1
|
Li F, Knappe C, Carstensen N, Favorat E, Gao M, Holkenjans W, Hetzel T, Pell R, Lämmerhofer M. Two-dimensional sequential selective comprehensive chiral×reversed-phase liquid chromatography of synthetic phosphorothioate oligonucleotide diastereomers. J Chromatogr A 2024; 1730:465076. [PMID: 38879975 DOI: 10.1016/j.chroma.2024.465076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
In recent years, many nucleic acid-based pharmaceuticals have been approved and entered the market, and even a larger number are in late stage clinical trials. Conventional oligonucleotides are facing issues in vivo like fast renal clearance and nuclease degradation. Therefore, to increase their stability, phosphorothioation is a frequent modification of therapeutic oligonucleotides (ONs) which also leads to improved binding affinity facilitating cell internalization and intracellular distribution. At the same time, by replacing a phosphodiester linkage with a phosphorothioate group, a phosphorous stereogenic center is generated which causes the formation of Rp- and Sp-diastereomers. It increases the structural diversity. For example, with 15 of those phosphorothioate (PS) linkages, 32,768 different diastereomers are expected. Since the phosphorothioate is introduced non-stereoselectively, the molecular complexity of the resultant phosphorothioate ON products is tremendously increased impeding the chromatographic separation in the course of quality control. Since distinct phosphorothioate diastereomers have different bioactivities and pharmacological properties, there is increasing interest in implications of stereoisomerism of phosphorothiate oligonucleotides. From a quality and regulatory viewpoint, batch-to-batch reproducibility of the diastereomer profile may be of significant concern. In order to address this issue, this study investigates the stereoselectivity of LC methods for two phosphorothioate oligonucleotide (PSO) compounds differing in their molecular size and numbers of PS linkages. Diastereoselectivity of ion-pairing reversed-phase liquid chromatography (IP-RPLC), RPLC without ion-pairing agents and LC with chiral polysaccharide-based column were evaluated for model PSOs and an active pharmaceutical ingredient (API) of PSO with trivalent N-acetylgalactosamine (GalNAc) conjugate. Due to the structural complexity of PSOs, the separation power for the diastereomer mixture was increased by using sequential selective comprehensive two-dimensional chromatography with an amylose tris(α-methylbenzylcarbamate)-immobilized chiral stationary phase (CSP) in the first dimension and ion-pair RPLC with ethylammonium acetate in the second dimension. Improved diastereomer selectivity was obtained and a larger number of peaks could be separated.
Collapse
Affiliation(s)
- Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Niklas Carstensen
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Enrico Favorat
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mimi Gao
- Bayer AG, Pharmaceutical Division, Friedrich-Ebert-Strasse 217-333 42117 Wuppertal, Germany
| | - Wiebke Holkenjans
- Bayer AG, Pharmaceutical Division, Friedrich-Ebert-Strasse 217-333 42117 Wuppertal, Germany
| | - Terence Hetzel
- Bayer AG, Pharmaceutical Division, Friedrich-Ebert-Strasse 217-333 42117 Wuppertal, Germany
| | - Reinhard Pell
- Bayer AG, Pharmaceutical Division, Friedrich-Ebert-Strasse 217-333 42117 Wuppertal, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Moldoveanu SC, Bacalum E, Galaon T, David V. Revisiting the dependence of retention factor on the content of organic component in the mobile phase in reversed-phase HPLC. J Sep Sci 2023; 46:e2300274. [PMID: 37330648 DOI: 10.1002/jssc.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
In high-performance liquid chromatography, the dependence of retention factor k on volumetric fraction ϕ of organic phase is expressed by log k = F(ϕ) with F(ϕ) obtained by measuring log k at different ϕ values. From F(ϕ), a value kw is calculated by taking ϕ = 0. The equation log k = F(ϕ) is applied for predicting k, and kw is a descriptor of hydrophobic character of solutes and stationary phases. Calculated kw should not depend on the nature of organic component of mobile phase but extrapolation procedure leads to different kw for different organic components. The present study shows that the expression of F(ϕ) changes depending on the range of ϕ and the same function F(ϕ) cannot be used for the full range of ϕ from 0 to 1. Consequently, kw obtained by extrapolation of ϕ to zero is not correct because the expression of F(ϕ) was generated by fitting the data using ϕ with higher values. The present study shows the proper way to obtain the value of kw .
