1
|
Li L, Wang X, Pu Q, Liu S. Advancement of electroosmotic pump in microflow analysis: A review. Anal Chim Acta 2019; 1060:1-16. [PMID: 30902323 DOI: 10.1016/j.aca.2019.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/21/2023]
Abstract
This review (with 152 references) covers the progress made in the development and application of electroosmotic pumps in a period from 2009 through 2018 in microflow analysis. Following a short introduction, the review first categorizes various electroosmotic pumps into five subclasses based on the materials used for pumping: i) open channel EOP, 2) packed-column EOP, iii) porous monolith EOP, iv) porous membrane EOP, and v) other types of EOP. Pumps in each subclass are discussed. A next section covers EOP applications, primarily the applications of EOPs in micro flow analysis and micro/nano liquid chromatography. Other scattered applications are also examined. Perspectives, trends and challenges are discussed in the final section.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiayan Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
2
|
Sun X, Du Y, Zhao S, Huang Z, Feng Z. Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly(glycidyl methacrylate) nanoparticles. Mikrochim Acta 2019; 186:128. [PMID: 30694392 DOI: 10.1007/s00604-018-3163-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022]
Abstract
The inner wall of a capillary was coated with glycidyl methacrylate (GMA) to form tentacle-type coating, and poly(glycidyl methacrylate) nanoparticles (PGMA NPs) were then immobilized on the film. Ethanediamine-β-cyclodextrin as chiral selector was covalently bonded into the PGMA NPs through the ring-open reaction. The materials were characterized by SEM, TEM and FT-IR. The modified column was applied to the enantioseparation of the racemates of propranolol, amlodipine and metoprolol. Compared to a capillary with a single layer of CD-PGMA (without GMA coating) and to a CD-GMA system (without PGMA nanoparticles), the performance of the capillary is strongly improved. The effects of buffer pH value and applied voltage were optimized. Best resolutions (propranolol: 1.27, metoprolol: 1.01 and amlodipine: 2.93) were obtained when using the PGMA-coated capillary system. The run-to-run, day-to-day and column-to-column reproducibility were tested and found to be highly attractive. The new stationary phase is likely to have a large potential and scope in that it may also be applied to chiral separations of other enantiomers, such as amino acids and biogenic amines. Graphical abstract Schematic presentation of the preparation of a capillary column with glycidyl methacrylate (GMA) coating which was then immobilized with poly(glycidyl methacrylate) nanoparticles and ethanediamine-β-cyclodextrin. This novel open tubular column was applied to construct capillary electrochromatography system for separation of basic racemic drugs.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yingxiang Du
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Shiyuan Zhao
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhifeng Huang
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zijie Feng
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| |
Collapse
|
3
|
Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS. Anal Bioanal Chem 2016; 408:8701-8712. [DOI: 10.1007/s00216-016-9734-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022]
|
4
|
Pattky M, Barkovits K, Marcus K, Weiergräber OH, Huhn C. Statically Adsorbed Coatings for High Separation Efficiency and Resolution in CE-MS Peptide Analysis: Strategies and Implementation. Methods Mol Biol 2016; 1483:53-75. [PMID: 27645731 DOI: 10.1007/978-1-4939-6403-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coatings are necessary to prevent protein and peptide adsorption to the capillary surface and obtain high intermediate precision. In this protocol, we first present our basic strategy to address peptide separation using three different coatings: one neutral and two cationic coatings, the latter largely differing in their induced electroosmotic mobility. In detail, we will describe how we apply the statically adsorbed coatings to obtain very high plate numbers and high repeatability.With some model examples, we clearly describe the scope of the method for the analysis of peptide samples: tryptic digests are addressed as well as small glycoproteins and glycopeptides largely differing in their effective electrophoretic mobility. We also show that the method is suitable for a fast screening of peptide samples despite a high matrix load comprising of up to 500 mmol/L sodium chloride. We demonstrate that this basic CE-MS method is rather independent of the polarity of the analytes with a very fast near-baseline separation of very hydrophobic Aβ peptides related to the onset of Alzheimer's disease. These examples will give an impression, which coating is most suitable for a specific analytical application.Special attention is paid to difficult aspects of the coating procedure and the CE-MS method, e.g., the potential of cross-contamination when changing the coatings.
Collapse
Affiliation(s)
- Martin Pattky
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen, 72076, Germany
| | - Katalin Barkovits
- Functional Proteomics, Medical Proteome-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Katrin Marcus
- Functional Proteomics, Medical Proteome-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Oliver H Weiergräber
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Carolin Huhn
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, Tübingen, 72076, Germany.
| |
Collapse
|
5
|
Xu B, Cheng S, Wang X, Wang D, Xu L. Novel polystyrene/antibody nanoparticle-coated capillary for immunoaffinity in-tube solid-phase microextraction. Anal Bioanal Chem 2015; 407:2771-5. [DOI: 10.1007/s00216-014-8419-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
6
|
Zhang YW, Zhao MZ, Liu JX, Zhou YL, Zhang XX. Double-layer poly(vinyl alcohol)-coated capillary for highly sensitive and stable capillary electrophoresis and capillary electrophoresis with mass spectrometry glycan analysis. J Sep Sci 2015; 38:475-82. [DOI: 10.1002/jssc.201401025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Yi-Wei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| | - Ming-Zhe Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| | - Jing-Xin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| |
Collapse
|
7
|
Xu L, Cui P, Wang D, Tang C, Dong L, Zhang C, Duan H, Yang VC. Preparation and characterization of lysine-immobilized poly(glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography. J Chromatogr A 2013; 1323:179-83. [PMID: 24331372 DOI: 10.1016/j.chroma.2013.10.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/12/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022]
Abstract
In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated.
Collapse
Affiliation(s)
- Liang Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| | - Pengfei Cui
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Dongmei Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Linyi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Can Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Hongquan Duan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|
8
|
Tang C, Liu ZS, Qin N, Xu L, Duan HQ. Novel Cell Membrane Capillary Chromatography for Screening Active Compounds from Natural Products. Chromatographia 2013. [DOI: 10.1007/s10337-013-2462-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Baderia VK, Gowri VS, Sanghi SK, Shukla A, Singh DK, Sanghi SB. Stable physically adsorbed coating of poly-vinyl alcohol for the separation of basic proteins. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s1061934812030112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
|
11
|
Felhofer JL, Blanes L, Garcia CD. Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 2010; 31:2469-86. [PMID: 20665910 PMCID: PMC2928674 DOI: 10.1002/elps.201000203] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the last years, there has been an explosion in the number of developments and applications of CE and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on the contributions published in the last 5 years, is intended to complement the articles presented in this special issue dedicated to instrumentation and to provide an overview of the general trends and some of the most remarkable developments published in the areas of high-voltage power supplies, detectors, auxiliary components, and compact systems. It also includes a few examples of alternative uses of and modifications to traditional CE instruments.
Collapse
Affiliation(s)
- Jessica L. Felhofer
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| | - Lucas Blanes
- Centre for Forensic Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Carlos D. Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| |
Collapse
|
12
|
YANG C, WANG SS, CHANG CY, WANG Y, HU XY. Preparation and Application of Capillary Columns Modified by Polyacrylamide with Different Groups. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.3724/sp.j.1096.2010.00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|