1
|
Hasan MS, Sundberg C, Tolosa M, Andar A, Ge X, Kostov Y, Rao G. A novel, low-cost microfluidic device with an integrated filter for rapid, ultrasensitive, and high-throughput bioburden detection. Sci Rep 2023; 13:12084. [PMID: 37495652 PMCID: PMC10372024 DOI: 10.1038/s41598-023-38770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Rapid and accurate bioburden detection has become increasingly necessary for food, health, pharmaceutical and environmental applications. To detect bioburden accurately, and in a highly sensitive manner, we have fabricated a novel microfluidic device with an integrated filter to trap the cells. Bioburden is detected on the filter paper in situ using the redox reaction of fluorescent label resorufin and a portable multichannel fluorometer is used for fluorescence measurement. The microfluidic device was fabricated in a facile, low-cost, and rapid way with microwave-induced thermally assisted bonding. To characterize the bonding quality of the microfluidic cassettes, different tests were performed, and the filter paper material and size were optimized. Primary Bacillus subtilis culture bacterial samples were filtered through the device to validate and investigate the performance parameters. Our results show that a limit of detection (LOD) of 0.037 CFU/mL can be achieved through this microfluidic device whereas the LOD in a normal microfluidic cassette in the fluorometer and the golden standard spectrophotometer are 0.378 and 0.128 CFU/mL respectively. The results depict that three to ten times LOD improvement is possible through this microfluidic cassette and more sensitive detection is possible depending on the volume filtered within a rapid 3 min. This novel microfluidic device along with the fluorometer can be used as a rapid portable tool for highly sensitive, accurate and high-throughput bacterial detection for different applications.
Collapse
Affiliation(s)
- Md Sadique Hasan
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Chad Sundberg
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Michael Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Abhay Andar
- Champions Oncology Inc, 855 N Wolfe St, Baltimore, MD, 21205, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
2
|
Zhang G, Wang Y, Qian J, Wang Y, Li X, Lü J. Terahertz refractive phenotype of living cells. Front Bioeng Biotechnol 2023; 10:1105249. [PMID: 36704312 PMCID: PMC9871359 DOI: 10.3389/fbioe.2022.1105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Cellular refractive index is a vital phenotypic parameter for understanding the cell functional activities. So far, there remains technical challenges to obtain refractive index of viable cells at the terahertz frequency in which contains rich information closely related to their physiological status. Here we introduce a label-free optical platform for interrogating cellular phenotypes to measure the refractive index of living cells in near-physiological environments by using terahertz spectroscopy with the combination of cellular encapsulation in a confined solution droplet. The key technical feature with cells encapsulated in aqueous droplets allows for keeping cellular viability while eliminating the strong adsorption of solvent water to terahertz signal. The obtained high signal-to-noise ratio enables to differentiate different cell types (e.g., E. coli, stem cell and cancer cell) and their states under stress conditions. The integrating of terahertz spectroscopy to droplet microfluidic further realizes automated and high-through sample preparation and detection, providing a practical toolkit for potential application in cellular health evaluation and phenotypic drug discovery.
Collapse
Affiliation(s)
- Guangxu Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yadi Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiang Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueling Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Casto-Boggess LD, Golozar M, Butterworth AL, Mathies RA. Optimization of Fluorescence Labeling of Trace Analytes: Application to Amino Acid Biosignature Detection with Pacific Blue. Anal Chem 2021; 94:1240-1247. [PMID: 34965088 DOI: 10.1021/acs.analchem.1c04465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence labeling of biomolecules and fluorescence detection platforms provide a powerful approach to high-sensitivity bioanalysis. Reactive probes can be chosen to target specific functional groups to enable selective analysis of a chosen class of analytes. Particularly, when targeting trace levels of analytes, it is important to optimize the reaction chemistry to maximize the labeling efficiency and minimize the background. Here, we develop methods to optimize the labeling and detection of Pacific Blue (PB)-tagged amino acids. A model is developed to quantitate labeling kinetics and completeness in the circumstance where analyte labeling and reactive probe hydrolysis are in competition. The rates of PB hydrolysis and amino acid labeling are determined as a function of pH. Labeling kinetics and completeness as a function of PB concentration are found to depend on the ratio of the hydrolysis time to the initial labeling time, which depends on the initial PB concentration. Finally, the optimized labeling and detection conditions are used to perform capillary electrophoresis analysis demonstrating 100 pM sensitivities and high-efficiency separations of an 11 amino acid test set. This work provides a quantitative optimization model that is applicable to a variety of reactive probes and targets. Our approach is particularly useful for the analysis of trace amine and amino acid biosignatures in extraterrestrial samples. For illustration, our optimized conditions (reaction at 4 °C in a pH 8.5 buffer) are used to detect trace amino acid analytes at the 100 pM level in an Antarctic ice core sample.