Collapse
Affiliation(s)
| | - Elena Bacalum
- Faculty of Chemistry, Department of Analytical and Physical Chemistry, University of Bucharest, Bucuresti, Romania
| | - Toma Galaon
- Faculty of Chemistry, Department of Analytical and Physical Chemistry, University of Bucharest, Bucuresti, Romania
| | - Victor David
- Faculty of Chemistry, Department of Analytical and Physical Chemistry, University of Bucharest, Bucuresti, Romania
| |
Collapse
|
3
|
Li F, Chen S, Studzińska S, Lämmerhofer M. Polybutylene terephthalate-based stationary phase for ion-pair-free reversed-phase liquid chromatography of small interfering RNA. Part 2: Use for selective comprehensive two-dimensional liquid chromatography. J Chromatogr A 2023; 1701:464069. [PMID: 37216850 DOI: 10.1016/j.chroma.2023.464069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
With the increasing numbers of nucleic acid-based pharmaceuticals like antisense oligonucleotides (ASO), small interfering ribonucleic acid (siRNA) entering the market, research facilities, pharmaceutical industries and also regulatory authorities have been looking for efficient analytical methods for these synthetic oligonucleotides (ON). Besides of conventional one-dimensional (1D) reversed-phase liquid chromatography with or without ion-pairing (IP-RP-LC, RP-LC), hydrophilic liquid chromatography (HILIC) and mixed-mode chromatography (MMC), two-dimensional (2D) approaches combining two orthogonal chromatographic techniques also become more relevant due to the high structural complexity of oligonucleotides. Recently, we tested a polybutylene terephthalate(PBT)-based stationary phase under ion-pairing free RP mode for the liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) analysis of siRNA (Patisiran). In this study, retention profile and chromatographic orthogonality, respectively, were compared to other LC-modes like HILIC, IP-RPLC, another ion-pair free cholesterol-bonded RPLC and MMC considering their normalized retention times. Finally, because of higher orthogonality, the ion-pairing free PBT-bonded RPLC as first dimension (1D) was hyphenated with HILIC in the second dimension (2D) in a selective comprehensive 2D-LC setup leading to an enhanced resolution for peak purity evaluation of the main ON entities.
Collapse
Affiliation(s)
- Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Shenkai Chen
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Sylwia Studzińska
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., PL-87-100 Toruń, Poland
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Li F, Chen S, Studzińska S, Lämmerhofer M. Polybutylene terephthalate-based stationary phase for ion-pair-free reversed-phase liquid chromatography of small interfering RNA. Part 1: Direct coupling with mass spectrometry. J Chromatogr A 2023; 1694:463898. [PMID: 36921562 DOI: 10.1016/j.chroma.2023.463898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Nowadays, ion-pairing reversed-phase liquid chromatography (IP-RPLC) is the dominating generic method for the analysis of nucleic acid related compounds, such as antisense-oligonucleotides (ASO), small-interfering ribonucleic acid (siRNA) or other DNA or RNA type molecules and their conjugates. Despite of its effective performance, the usage of a high concentration of ion-pairing reagent in the eluent in IP-RPLC is unfavorable for the hyphenation with mass spectrometry (MS) which is required for a detailed structural characterization of the analytes and their structurally related impurities. In this work, we tested a polybutylene terephthalate (PBT)-bonded silica-based stationary phase for the separation of generically synthesized Patisiran as siRNA (antisense and sense single strands as well as their annealed double strand) giving some unexpected selectivity without any presence of ion-pairing reagents. Important chromatographic conditions affecting the separation have been investigated and evaluated. Furthermore, MS and tandem MS (MS/MS) characterization was possible without contamination of the MS system with ion-pair agent and related problems.
