel C, Hormann K, Höltzel A, Smarsly BM, Tallarek U. Morphological analysis of disordered macroporous-mesoporous solids based on physical reconstruction by nanoscale tomography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9022-9027. [PMID: 25036976 DOI: 10.1021/la502381m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Solids with a hierarchically structured, disordered pore space, such as macroporous-mesoporous silica monoliths, are used as fixed beds in separation and catalysis. Targeted optimization of their functional properties requires a knowledge of the relation among their synthesis, morphology, and mass transport properties. However, an accurate and comprehensive morphological description has not been available for macroporous-mesoporous silica monoliths. Here we offer a solution to this problem based on the physical reconstruction of the hierarchically structured pore space by nanoscale tomography. Relying exclusively on image analysis, we deliver a concise, accurate, and model-free description of the void volume distribution and pore coordination inside the silica monolith. Structural features are connected to key transport properties (effective diffusion, hydrodynamic dispersion) of macropore and mesopore space. The presented approach is applicable to other fixed-bed formats of disordered macroporous-mesoporous solids, such as packings of mesoporous particles and organic-polymer monoliths.
Collapse
Affiliation(s)
- Daniela Stoeckel
- Department of Chemistry, Philipps-Universität Marburg , Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Physicochemical properties of silica gel coated with a thin layer of polyaniline (PANI) and its application in non-suppressed ion chromatography. Talanta 2013; 115:451-6. [DOI: 10.1016/j.talanta.2013.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 11/22/2022]
|
23
|
Kikkinides ES, Politis MG. Linking pore diffusivity with macropore structure of zeolite adsorbents. Part II: simulation of pore diffusion and mercury intrusion in stochastically reconstructed zeolite adsorbents. ADSORPTION 2013. [DOI: 10.1007/s10450-013-9545-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Aggarwal P, Tolley HD, Lee ML. Characterizing Organic Monolithic Columns Using Capillary Flow Porometry and Scanning Electron Microscopy. Anal Chem 2011; 84:247-54. [DOI: 10.1021/ac203010r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pankaj Aggarwal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - H. Dennis Tolley
- Department of Statistics, Brigham Young University, Provo, Utah 84602, United States
| | - Milton L. Lee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
25
|
Gribble CM, Matthews GP, Laudone GM, Turner A, Ridgway CJ, Schoelkopf J, Gane PA. Porometry, porosimetry, image analysis and void network modelling in the study of the pore-level properties of filters. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Hara T, Mascotto S, Weidmann C, Smarsly BM. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns. J Chromatogr A 2011; 1218:3624-35. [DOI: 10.1016/j.chroma.2011.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 11/30/2022]
|
27
|
Improving the interpretation of mercury porosimetry data using computerised X-ray tomography and mean-field DFT. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Simple capillary flow porometer for characterization of capillary columns containing packed and monolithic beds. J Chromatogr A 2010; 1217:6405-12. [DOI: 10.1016/j.chroma.2010.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/02/2010] [Accepted: 08/09/2010] [Indexed: 11/19/2022]
|
29
|
Byström E, Viklund C, Irgum K. Differences in porous characteristics of styrenic monoliths prepared by controlled thermal polymerization in molds of varying dimensions. J Sep Sci 2010; 33:191-9. [DOI: 10.1002/jssc.200900668] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Calibration of chromatographic systems for quantitative prediction of chromatography of homopolymers. J Chromatogr A 2009; 1216:8883-90. [DOI: 10.1016/j.chroma.2009.10.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 11/20/2022]
|
31
|
Skudas R, Grimes B, Thommes M, Unger K. Flow-through pore characteristics of monolithic silicas and their impact on column performance in high-performance liquid chromatography. J Chromatogr A 2009; 1216:2625-36. [DOI: 10.1016/j.chroma.2009.01.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/12/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|
32
|
Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. J Chromatogr A 2008; 1216:2637-50. [PMID: 18929365 DOI: 10.1016/j.chroma.2008.09.090] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/22/2008] [Accepted: 09/25/2008] [Indexed: 11/23/2022]
Abstract
Monolithic columns were introduced in the early 1990s and have become increasingly popular as efficient stationary phases for most of the important chromatographic separation modes. Monoliths are functionally distinct from porous particle-based media in their reliance on convective mass transport. This makes resolution and capacity independent of flow rate. Monoliths also lack a void volume. This eliminates eddy dispersion and permits high-resolution separations with extremely short flow paths. The analytical value of these features is the subject of recent reviews. Nowadays, among other types of rigid macroporous monoliths, the polymethacrylate-based materials are the largest and most examined class of these sorbents. In this review, the applications of polymethacrylate-based monolithic columns are summarized for the separation, purification and analysis of low and high molecular mass compounds in the different HPLC formats, including micro- and large-scale HPLC modes.
Collapse
|