1
|
Fan M, Xu X, Lang W, Wang W, Wang X, Xin A, Zhou F, Ding Z, Ye X, Zhu B. Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115059. [PMID: 37257344 DOI: 10.1016/j.ecoenv.2023.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Thermal processing is one of the important techniques for most of the plant-based food and herb medicines before consumption and application in order to meet the specific requirement. The plant and herbs are rich in amino acids and reducing sugars, and thermal processing may lead to Maillard reaction, resulting as a high risk of acrylamide pollution. Acrylamide, an organic pollutant that can be absorbed by the body through the respiratory tract, digestive tract, skin and mucous membranes, has potential carcinogenicity, neurological, genetic, reproductive and developmental toxicity. Therefore, it is significant to conduct pollution determination and risk assessment for quality assurance and security of medication. This review demonstrates state-of-the-art research of acrylamide focusing on the toxicity, formation, contamination, determination, and mitigation in taking food and herb medicine, to provide reference for scientific processing and ensure the security of consumers.
Collapse
Affiliation(s)
- Min Fan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China; Wenshui Center for Disease Control and Prevention, Luliang City, Shanxi Province 032100 PR China
| | - Xiaoying Xu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjun Lang
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjing Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xinyu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Angjun Xin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| |
Collapse
|
2
|
Chanduluru HK, Sugumaran A. Assessment of greenness for the determination of voriconazole in reported analytical methods. RSC Adv 2022; 12:6683-6703. [PMID: 35424637 PMCID: PMC8982219 DOI: 10.1039/d1ra08858k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
Analytical research with adverse environmental impact has caused a severe rise in concern about the ecological consequences of its strategies, most notably the use and emission of harmful solvents/reagents into the atmosphere. Nowadays, industries are searching for the best reproducible methods. Voriconazole is a second-generation azole derivative used effectively in the treatment of Candida and Aspergillus species infections and oropharyngeal candidiasis in AIDS patients. Recently it has become the drug of choice in treating mucormycosis in several countries, which raises the need for production in large quantities. The present review deals with various recent important analytical techniques used to estimate voriconazole and its combination in pharmaceutical formulations and biological fluids. The methods show their own unique way of analyzing voriconazole in different matrices with excellent linearity, detection, and quantification limits. Additionally, this article deals with methods and solvents analyzed for their impact on the environment. This is followed by estimating the degree of greenness of the methods using various available assessment tools like analytical eco-scale, national environmental method index, green analytical procedure index, and AGREE metrics to confirm the environmental impact. The scores obtained with the evaluation tools depict the quantum of greenness for the reported methods and provide an ideal approach adopted for VOR estimation. Very few methods are eco-friendly, which shows that there is a need for the budding analyst to develop methods based on green analytical principles to protect the environment.
Collapse
Affiliation(s)
- Hemanth Kumar Chanduluru
- SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur 603203 India +91 7904062599
| | - Abimanyu Sugumaran
- SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur 603203 India +91 7904062599
| |
Collapse
|
3
|
Zhang Y, Wang Q, Li Y, Cheng J, Chen X, Zhang Y. Comprehensive profile of DNA adducts as both tissue and urinary biomarkers of exposure to acrylamide and chemo-preventive effect of catechins in rats. CHEMOSPHERE 2022; 286:131852. [PMID: 34416594 DOI: 10.1016/j.chemosphere.2021.131852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Two representative DNA adducts from acrylamide exposure, N7-(2-carbamoyl-2-hydroxyethyl) guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl) adenine (N3-GA-Ade), are important long-term exposure biomarkers for evaluating genotoxicity of acrylamide. Catechins as natural antioxidants present in tea possess multiple health benefits, and may also have the potential to protect against acrylamide-induced DNA damage. The current study developed an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous analysis of N7-GA-Gua and N3-GA-Ade in tissues and urine. The validated UHPLC-MS/MS method showed high sensitivity, with limit of detection and limit of quantification ranging 0.2-0.8 and 0.5-1.5 ng/mL, respectively, and achieved qualified precision (RSD<14.0%) and spiking recovery (87.2%-110.0%) with elution within 6 min, which was suitable for the analysis of the two DNA adducts in different matrices. The levels of N7-GA-Gua and N3-GA-Ade ranged 0.9-11.9 and 0.6-3.5 μg/g creatinine in human urine samples, respectively. To investigate the interventional effects of catechins on the two DNA adducts from acrylamide exposure, rats were supplemented with three types of catechins (tea polyphenols, epigallocatechin gallate, and epicatechin) 30 min before administration with acrylamide. Our results showed that catechins effectively inhibited the formation of DNA adducts from acrylamide exposure in both urine and tissues of rats. Among three catechins, epicatechin performed the best inhibitory effect. The current study provided evidence for the chemo-preventive effect of catechins, indicating that dietary supplement of catechins may contribute to health protection against exposure to acrylamide.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qiao Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yaoran Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jun Cheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xinyu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