Collapse
Affiliation(s)
- Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Shenkai Chen
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Sylwia Studzińska
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany; Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., Toruń PL-87-100, Poland
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany.
| |
Collapse
|
5
|
Kaczmarski K, Chutkowski M. Impact of changes in physicochemical parameters of the mobile phase along the column on the retention time in gradient liquid chromatography. Part A - temperature gradient. J Chromatogr A 2021; 1655:462509. [PMID: 34500223 DOI: 10.1016/j.chroma.2021.462509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Gradient chromatography has been widely applied in analytical and preparative chromatography since it provides better peak shapes and the ability to elute analytes in a shorter time frame. Apart from changes in the composition of a mobile phase also alteration of process temperature can be applied during separation procedures to improve efficiency. However, proper mathematical modeling of the gradient chromatography and further correct prediction of solutes' retention behavior have become a serious challenge as it involves the need to develop computational procedures that accurately account for the time and spatial gradients of crucial parameters. In this work, a computational procedure including the equilibrium-dispersive two-dimensional mass transfer model, the two-dimensional (2D) heat transfer model together with Darcy's law and the continuity equation have been proposed. Additionally, the calculation procedure was simplified by replacing the 2D model with the one-dimensional (1D) mass transfer model in order to speed up the computations. Both proposed solutions were validated employing external experimental data of temperature gradient HPLC [1] as well as with predictions based on the linear elution strength (LES) model available therein. The proposed procedures made it possible to efficiently predict the concentration profiles with average relative errors of calculated retention times not exceeding 3.22%. Moreover, the effect of the axial dispersion coefficient determination method on the obtained peak shapes was examined involving the Gunn, the Wen-Fan, and the Chung-Wen correlations, indicating that the latter produces the most accurate results. Finally, the proposed mathematical procedures were tested under UHPLC conditions, and due to a significant difference in retention times found the 2D model is strongly advised.
Collapse
Affiliation(s)
- Krzysztof Kaczmarski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland.
| | - Marcin Chutkowski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| |
Collapse
|
6
|
Comparison of the Fitting Performance of Retention Models and Elution Strength Behaviour in Hydrophilic-Interaction and Reversed-Phase Liquid Chromatography. SEPARATIONS 2021. [DOI: 10.3390/separations8040054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrophilic interaction liquid chromatography (HILIC) is able to separate from polar to highly polar solutes, using similar eluents to those in the reversed-phase mode (RPLC) and a polar stationary phase, where water is adsorbed onto its surface. It is widely accepted that multiple modes of interaction take place in the HILIC environment, which can be far more complex than the interactions in an RPLC column. The behaviour in HILIC should be adequately modelled to predict the retention with optimisation purposes and improve the understanding on retention mechanisms, as is the case for RPLC. In this work, the prediction performance of several retention models is studied for seven HILIC columns (underivatised silica, and silica containing diol, amino and sulfobetaine functional groups, together with three columns recently manufactured with neutral, anionic, and cationic character), using uracil and six polar nucleosides (adenosine, cytidine, guanosine, thymidine, uridine, and xanthosine) as probe compounds. The results in HILIC are compared with those that were offered by the elution of several polar sulphonamides and diuretics analysed with two C18 columns (Chromolith Speed ROD and Zorbax Eclipse XDB). It is shown that eight retention models, which only consider partitioning or both partitioning and adsorption, give similar good accuracy in predictions for both HILIC and RPLC columns. However, the study on the elution strength behaviour, at varying mobile phase composition, reveals similarities (or differences) between RPLC and HILIC columns of diverse nature. The particular behaviour for the HILIC and RPLC columns was also revealed when the retention, in both modes, was fitted to a model that describes the change in the elution strength with the modifier concentration.
