1
|
Patil R, Walther J. Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:277-322. [PMID: 28265699 DOI: 10.1007/10_2016_58] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Collapse
Affiliation(s)
- Rohan Patil
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA
| | - Jason Walther
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA.
| |
Collapse
|
2
|
Khosravi R, Hosseini SN, Javidanbardan A, Khatami M, Kaghazian H, Mousavi Nasab SD. Optimization of non-detergent treatment for enveloped virus inactivation using the Taguchi design of experimental methodology (DOE). Prep Biochem Biotechnol 2019; 49:686-694. [PMID: 31035907 DOI: 10.1080/10826068.2019.1599398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mammalian cell culture technology, viral contamination is one of the main challenges; and, so far, various strategies have been taken to remove or inactivate viruses in the cell-line production process. The suitability and feasibility of each method are determined by different factors including effectiveness in target virus inactivation, maintaining recombinant protein stability, easiness-in terms of the process condition, cost-effectiveness, and eco-friendliness. In this research, Taguchi design-of-experiments (DOE) methodology was used to optimize a non-detergent viral inactivation method via considering four factors of temperature, time, pH, and alcohol concentration in an unbiased (orthogonal) fashion with low influence of nuisance factors. Herpes Simplex Virus-1 (HSV1) and Vero cell-line were used as models for enveloped viruses and cell-line, respectively. Examining the cytopathic effects (CPE) in different dilutions showed that pH (4), alcohol (15%), time (120 min), and temperature (25 °C) were the optimal points for viral inactivation. Evaluating the significance of each parameter in the HSV-1 inactivation using Taguchi and ANOVA analyses, the contributions of pH, alcohol, temperature and time were 56.5%, 19.2%, 12%, and 12%, respectively. Examining the impact of the optimal viral treatment condition on the stability of model recombinant protein-recombinant human erythropoietin, no destabilization was detected.
Collapse
Affiliation(s)
- Roya Khosravi
- a Department of Recombinant Hepatitis B Vaccine, Production and Research Complex , Pasteur Institute of Iran , Tehran , Iran
| | - Seyed Nezamedin Hosseini
- a Department of Recombinant Hepatitis B Vaccine, Production and Research Complex , Pasteur Institute of Iran , Tehran , Iran.,b Viral Vaccines Research Center , Pasteur Institute of Iran , Tehran , Iran
| | - Amin Javidanbardan
- a Department of Recombinant Hepatitis B Vaccine, Production and Research Complex , Pasteur Institute of Iran , Tehran , Iran
| | - Maryam Khatami
- a Department of Recombinant Hepatitis B Vaccine, Production and Research Complex , Pasteur Institute of Iran , Tehran , Iran
| | - Hooman Kaghazian
- a Department of Recombinant Hepatitis B Vaccine, Production and Research Complex , Pasteur Institute of Iran , Tehran , Iran.,b Viral Vaccines Research Center , Pasteur Institute of Iran , Tehran , Iran
| | - Seyed Dawood Mousavi Nasab
- a Department of Recombinant Hepatitis B Vaccine, Production and Research Complex , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
3
|
Heldt CL, Saksule A, Joshi PU, Ghafarian M. A generalized purification step for viral particles using mannitol flocculation. Biotechnol Prog 2018; 34:1027-1035. [DOI: 10.1002/btpr.2651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Caryn L. Heldt
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
- Dept. of Biological Sciences; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Ashish Saksule
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Pratik U. Joshi
- Dept. of Chemical Engineering; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| | - Majid Ghafarian
- Dept. of Biological Sciences; Michigan Technological Univ., 1400 Townsend Dr.; Houghton MI 49931
| |
Collapse
|
4
|
Jamaluddin N, Stuckey DC, Ariff AB, Faizal Wong FW. Novel approaches to purifying bacteriocin: A review. Crit Rev Food Sci Nutr 2017; 58:2453-2465. [DOI: 10.1080/10408398.2017.1328658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Norfariza Jamaluddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - David C. Stuckey
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arbakariya B. Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Johnson SA, Brown MR, Lute SC, Brorson KA. Adapting viral safety assurance strategies to continuous processing of biological products. Biotechnol Bioeng 2016; 114:21-32. [DOI: 10.1002/bit.26060] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Sarah A. Johnson
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Matthew R. Brown
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Scott C. Lute
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| | - Kurt A. Brorson
- DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring Maryland 20993
| |
Collapse
|
6
|
Zydney AL. Continuous downstream processing for high value biological products: A Review. Biotechnol Bioeng 2015; 113:465-75. [DOI: 10.1002/bit.25695] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Andrew L. Zydney
- Department of Chemical Engineering; The Pennsylvania State University; University Park Pennsylvania 16802
| |
Collapse
|
7
|