4
|
Kurbanoglu S, Karsavurdan O, Ozkan SA. Recent Advances on Drug Analyses Using Ultra Performance Liquid Chromatographic Techniques and their Application to the Biological Samples. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180423152612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction:
Ultra-Performance Liquid Chromatographic (UPLC) method enables analyst
to establish an analysis at higher pressure than High Performance Liquid Chromatographic (HPLC)
method towards liquid chromatographic methods. UPLC method provides the opportunity to study a
higher pressure compared to HPLC, and therefore smaller column in terms of particle size and internal
diameter are generally used in drug analysis. The UPLC method has attracted gradually due to its advantages
such as short analysis time, the small amount of waste reagents and the significant savings in
the cost of their destruction process. In this review, the recent selected studies related to the UPLC
method and its method validation are summarized. The drug analyses and the results of the studies
which were investigated by UPLC method, with certain parameters from literature are presented.
Background:
Quantitative determination of drug active substances by High-Performance Liquid
Chromatography (HPLC) from Liquid Chromatography (LC) methods has been carried out since the
1970's with the use of standard analytical LC methods. In today's conditions, rapid and very fast even
ultra-fast, flow rates are achieved compared to conventional HPLC due to shortening analysis times,
increasing method efficiency and resolution, reducing sample volume (and hence injection volume),
reducing waste mobile phase. Using smaller particles, the speed and peak capacity are expanding to
new limit and this technology is named as Ultra Performance Liquid Chromatography. In recent years,
as a general trend in liquid chromatography, ultra-performance liquid chromatography has taken the
place of HPLC methods. The time of analysis was for several minutes, now with a total analysis time
of around 1-2 minutes. The benefits of transferring HPLC to UPLC are much better understood when
considering the thousands of analyzes performed for each active substance, in order to reduce the cost
of analytical laboratories where relevant analysis of drug active substances are performed without
lowering the cost of research and development activities.
Methods:
The German Chemist Friedrich Ferdinand Runge, proposed the use of reactive impregnated
filter paper for the identification of dyestuffs in 1855 and at that time the first chromatographic method
in which a liquid mobile phase was used, was reviewed. Christian Friedrich Chönbein, who reported
that the substances were dragged at different speeds in the filter paper due to capillary effect, was
followed by the Russian botanist Mikhail S. Tswet, who planted studies on color pigment in 1906.
Tswet observes the color separations of many plant pigments, such as chlorophyll and xanthophyll
when he passes the plant pigment extract isolated from plant through the powder CaCO3 that he filled
in the glass column. This method based on color separation gives the name of "chromatographie"
chromatography by using the words "chroma" meaning "Latin" and "graphein" meaning writing.
Results and Conclusion:
Because the UPLC method can be run smoothly at higher pressures than the
HPLC method, it offers the possibility of analyzing using much smaller column sizes and column diameters.
Moreover, UPLC method has advantages, such as short analysis time, the small amount of
waste reagents and the significant savings in the cost of their destruction process. The use of the
UPLC method especially analyses in biological samples such as human plasma, brain sample, rat
plasma, etc. increasingly time-consuming due to the fact that the analysis time is very short compared
to the HPLC, because of the small amount of waste analytes and the considerable savings in their cost.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Ozer Karsavurdan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Simultaneous Detection of Carnosine and Anserine by UHPLC-MS/MS and Its Application on Biomarker Analysis for Differentiation of Meat and Bone Meal. Molecules 2019; 24:molecules24020217. [PMID: 30634388 PMCID: PMC6359308 DOI: 10.3390/molecules24020217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022] Open
Abstract
A novel ultra-high performance liquid chromatography (UHPLC) procedure, coupled with tandem mass spectrometry (MS/MS), was established for the analysis of anserine (ANS) and carnosine (CAR) in meat and bone meal (MBM) (bovine, ovine, porcine, and poultry origins). The pretreatment strategies were optimized for four types of MBM samples prior to UHPLC-MS/MS analysis. This method allowed determining CAR and ANS in short analysis time (18 min per sample). The limits of detection (LODs) and limits of quantification (LOQs) of two analytes in four types of MBM samples were in the ranges of 0.41–3.07 ng/g and 0.83–5.71 ng/g, respectively. The recovery rates spiked with low, intermediate, and high levels of two analytes in four types of MBM samples were 48.53–98.93%, 60.12–98.94%, and 67.90–98.92%, respectively. Acceptable inter-day reproducibility (RSD < 12.63%) supported the application of this proposed method for determining CAR and ANS in MBM samples. Overall, this rapid, effective, and robust method was successfully applied for quantitative detection of CAR and ANS in MBM samples. Furthermore, The CAR/ANS ratio was found to be in the decreasing order: porcine > bovine > ovine > poultry MBM. This proposed methodology was novelly applied to identify the biomarker (CAR/ANS ratio) for species-specific identification of MBM.