Collapse
|
7
|
Klimek-Turek A, Misiołek B, Dzido TH. Comparison of the Retention and Separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents. Molecules 2020; 25:molecules25215070. [PMID: 33139630 PMCID: PMC7663032 DOI: 10.3390/molecules25215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 11/07/2022] Open
Abstract
In this manuscript, the retention of aromatic hydrocarbons with polar groups has been compared for systems with various nonpolar columns of the types from C3 to C18 and different mobile phases composed of methanol, acetonitrile, or tetrahydrofuran as modifiers. The selectivity separation of the solutes in systems with different adsorbents, when one eluent modifier is swapped by another, has been explained, taking into account molecular interactions of the solutes with components of the stationary phase region (i.e., extracted modifier depending on the chain length of the stationary phase).
Collapse
Affiliation(s)
- Anna Klimek-Turek
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (B.M.); (T.H.D.)
- Correspondence: ; Tel.: +48-81448-7206
| | - Beata Misiołek
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (B.M.); (T.H.D.)
- Department for Variations and Renewals of Medicinal Products, The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products, Al. Jerozolimskie 181C, 02-222 Warsaw, Poland
| | - Tadeusz H. Dzido
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (B.M.); (T.H.D.)
| |
Collapse
|
8
|
Yin Z, Zhang Y, Guan F, Yu H, Ma Y. Simultaneous separation and indirect ultraviolet detection of chlorate and perchlorate by pyridinium ionic liquids in reversed‐phase liquid chromatography. J Sep Sci 2020; 43:3868-3875. [DOI: 10.1002/jssc.202000690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhen‐jie Yin
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| | - Ya‐nan Zhang
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| | - Fu‐jing Guan
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| | - Hong Yu
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| | - Ya‐jie Ma
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| |
Collapse
|
9
|
Passarin PBS, Lourenço FR. Modeling an in silico platform to predict chromatographic profiles of UV filters using ChromSimulator. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Poole CF, Atapattu SN. Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography. J Chromatogr A 2020; 1626:461427. [DOI: 10.1016/j.chroma.2020.461427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
|
11
|
Baeza-Baeza J, García-Alvarez-Coque M. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography. J Chromatogr A 2020; 1615:460757. [DOI: 10.1016/j.chroma.2019.460757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023]
|
12
|
Milyushkin AL, Matyushin DD, Buryak AK. A peculiar chromatographic selectivity of porous graphitic carbon during the separation of dileucine isomers. J Chromatogr A 2020; 1613:460724. [PMID: 31787264 DOI: 10.1016/j.chroma.2019.460724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 11/15/2022]
Abstract
Porous graphitic carbon is a versatile stationary phase for high-performance liquid chromatography which performs especially well for isomeric separations. Shape-sensitivity of the stationary phase is caused by a steric effect when a molecule interacts with a flat carbon surface. It follows that branched, non-flat molecules are eluted much earlier than flat or linear molecules. In this short communication we show that if a molecule has a highly ionizable group, the "shape" of a molecule part which is farther from the ionizable group affects retention much more than the "shape" of a molecule part which is closer to the ionizable group. Dipeptides which consist of tert-leucine and norleucine were used as an example. Basic and acidic eluents were used. Retention strongly depends on whether a norleucine or tert-leucine residual is located near the non-ionized side in an eluent for both basic and acidic eluents. A residual located on the opposite side is less important. To investigate the possible causes of this peculiar retention behavior we compared the retention behavior of these dipeptides for porous graphitic carbon with the behavior for other types of stationary phases and with the calculated physicochemical properties. Strong and complex dependence of elution order on a mobile phase composition is demonstrated. The separation of other dileucine isomers is also considered. The applicability of porous graphitic carbon for the separation of complex mixtures of isomeric peptides is discussed.