Collapse
Affiliation(s)
- Laura D Casto-Boggess
- Space Sciences Laboratory, University of California Berkeley, Berkeley, California 94720-7450, United States
| | - Matin Golozar
- Chemistry Department and Space Sciences Laboratory, University of California Berkeley, Berkeley, California 94720, United States
| | - Anna L Butterworth
- Space Sciences Laboratory, University of California Berkeley, Berkeley, California 94720-7450, United States
| | - Richard A Mathies
- Chemistry Department and Space Sciences Laboratory, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Casto LD, Do KB, Baker CA. A Miniature 3D Printed LED-Induced Fluorescence Detector for Capillary Electrophoresis and Dual-Detector Taylor Dispersion Analysis. Anal Chem 2019; 91:9451-9457. [PMID: 31284711 DOI: 10.1021/acs.analchem.8b05824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Taylor dispersion analysis (TDA) provides absolute determination of diffusion coefficients for analytes ranging from small molecules to particulate matter. TDA has seen a resurgence in recent years, as modern commercial capillary electrophoresis (CE) instrumentation is well equipped to meet the precision flow requirements of TDA. Discontinuous flow velocities, which occur during sample injection, can lead to substantial inaccuracies in single-point detection TDA. Dual-point detection allows TDA to be carried out under continuous flow in the volume between the detection points, but dual-point fluorescence detection has not previously been feasible within the confines of commercial CE instrumentation. Here, we describe a compact light-emitting diode (LED)-induced fluorescence detector designed for online, dual-point capillary detection within a commercial CE system. The three-dimensional (3D) printed detector houses an inexpensive LED excitation source, a bandpass excitation filter, an integral 3D printed pinhole collimator, and a ball lens, which collects fluorescence emission. Multivariate optimization of operating conditions yielded a detection limit of 613 ± 13 pM for CE of fluorescein disodium salt solution in borate buffer. The miniature size of the device allowed integration of two detectors within a commercial CE system without modification to the instrument, thereby enabling dual-detector assays including TDA and CE-TDA. Monitoring of the bioconjugation reaction between fluorescein isothiocyanate (FITC) and a model protein illustrates the utility of direct, calibration-free size determination, which enabled the resolution of fluorescence originating from free FITC from that of protein-bound FITC. TDA detection coupled to CE enabled the determination of peak identities without the need for standard solutions.
Collapse
Affiliation(s)
- Laura D Casto
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| | - Kevin B Do
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| | - Christopher A Baker
- Department of Chemistry , University of Tennessee , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
5
|
Zhou W, Le J, Chen Y, Cai Y, Hong Z, Chai Y. Recent advances in microfluidic devices for bacteria and fungus research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Thompson S, Pappas D. A fluorescence toolbox: A review of investigation of electrophoretic separations, process, and interfaces. Electrophoresis 2018; 40:606-615. [DOI: 10.1002/elps.201800310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023]
Affiliation(s)
- S. Thompson
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX USA
| |
Collapse
|
7
|
LI ZY, SUN K, ZHANG XY, LIU SQ, JIANG L, REN NQ. Advance in Microfluidic Devices for Fractionation of DNA Fragments. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Wichert WRA, Han D, Bohn PW. Effects of molecular confinement and crowding on horseradish peroxidase kinetics using a nanofluidic gradient mixer. LAB ON A CHIP 2016; 16:877-883. [PMID: 26792298 DOI: 10.1039/c5lc01413a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of molecular confinement and crowding on enzyme kinetics were studied at length scales and under conditions similar to those found in biological cells. These experiments were carried out using a nanofluidic network of channels constituting a nanofluidic gradient mixer, providing the basis for measuring multiple experimental conditions simultaneously. The 100 nm × 40 μm nanochannels were wet etched directly into borosilicate glass, then annealed and characterized with fluorescein emission prior to kinetic measurements. The nanofluidic gradient mixer was then used to measure the kinetics of the conversion of the horseradish peroxidase (HRP)-catalyzed conversion of non-fluorescent Amplex Red (AR) to the fluorescent product resorufin in the presence of hydrogen peroxide (H2O2). The design of the gradient mixer allows reaction kinetics to be studied under multiple (five) unique solution compositions in a single experiment. To characterize the efficiency of the device the effects of confinement on HRP-catalyzed AR conversion kinetics were studied by varying the starting ratio of AR : H2O2. Equimolar concentrations of Amplex Red and H2O2 yielded the highest reaction rates followed by 2 : 1, 1 : 2, 5 : 1, and finally 1 : 5 [AR] : [H2O2]. Under all conditions, initial reaction velocities were decreased by excess H2O2. Crowding effects on kinetics were studied by increasing solution viscosity in the nanochannels in the range 1.0-1.6 cP with sucrose. Increasing the solution viscosities in these confined geometries decreases the initial reaction velocity at the highest concentration from 3.79 μM min(-1) at 1.00 cP to 0.192 μM min(-1) at 1.59 cP. Variations in reaction velocity are interpreted in the context of models for HRP catalysis and for molecular crowding.
Collapse
Affiliation(s)
- William R A Wichert
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. and Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
9
|
Microfluidic chip for stacking, separation and extraction of multiple DNA fragments. J Chromatogr A 2016; 1437:219-225. [DOI: 10.1016/j.chroma.2016.01.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/18/2022]
|
10
|
Hendrickx S, de Malsche W, Cabooter D. An overview of the use of microchips in electrophoretic separation techniques: fabrication, separation modes, sample preparation opportunities, and on-chip detection. Methods Mol Biol 2015; 1274:3-17. [PMID: 25673478 DOI: 10.1007/978-1-4939-2353-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This chapter is intended as a basic introduction to microchip-based capillary electrophoresis to set the scene for newcomers and give pointers to reference material. An outline of some commonly used setups and key concepts is given, many of which are explored in greater depth in later chapters.
Collapse
Affiliation(s)
- Stijn Hendrickx
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, O&N2 923, Herestraat 49, 3000, Leuven, Belgium
| | | | | |
Collapse
|
11
|
Abstract
Over the past two decades, the application of microengineered systems in the chemical and biological sciences has transformed the way in which high-throughput experimentation is performed. The ability to fabricate complex microfluidic architectures has allowed scientists to create new experimental formats for processing ultra-small analytical volumes in short periods and with high efficiency. The development of such microfluidic systems has been driven by a range of fundamental features that accompany miniaturization. These include the ability to handle small sample volumes, ultra-low fabrication costs, reduced analysis times, enhanced operational flexibility, facile automation, and the ability to integrate functional components within complex analytical schemes. Herein we discuss the impact of microfluidics in the area of high-throughput screening and drug discovery and highlight some of the most pertinent studies in the recent literature.
Collapse
Affiliation(s)
- Oliver J. Dressler
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Richard M. Maceiczyk
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Andrew J. deMello
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
12
|
Hua Y, Jemere AB, Dragoljic J, Harrison DJ. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics. LAB ON A CHIP 2013; 13:2651-9. [PMID: 23712291 DOI: 10.1039/c3lc50401h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.