Collapse
|
6
|
Zhang Y, Wang Q, Zhang G, Jia W, Ren Y, Wu Y. Biomarker analysis of hemoglobin adducts of acrylamide and glycidamide enantiomers for mid-term internal exposure assessment by isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 2018; 178:825-833. [DOI: 10.1016/j.talanta.2017.09.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 11/26/2022]
|
7
|
Korany MA, Mahgoub H, Haggag RS, Ragab MAA, Elmallah OA. Green chemistry: Analytical and chromatography. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1373672] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed A. Korany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Hoda Mahgoub
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Rim S. Haggag
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, El-Messalah, Alexandria, Egypt
- Department of Analytical and Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Somouha, Alexandria, Egypt
| | - Marwa A. A. Ragab
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Osama A. Elmallah
- SPIMACO MISR for Pharmaceutical Industries, Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
8
|
Yeh EB, Barbano DM, Drake M. Vitamin Fortification of Fluid Milk. J Food Sci 2017; 82:856-864. [PMID: 28253423 DOI: 10.1111/1750-3841.13648] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/30/2022]
Abstract
Vitamin concentrates with vitamins A and D are used for fortification of fluid milk. Although many of the degradation components of vitamins A and D have an important role in flavor/fragrance applications, they may also be source(s) of off-flavor(s) in vitamin fortified milk due to their heat, oxygen, and the light sensitivity. It is very important for the dairy industry to understand how vitamin concentrates can impact flavor and flavor stability of fluid milk. Currently, little research on vitamin degradation products can be found with respect to flavor contributions. In this review, the history, regulations, processing, and storage stability of vitamins in fluid milk are addressed along with some hypotheses for the role of vitamin A and D fortification on flavor and stability of fluid milk.
Collapse
Affiliation(s)
- Eileen B Yeh
- Southeast Dairy Foods Research Center, Dept. of Food, Bioprocessing and Nutrition Sciences, North Carolina State Univ., Raleigh, NC, 27695, U.S.A
| | - David M Barbano
- Northeast Dairy Foods Research Center, Dept. of Food Science, Cornell Univ., Ithaca, NY, 14853, U.S.A
| | - MaryAnne Drake
- Southeast Dairy Foods Research Center, Dept. of Food, Bioprocessing and Nutrition Sciences, North Carolina State Univ., Raleigh, NC, 27695, U.S.A
| |
Collapse
|
9
|
Analytical advances in pharmaceutical impurity profiling. Eur J Pharm Sci 2016; 87:118-35. [DOI: 10.1016/j.ejps.2015.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/14/2015] [Accepted: 12/05/2015] [Indexed: 01/11/2023]
|
10
|
Nannapaneni NK, Jalalpure SS, Muppavarapu R, Sirigiri SK. An ultra high performance liquid chromatography-tandem mass spectrometry method for the quantification of linagliptin in human plasma. RSC Adv 2016. [DOI: 10.1039/c6ra10450a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
First report of a quality linagliptin assay in human plasma using UHPLC-ESI-MS/MS.