Collapse
Affiliation(s)
- Aleksey L Milyushkin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, Moscow 119071, Russia.
| | - Dmitriy D Matyushin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, Moscow 119071, Russia
| | - Aleksey K Buryak
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, Moscow 119071, Russia
| |
Collapse
|
13
|
Komendová M, Urban J. Dual-retention mechanism of dopamine-related compounds on monolithic stationary phase with zwitterion functionality. J Chromatogr A 2020; 1618:460893. [PMID: 31980263 DOI: 10.1016/j.chroma.2020.460893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
Abstract
Seven retention models have been selected to describe a dual-retention behavior of ten dopamine-related compounds on polymer-based monolithic stationary phase with zwitterion sulfobetaine functionality. Regression quality, as well as a statistical significance of individual regression parameters, have been evaluated. Better regression performance showed two four-parameter models when compared to three-parameter models. On the other hand, limited number of experimental points disqualified statistical robustness of four-parameter models. Among three-parameter models, retention description introduced by Horváth and Liang provided comparable quality of regression at significantly improved robustness. Multivariate analysis of the best three-parameter models provided the description of physicochemical properties of dopamine precursors and metabolites. Principal component analysis and logistic regression allowed structural characterization of dopamine-related compounds based solely on regression parameters extracted from an isocratic elution data. Both polarity and type of functional groups has been correctly assigned for 3-methoxytyramine that has not been part of an evaluation study. Among applied dual-retention models, Horváth´s model, initially developed to describe a retention of ionic compounds on nonpolar stationary phases, provided robust regression of experimental data and allowed an extraction of structural characteristics of dopamine-related compounds.
Collapse
Affiliation(s)
- Martina Komendová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
14
|
Kim S, Ahn JO, Kim KM, Lee CH. Effects of the mobile phase on the chromatographic separation of l-lysine and 5-aminovaleric acid. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Subirats X, Abraham MH, Rosés M. Characterization of hydrophilic interaction liquid chromatography retention by a linear free energy relationship. Comparison to reversed- and normal-phase retentions. Anal Chim Acta 2019; 1092:132-143. [DOI: 10.1016/j.aca.2019.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/29/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
|
16
|
Soriano-Meseguer S, Fuguet E, Port A, Rosés M. Influence of the acid-base ionization of drugs in their retention in reversed-phase liquid chromatography. Anal Chim Acta 2019; 1078:200-211. [DOI: 10.1016/j.aca.2019.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 11/26/2022]
|
17
|
Muehlwald S, Rohn S, Buchner N. Evaluating the applicability of a two-dimensional liquid chromatography system for a pesticide multi-screening method. J Chromatogr A 2019; 1599:95-107. [DOI: 10.1016/j.chroma.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/25/2022]
|
18
|
Alvarez-Segura T, Subirats X, Rosés M. Retention-pH profiles of acids and bases in hydrophilic interaction liquid chromatography. Anal Chim Acta 2019; 1050:176-184. [DOI: 10.1016/j.aca.2018.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/29/2022]
|
19
|
Dardonville C. Automated techniques in pK a determination: Low, medium and high-throughput screening methods. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:49-58. [PMID: 30103863 DOI: 10.1016/j.ddtec.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Drug discovery programs that generate hundreds of new molecular entities need efficient methodologies for physicochemical profiling. Several high-throughput methods for pKa screening have been developed in the last 15 years to determine this key physicochemical parameter. Separation techniques such as HPLC-MS or capillary electrophoresis are particularly well-suited due to their high throughput and capacity to deal with impure or complex samples. In addition, potentiometric and (mostly) UV-metric-based methods (plate-based and automated systems), find their place as very precise methodologies for pKa determination despite of somewhat lower throughput. Finally, pKa prediction software packages are useful estimator tools but, to date, they cannot replace experimental measurements when accurate pKa values are required.