Herigstad MO, Dimartino S, Boi C, Sarti. GC. Experimental characterization of the transport phenomena, adsorption, and elution in a protein A affinity monolithic medium. J Chromatogr A 2015; 1407:130-8. [DOI: 10.1016/j.chroma.2015.06.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
|
8
|
Fernandes CSM, Gonçalves B, Sousa M, Martins DL, Barroso T, Pina AS, Peixoto C, Aguiar-Ricardo A, Roque ACA. Biobased monoliths for adenovirus purification. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6605-6612. [PMID: 25756920 DOI: 10.1021/am508907b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adenoviruses are important platforms for vaccine development and vectors for gene therapy, increasing the demand for high titers of purified viral preparations. Monoliths are macroporous supports regarded as ideal for the purification of macromolecular complexes, including viral particles. Although common monoliths are based on synthetic polymers as methacrylates, we explored the potential of biopolymers processed by clean technologies to produce monoliths for adenovirus purification. Such an approach enables the development of disposable and biodegradable matrices for bioprocessing. A total of 20 monoliths were produced from different biopolymers (chitosan, agarose, and dextran), employing two distinct temperatures during the freezing process (-20 °C and -80 °C). The morphological and physical properties of the structures were thoroughly characterized. The monoliths presenting higher robustness and permeability rates were further analyzed for the nonspecific binding of Adenovirus serotype 5 (Ad5) preparations. The matrices presenting lower nonspecific Ad5 binding were further functionalized with quaternary amine anion-exchange ligand glycidyltrimethylammonium chloride hydrochloride by two distinct methods, and their performance toward Ad5 purification was assessed. The monolith composed of chitosan and poly(vinyl) alcohol (50:50) prepared at -80 °C allowed 100% recovery of Ad5 particles bound to the support. This is the first report of the successful purification of adenovirus using monoliths obtained from biopolymers processed by clean technologies.
Collapse
Affiliation(s)
- Cláudia S M Fernandes
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Bianca Gonçalves
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Margarida Sousa
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- §LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Duarte L Martins
- ‡Instituto de Biologia Experimental Tecnológica, Avenida da República, Quinta do Marquês, Edificio IBET/ITQB, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Telma Barroso
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- §LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Sofia Pina
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cristina Peixoto
- ‡Instituto de Biologia Experimental Tecnológica, Avenida da República, Quinta do Marquês, Edificio IBET/ITQB, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Ana Aguiar-Ricardo
- §LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - A Cecília A Roque
- †UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Talebi M, Nordborg A, Gaspar A, Lacher NA, Wang Q, He XZ, Haddad PR, Hilder EF. Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns. J Chromatogr A 2013; 1317:148-54. [DOI: 10.1016/j.chroma.2013.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
10
|
Fast Single-Use VLP Vaccine Productions Based on Insect Cells and the Baculovirus Expression Vector System: Influenza as Case Study. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 138:99-125. [DOI: 10.1007/10_2013_186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Technology trends in antibody purification. J Chromatogr A 2012; 1221:57-70. [DOI: 10.1016/j.chroma.2011.10.034] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 10/09/2011] [Accepted: 10/12/2011] [Indexed: 01/21/2023]
|
12
|
Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnol Adv 2011; 29:869-78. [DOI: 10.1016/j.biotechadv.2011.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
|
13
|
|
14
|
Concentration and purification of rubella virus using monolithic chromatographic support. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:981-6. [DOI: 10.1016/j.jchromb.2011.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/22/2011] [Accepted: 03/06/2011] [Indexed: 11/19/2022]
|
15
|
Etzel MR, Bund T. Monoliths for the purification of whey protein–dextran conjugates. J Chromatogr A 2011; 1218:2445-50. [DOI: 10.1016/j.chroma.2011.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 11/25/2022]
|
16
|
Chromatographic behavior of IgM:DNA complexes. J Chromatogr A 2011; 1218:2405-12. [DOI: 10.1016/j.chroma.2010.12.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/27/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022]
|
17
|
Lesch HP, Laitinen A, Peixoto C, Vicente T, Makkonen KE, Laitinen L, Pikkarainen JT, Samaranayake H, Alves PM, Carrondo MJT, Ylä-Herttuala S, Airenne KJ. Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors. Gene Ther 2011; 18:531-8. [DOI: 10.1038/gt.2010.162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Lute S, Brorson K. Bacteriophage and impurity carryover and total organic carbon release during extended protein A chromatography. J Chromatogr A 2009; 1216:3774-83. [DOI: 10.1016/j.chroma.2009.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 11/27/2022]
|