Collapse
Affiliation(s)
- Nagaraj Kumar Nannapaneni
- Dr. Prabhakar Kore Basic Science Research Centre
- KLE College of Pharmacy
- KLE University
- Belagavi 590 010
- India
| | - Sunil S. Jalalpure
- Dr. Prabhakar Kore Basic Science Research Centre
- KLE College of Pharmacy
- KLE University
- Belagavi 590 010
- India
| | | | - Sunil Kumar Sirigiri
- Bioanalytical Research Unit
- Jeevan Scientific Technology Ltd
- Hyderabad 500 008
- India
| |
Collapse
|
11
|
Abstract
Modifications of the usual C40 linear and symmetrical carotenoid skeleton give rise to a wide array of structures of carotenes and xanthophylls in plant tissues. These include acyclic, monocyclic and dicyclic carotenoids, along with hydroxy and epoxy xanthophylls and apocarotenoids. Carotenols can be unesterified or esterified (monoester) in one or two (diester) hydroxyl groups with fatty acids. E-Z isomerization increases the array of possible plant carotenoids even further. Screening and especially quantitative analysis are being carried out worldwide. Visible absorption spectrometry and near infrared reflectance spectroscopy have been used for the initial estimation of the total carotenoid content or the principal carotenoid content when large numbers of samples needed to be analyzed within a short time, as would be the case in breeding programs. Although inherently difficult, quantitative analysis of the individual carotenoids is essential. Knowledge of the sources of errors and means to avoid them has led to a large body of reliable quantitative compositional data on carotenoids. Reverse-phase HPLC with a photodiode array detector has been the preferred analytical technique, but UHPLC is increasingly employed. HPLC-MS has been used mainly for identification and NMR has been useful in unequivocally identifying geometric isomers.
Collapse
|
12
|
Martínez-Huélamo M, Tulipani S, Jáuregui O, Valderas-Martinez P, Vallverdú-Queralt A, Estruch R, Torrado X, Lamuela-Raventós RM. Sensitive and Rapid UHPLC-MS/MS for the Analysis of Tomato Phenolics in Human Biological Samples. Molecules 2015; 20:20409-25. [PMID: 26580589 PMCID: PMC6332008 DOI: 10.3390/molecules201119702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/19/2015] [Accepted: 11/04/2015] [Indexed: 11/21/2022] Open
Abstract
An UHPLC-MS/MS method for the quantification of tomato phenolic metabolites in human fluids was optimized and validated, and then applied in a pilot dietary intervention study with healthy volunteers. A 5-fold gain in speed (3.5 min of total run); 7-fold increase in MS sensitivity and 2-fold greater efficiency (50% peak width reduction) were observed when comparing the proposed method with the reference-quality HPLC-MS/MS system, whose assay performance has been previously documented. The UHPLC-MS/MS method led to an overall improvement in the limits of detection (LOD) and quantification (LOQ) for all the phenolic compounds studied. The recoveries ranged between 68% and 100% in urine and 61% and 100% in plasma. The accuracy; intra- and interday precision; and stability met with the acceptance criteria of the AOAC International norms. Due to the improvements in the analytical method; the total phenolic metabolites detected in plasma and urine in the pilot intervention study were 3 times higher than those detected by HPLC-MS/MS. Comparing with traditional methods; which require longer time of analysis; the methodology described is suitable for the analysis of phenolic compounds in a large number of plasma and urine samples in a reduced time frame.
Collapse
Affiliation(s)
- Miriam Martínez-Huélamo
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
| | - Sara Tulipani
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Hospital Virgen de la Victoria, Teatinos Campus, University of Malaga, Malaga 29010, Spain.
| | - Olga Jáuregui
- Scientific and Technological Centers of the University of Barcelona (CCiTUB), Barcelona 08028, Spain.
| | - Palmira Valderas-Martinez
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- Department of Internal Medicine, Hospital Clinic, Institute of Biomedical Investigation August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.
| | - Anna Vallverdú-Queralt
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- INRA, UMR1083 Sciences for Oenology, 2 place Pierre Viala, Montpellier Cedex 34060, France.
| | - Ramón Estruch
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- Department of Internal Medicine, Hospital Clinic, Institute of Biomedical Investigation August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.