Collapse
|
20
|
Poole CF. Influence of Solvent Effects on Retention of Small Molecules in Reversed-Phase Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3531-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Analyzing chromatographic data using multilevel modeling. Anal Bioanal Chem 2018; 410:3905-3915. [DOI: 10.1007/s00216-018-1061-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
|
22
|
Imidozolium Ionic Liquids as Mobile Phase Additives in Reversed Phase Liquid Chromatography for the Analysis of Anions. Chromatographia 2017. [DOI: 10.1007/s10337-017-3409-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Teixeira D, Prudêncio C, Vieira M. Development of a new HPLC-based method for 3-nitrotyrosine quantification in different biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1046:48-57. [DOI: 10.1016/j.jchromb.2017.01.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/18/2016] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
|
24
|
Fernandes FHA, Salgado HRN. Gallic Acid: Review of the Methods of Determination and Quantification. Crit Rev Anal Chem 2017; 46:257-65. [PMID: 26440222 DOI: 10.1080/10408347.2015.1095064] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gallic acid (3,4,5 trihydroxybenzoic acid) is a secondary metabolite present in most plants. This metabolite is known to exhibit a range of bioactivities including antioxidant, antimicrobial, anti-inflammatory, and anticancer. There are various methods to analyze gallic acid including spectrometry, chromatography, and capillary electrophoresis, among others. They have been developed to identify and quantify this active ingredient in most biological matrices. The aim of this article is to review the available information on analytical methods for gallic acid, as well as presenting the advantages and limitations of each technique.
Collapse
|
25
|
Wiczling P, Kaliszan R. How Much Can We Learn from a Single Chromatographic Experiment? A Bayesian Perspective. Anal Chem 2015; 88:997-1002. [DOI: 10.1021/acs.analchem.5b03859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paweł Wiczling
- Department
of Biopharmaceutics
and Pharmacodynamics, Medical University of Gdańsk, Gen.
J. Hallera 107, 80-416 Gdańsk, Poland
| | - Roman Kaliszan
- Department
of Biopharmaceutics
and Pharmacodynamics, Medical University of Gdańsk, Gen.
J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
26
|
Sykora D, Vozka J, Tesarova E. Chromatographic methods enabling the characterization of stationary phases and retention prediction in high-performance liquid chromatography and supercritical fluid chromatography. J Sep Sci 2015; 39:115-31. [DOI: 10.1002/jssc.201501023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- David Sykora
- Department of Analytical Chemistry; University of Chemistry and Technology; Prague Czech Republic
| | - Jiri Vozka
- Department of Analytical Chemistry; University of Chemistry and Technology; Prague Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Eva Tesarova
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University in Prague; Prague Czech Republic
| |
Collapse
|
27
|
Tumpa A, Kalinić M, Jovanović P, Erić S, Rakić T, Jančić-Stojanović B, Medenica M. Theoretical Models and QSRR in Retention Modeling of Eight Aminopyridines. J Chromatogr Sci 2015; 54:436-44. [DOI: 10.1093/chromsci/bmv165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 11/14/2022]
|
28
|
Gagliardi LG, Tascon M, Castells CB. Effect of temperature on acid–base equilibria in separation techniques. A review. Anal Chim Acta 2015; 889:35-57. [DOI: 10.1016/j.aca.2015.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/16/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
|
29
|
Wiczling P, Kubik Ł, Kaliszan R. Maximum A Posteriori Bayesian Estimation of Chromatographic Parameters by Limited Number of Experiments. Anal Chem 2015; 87:7241-9. [DOI: 10.1021/acs.analchem.5b01195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paweł Wiczling
- Department of Biopharmaceutics
and Pharmacodynamics, Medical University of Gdańsk, Gen.
J. Hallera 107, 80-416 Gdańsk, Poland
| | - Łukasz Kubik
- Department of Biopharmaceutics
and Pharmacodynamics, Medical University of Gdańsk, Gen.
J. Hallera 107, 80-416 Gdańsk, Poland
| | - Roman Kaliszan
- Department of Biopharmaceutics
and Pharmacodynamics, Medical University of Gdańsk, Gen.
J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
30
|
Optimizing selectivity during reversed-phase high performance liquid chromatography method development: Prioritizing experimental conditions. J Chromatogr A 2013; 1302:45-54. [DOI: 10.1016/j.chroma.2013.05.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 11/23/2022]
|
31
|
Fasoula S, Zisi C, Nikitas P, Pappa-Louisi A. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs. J Chromatogr A 2013; 1305:131-8. [DOI: 10.1016/j.chroma.2013.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/15/2022]
|
32
|
Cela R, Ordoñez E, Quintana J, Rodil R. Chemometric-assisted method development in reversed-phase liquid chromatography. J Chromatogr A 2013; 1287:2-22. [DOI: 10.1016/j.chroma.2012.07.081] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/16/2022]
|
33
|
Florez C, Kazakevich Y. INFLUENCE OF IONIC MOBILE PHASE ADDITIVES WITH LOW CHARGE DELOCALIZATION ON THE RETENTION OF IONIC ANALYTES IN REVERSED-PHASE HPLC. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.670183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Cesar Florez
- a Department of Chemistry and Biochemistry , Seton Hall University , South Orange , New Jersey , USA
| | - Yuri Kazakevich
- a Department of Chemistry and Biochemistry , Seton Hall University , South Orange , New Jersey , USA
| |
Collapse
|
34
|
Thogchai W, Liawruangrath B. Micellar liquid chromatographic determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products. Int J Cosmet Sci 2013; 35:257-63. [DOI: 10.1111/ics.12037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/02/2013] [Indexed: 11/30/2022]
Affiliation(s)
- W. Thogchai
- Department of Chemistry; Faculty of Science and Technology (WT); Pibulsongkram Rajabhat University; Phitsanulok; 65000; Thailand
| | - B. Liawruangrath
- Pharmaceutical Science; Faculty of Pharmacy (BL); Chiang Mai University; Chiang Mai; 50200; Thailand
| |
Collapse
|
35
|
Zisi C, Fasoula S, Nikitas P, Pappa-Louisi A. Retention modeling in combined pH/organic solvent gradient reversed-phase HPLC. Analyst 2013; 138:3771-7. [DOI: 10.1039/c3an36425a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Gotta J, Keunchkarian S, Castells C, Reta M. Predicting retention in reverse-phase liquid chromatography at different mobile phase compositions and temperatures by using the solvation parameter model. J Sep Sci 2012; 35:2699-709. [DOI: 10.1002/jssc.201200197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Javier Gotta
- Laboratorio de Separaciones Analíticas; División Química Analítica; Facultad de Ciencias Exactas (UNLP); La Plata Argentina
| | - Sonia Keunchkarian
- Laboratorio de Separaciones Analíticas; División Química Analítica; Facultad de Ciencias Exactas (UNLP); La Plata Argentina
| | - Cecilia Castells
- Laboratorio de Separaciones Analíticas; División Química Analítica; Facultad de Ciencias Exactas (UNLP); La Plata Argentina
| | - Mario Reta
- Laboratorio de Separaciones Analíticas; División Química Analítica; Facultad de Ciencias Exactas (UNLP); La Plata Argentina
| |
Collapse
|
37
|
Andrés A, Téllez A, Rosés M, Bosch E. Chromatographic models to predict the elution of ionizable analytes by organic modifier gradient in reversed phase liquid chromatography. J Chromatogr A 2012; 1247:71-80. [DOI: 10.1016/j.chroma.2012.05.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
|
38
|
Secilmis-Canbay H, Cubuk-Demiralay E, Alsancak G, Ozkan SA. The Combined Effect of the Organic Modifier Content and pH of the Mobile Phase on the Chromatographic Behavior of Some Arylpropionic and Arylacetic Acids to Optimize Their Liquid Chromatographic Determinations. Chromatographia 2012. [DOI: 10.1007/s10337-012-2255-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Kaliszan R, Wiczling P. Gradient reversed-phase high-performance chromatography of ionogenic analytes. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Borges EM, Collins CH. Selectivity of some basic solutes on a poly(methyltetradecylsiloxane)-silica stationary phase. J Sep Sci 2011; 34:3011-9. [DOI: 10.1002/jssc.201100345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/21/2011] [Accepted: 07/27/2011] [Indexed: 11/10/2022]
|
41
|