| | - Xavier Torrado
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
| | - Rosa M Lamuela-Raventós
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
| |
Collapse
|
13
|
Zhang Y, Wang Q, Cheng J, Zhang J, Xu J, Ren Y. Comprehensive profiling of mercapturic acid metabolites from dietary acrylamide as short-term exposure biomarkers for evaluation of toxicokinetics in rats and daily internal exposure in humans using isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry. Anal Chim Acta 2015; 894:54-64. [DOI: 10.1016/j.aca.2015.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/16/2015] [Indexed: 11/25/2022]
|
14
|
Shaaban H, Górecki T. Current trends in green liquid chromatography for the analysis of pharmaceutically active compounds in the environmental water compartments. Talanta 2015; 132:739-52. [DOI: 10.1016/j.talanta.2014.09.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
15
|
Serrano A, van Bommel M, Hallett J. Evaluation between ultrahigh pressure liquid chromatography and high-performance liquid chromatography analytical methods for characterizing natural dyestuffs. J Chromatogr A 2013; 1318:102-11. [PMID: 24139502 DOI: 10.1016/j.chroma.2013.09.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022]
Abstract
An evaluation was undertaken of ultrahigh pressure liquid chromatography (UHPLC) in comparison to high-performance liquid chromatography (HPLC) for characterizing natural dyes in cultural heritage objects. A new UHPLC method was optimized by testing several analytical parameters adapted from prior UHPLC studies developed in diverse fields of research. Different gradient elution programs were tested on seven UHPLC columns with different dimensions and stationary phase compositions by applying several mobile phases, flow rates, temperatures, and runtimes. The UHPLC method successfully provided more improved data than that achieved by the HPLC method. Indeed, even though carminic acid has shown circa 146% higher resolution with HPLC, UHPLC resulted in an increase of 41-61% resolution and a decrease of 91-422% limit of detection, depending on the dye compound. The optimized method was subsequently assigned to analyse 59 natural reference materials, in which 85 different components were ascribed with different physicochemical properties, in order to create a spectral database for future characterization of dyes in cultural heritage objects. The majority of these reference samples could be successfully distinguished with one single method through the examination of these compounds' retention times and their spectra acquired with a photodiode array detector. These results demonstrate that UHPLC analyses are extremely valuable for the acquisition of more precise chromatographic information concerning natural dyes with complex mixtures of different and/or closely related physicochemical properties, essential for distinguishing similar species of plants and animals used to colour cultural heritage objects.
Collapse
Affiliation(s)
- Ana Serrano
- Cultural Heritage Agency of the Netherlands (RCE), Sector Research Movable Heritage, P.O. Box 1600, 3800 BP Amersfoort, The Netherlands; CHAM (Centre for Overseas History), Faculdade de Ciências Sociais e Humanas, Universidade Nova de Lisboa e Universidade dos Açores, Avenida de Berna, 1069 - 061 Lisboa, Portugal.
| | | | | |
Collapse
|
16
|
Cielecka-Piontek J, Zalewski P, Jelińska A, Garbacki P. UHPLC: The Greening Face of Liquid Chromatography. Chromatographia 2013; 76:1429-1437. [PMID: 24273332 PMCID: PMC3825615 DOI: 10.1007/s10337-013-2434-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/22/2012] [Accepted: 02/14/2013] [Indexed: 01/05/2023]
Abstract
Pharmaceutical analysis based on chromatographic separation is an important part of studies aimed at developing routine quality analysis of drugs. High-performance liquid chromatography (HPLC) is one of the main analytical techniques recommended for drug analysis. Although it meets many criteria vital for analysis, it is time-consuming and uses a relatively high amount of organic solvents compared to other analytical techniques. Recently, Ultra-high-performance liquid chromatography (UHPLC) has been frequently proposed as an alternative to HPLC, which means introducing an environment-friendly approach to drug analysis achieved by reducing the consumption of solvents. It also offers greater chromatographic resolution and higher sensitivity as well as requiring less time due to faster analysis. This review focuses on the basics of UHPLC, compares that technique with HPLC and discusses the possibilities of applying UHPLC for the analysis of different pharmaceuticals and biopharmaceuticals.