Chirita RI, West C, Zubrzycki S, Finaru AL, Elfakir C. Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J Chromatogr A 2011; 1218:5939-63. [DOI: 10.1016/j.chroma.2011.04.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 11/17/2022]
|
42
|
Agrafiotou P, Ràfols C, Castells C, Bosch E, Rosés M. Simultaneous effect of pH, temperature and mobile phase composition in the chromatographic retention of ionizable compounds. J Chromatogr A 2011; 1218:4995-5009. [DOI: 10.1016/j.chroma.2010.12.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
|
43
|
Borges EM, Collins CH. Characterization of several stationary phases prepared by thermal immobilization of poly(methyltetradecylsiloxane) onto silica surfaces. J Chromatogr A 2011; 1218:4378-88. [DOI: 10.1016/j.chroma.2011.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 02/21/2011] [Accepted: 05/09/2011] [Indexed: 11/25/2022]
|
44
|
Borges EM, Collins CH. Chromatographic evaluation using basic solutes of the silanol activity of stationary phases based on poly(methyloctylsiloxane) immobilized onto silica. J Sep Sci 2011; 34:1141-8. [DOI: 10.1002/jssc.201000700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/07/2022]
|
45
|
HILIC Retention Behavior and Method Development for Highly Polar Basic Compounds Used in Pharmaceutical Synthesis. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b10609-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Cunliffe JM, Dreyer DP, Hayes RN, Clement RP, Shen JX. Using temperature to optimize resolution and reduce analysis times for bioanalytical diastereomer LC–MS/MS separations. J Pharm Biomed Anal 2011; 54:179-85. [DOI: 10.1016/j.jpba.2010.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/29/2010] [Accepted: 08/15/2010] [Indexed: 11/16/2022]
|
47
|
YOGO K, TAKEMURA C, SAITO Y, JINNO K. An Abnormal Temperature Dependence of Alkylpyrazines' Retention in Reversed-Phase Liquid Chromatography. ANAL SCI 2011; 27:1257-60. [DOI: 10.2116/analsci.27.1257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kentaro YOGO
- Department of Environmental and Life Sciences, Toyohashi University of Technology
- Morinaga & Co., Ltd
| | - Chiharu TAKEMURA
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Yoshihiro SAITO
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Kiyokatsu JINNO
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| |
Collapse
|
48
|
Marrubini G, Mendoza BEC, Massolini G. Separation of purine and pyrimidine bases and nucleosides by hydrophilic interaction chromatography. J Sep Sci 2010; 33:803-16. [PMID: 20222071 DOI: 10.1002/jssc.200900672] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The separation of 12 model compounds chosen among purine and pyrimidine bases and nucleosides was studied by using hydrophilic interaction chromatography (HILIC). The compounds investigated were small molecules with relevant properties for biomedical and pharmaceutical studies. The mixture of pyrimidines and purines was applied on a ZIC-HILIC 150 x 2.1 mm, 5 microm, and two TSKgel Amide-80 150 x 2.0 mm, 5 microm and 3 microm particle size columns. The retention of the analytes was studied by varying ACN%, ammonium formate concentration, pH, and column temperature. The results obtained confirmed the elution order of nucleobases, nucleosides, and nucleotides based on their hydrophobicity. The retention mechanism of the columns was studied considering the models used for describing partitioning and surface adsorption. The influence on retention of chromatographic conditions (ACN%, salt concentration, pH, and temperature) was described and discussed for both columns. The optimization of the conditions studied allowed to assess a gradient method for the separation of the 12 analytes. The developed method is a valuable alternative to existing methods for the separation of the compounds concerned.
Collapse
Affiliation(s)
- Giorgio Marrubini
- Department of Pharmaceutical Chemistry, University of Pavia, Pavia, Italy.
| | | | | |
Collapse
|
49
|
Neue UD, Kuss HJ. Improved reversed-phase gradient retention modeling. J Chromatogr A 2010; 1217:3794-803. [DOI: 10.1016/j.chroma.2010.04.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 11/27/2022]
|
50
|
Komsta Ł. A new general equation for retention modeling from the organic modifier content of the mobile phase. ACTA CHROMATOGR 2010. [DOI: 10.1556/achrom.22.2010.2.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|