Collapse
Affiliation(s)
- Judyta Cielecka-Piontek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | | | | | | |
Collapse
|
17
|
Wu N, Bradley AC. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography. J Chromatogr A 2012; 1261:113-20. [DOI: 10.1016/j.chroma.2012.05.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/13/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
18
|
Wu N, Bradley AC, Welch CJ, Zhang L. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography. J Sep Sci 2012; 35:2018-25. [DOI: 10.1002/jssc.201200074] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/23/2012] [Accepted: 05/02/2012] [Indexed: 11/05/2022]
Affiliation(s)
| | - Ashley C. Bradley
- Chemistry Department; North Carolina A&T State University; Greensboro NC USA
| | - Christopher J. Welch
- Merck & Co., Inc; Separation & Purification; Center of Excellence; Rahway NJ USA
| | - Li Zhang
- Merck & Co., Inc; Separation & Purification; Center of Excellence; Rahway NJ USA
| |
Collapse
|
19
|
Kelley WP, Chen S, Floyd PD, Hu P, Kapsi SG, Kord AS, Sun M, Vogt FG. Analytical Characterization of an Orally-Delivered Peptide Pharmaceutical Product. Anal Chem 2012; 84:4357-72. [DOI: 10.1021/ac203478r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wayne P. Kelley
- Biopharmaceutical R&D, GlaxoSmithKline llc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Shujun Chen
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Philip D. Floyd
- Product Development, GlaxoSmithKline plc. 5 Moore Drive, Research Triangle Park, North Carolina
27709, United States
| | - Ping Hu
- Biopharmaceutical R&D, GlaxoSmithKline llc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Shiva G. Kapsi
- Product Development, GlaxoSmithKline plc. 1250, South Collegeville Road,
Collegeville, Pennsylvania 19426, United States
| | - Alireza S. Kord
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Mingjiang Sun
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Frederick G. Vogt
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| |
Collapse
|
20
|
Rivera S, Canela-Garayoa R. Analytical tools for the analysis of carotenoids in diverse materials. J Chromatogr A 2012; 1224:1-10. [DOI: 10.1016/j.chroma.2011.12.025] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 11/16/2022]
|
21
|
Chromatographic Separation of Synthesized Phenolic Lipids from Krill Oil and Dihydroxyphenyl Acetic Acid. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1959-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Ma Q, Wang C, Bai H, Xi HW, Xi GC, Ren XM, Yang Y, Guo LH. Comprehensive two-dimensional separation of hydroxylated polybrominated diphenyl ethers by ultra-performance liquid chromatography coupled with ion mobility-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1851-1861. [PMID: 21952898 DOI: 10.1007/s13361-011-0200-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 05/26/2011] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
A comprehensive two-dimensional system coupling ultra-performance liquid chromatography (UPLC) and ion mobility-mass spectrometry (IM-MS) has been applied for the separation and analysis of hydroxylated polybrominated diphenyl ethers (OH-PBDEs). A complex mixture containing 23 OH-PBDE congeners ranging from hydroxylated monobromodiphenyl ether (OH-monoBDE) to hydroxylated octabromodiphenyl ether (OH-octaBDE) was satisfactorily separated within 16 min of analysis time. The first-dimensional reversed-phase UPLC was performed on a sub-2 μm BEH C(18) chromatographic column using acetonitrile-water gradient elution program with a flow rate ramp. It enabled excellent chromatographic separation for both between-class and within-class OH-PBDEs based on their differences in hydrophobicity. Following the pre-ionization resolution in the first dimension, the second-dimensional IM-MS employed a hybrid electrospray quadrupole ion mobility time-of-flight mass spectrometer and added an extra post-ionization separation for between-class OH-PBDE congeners on account of their relative mobility disparity during a very short period of 8.80 ms. The orthogonality of the developed two-dimensional system was evaluated with the correlation coefficient of 0.9665 and peak spreading angle of 14.87°. The peak capacity of the system was calculated to be approximately 2 and 15 times higher than that of the two dimensions used alone, respectively. The two-dimensional separation plane also contributed to the removal of background interference ions and the enhanced confidence in the characterization of OH-PBDEs of interest.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Theresa K. Natishan
- a Merck, Analytical Development and Commercialization-API Merck Manufacturing Division , Rahway, New Jersey, USA
| |
Collapse
|
24
|
Fast liquid chromatography combined with mass spectrometry for the analysis of metabolites and proteins in human body fluids. Anal Bioanal Chem 2011; 399:2635-44. [PMID: 21253711 DOI: 10.1007/s00216-010-4595-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/10/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
In the last decade various analytical strategies have been established to enhance separation speed and efficiency in high performance liquid chromatography applications. Chromatographic supports based on monolithic material, small porous particles, and porous layer beads have been developed and commercialized to improve throughput and separation efficiency. This paper provides an overview of current developments in fast chromatography combined with mass spectrometry for the analysis of metabolites and proteins in clinical applications. Advances and limitations of fast chromatography for the combination with mass spectrometry are discussed. Practical aspects of, recent developments in, and the present status of high-throughput analysis of human body fluids for therapeutic drug monitoring, toxicology, clinical metabolomics, and proteomics are presented.
Collapse
|
25
|
|
26
|
Characterization of new types of stationary phases for fast and ultra-fast liquid chromatography by signal processing based on AutoCovariance Function: A case study of application to Passiflora incarnata L. extract separations. J Chromatogr A 2010; 1217:4355-64. [DOI: 10.1016/j.chroma.2010.04.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/08/2010] [Accepted: 04/19/2010] [Indexed: 11/24/2022]
|