Collapse
Affiliation(s)
- Yujuan Hua
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | | | | | | |
Collapse
|
13
|
Recent advances in microchip electrophoresis for amino acid analysis. Anal Bioanal Chem 2013; 405:7907-18. [DOI: 10.1007/s00216-013-6830-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 12/27/2022]
|
14
|
Wang Z, Jemere AB, Jed Harrison D. Integrated electrokinetic sample fractionation and solid-phase extraction in microfluidic devices. Electrophoresis 2012; 33:3151-8. [DOI: 10.1002/elps.201200286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Wang
- Department of Chemistry; University of Alberta; Edmonton; AB; Canada
| | - Abebaw B. Jemere
- National Institute for Nanotechnology; National Research Council Canada; Edmonton; AB; Canada
| | | |
Collapse
|
15
|
Ainla A, Jeffries GDM, Brune R, Orwar O, Jesorka A. A multifunctional pipette. LAB ON A CHIP 2012; 12:1255-61. [PMID: 22252460 PMCID: PMC3803106 DOI: 10.1039/c2lc20906c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microfluidics has emerged as a powerful laboratory toolbox for biologists, allowing manipulation and analysis of processes at a cellular and sub-cellular level, through utilization of microfabricated features at size-scales relevant to that of a single cell. In the majority of microfluidic devices, sample processing and analysis occur within closed microchannels, imposing restrictions on sample preparation and use. We present an optimized non-contact open-volume microfluidic tool to overcome these and other restrictions, through the use of a hydrodynamically confined microflow pipette, serving as a multifunctional solution handling and dispensing tool. The geometries of the tool have been optimised for use in optical microscopy, with integrated solution reservoirs to reduce reagent use, contamination risks and cleaning requirements. Device performance was characterised using both epifluorescence and total internal reflection fluorescence (TIRF) microscopy, resulting in ~200 ms and ~130 ms exchange times at ~100 nm and ~30 μm distances to the surface respectively.
Collapse
|
16
|
Gorbatsova J, Borissova M, Kaljurand M. Electrowetting-on-dielectric actuation of droplets with capillary electrophoretic zones for off-line mass spectrometric analysis. J Chromatogr A 2012; 1234:9-15. [DOI: 10.1016/j.chroma.2011.12.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/21/2011] [Accepted: 12/16/2011] [Indexed: 01/03/2023]
|
17
|
Baker CA, Roper MG. Online coupling of digital microfluidic devices with mass spectrometry detection using an eductor with electrospray ionization. Anal Chem 2012; 84:2955-60. [PMID: 22384846 DOI: 10.1021/ac300100b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MS detection coupled with digital microfluidic (DMF) devices has most commonly been demonstrated in an offline manner using matrix assisted laser desorption ionization. In this work, an eductor is demonstrated which facilitated online coupling of DMF with electrospray ionization MS detection. The eductor consisted of a transfer capillary, a standard ESI needle, and a tapered gas nozzle. As a pulse of N(2) was applied to the nozzle, a pressure differential was induced at the outlet of the ESI needle that pulled droplets from the DMF, past the ESI needle, and into the flow of gas exiting the nozzle, allowing detection by MS. Operating position, ionization potential, and N(2) pressure were optimized, with the optimum ionization potential and N(2) pressure found to be 3206 V and 80 psi, respectively. Online MS detection was demonstrated from both open and closed DMF devices using 2.5 μL and 630 nL aqueous droplets, respectively. Relative quantitation by DMF-MS was demonstrated by mixing droplets of caffeine with droplets of theophylline on an open DMF device and comparing the peak area ratio obtained to an on-chip generated calibration curve. This eductor-based method for transferring droplets has the potential for rapid, versatile, and high-throughput microfluidic analyses.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | | |
Collapse
|
18
|
Duong CT, Roper MG. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters. Analyst 2011; 137:840-6. [PMID: 22166918 DOI: 10.1039/c2an15911b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.
Collapse
Affiliation(s)
- Cindy T Duong
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA
| | | |
Collapse
|
19
|
Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 2011; 33:48-73. [DOI: 10.1002/elps.201100419] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
|
20
|
Li Z, Sun K, Sunayama M, Araki R, Ueno K, Abe M, Misawa H. A simultaneous space sampling method for DNA fraction collection using a comb structure in microfluidic devices. Electrophoresis 2011; 32:3392-8. [DOI: 10.1002/elps.201100362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 11/12/2022]
|
21
|
Kenyon SM, Meighan MM, Hayes MA. Recent developments in electrophoretic separations on microfluidic devices. Electrophoresis 2011; 32:482-93. [DOI: 10.1002/elps.201000469] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/24/2010] [Accepted: 12/09/2010] [Indexed: 11/09/2022]
|
22
|
Li Z, Sun K, Sunayama M, Matsuo Y, Mizeikis V, Araki R, Ueno K, Abe M, Misawa H. On-chip fraction collection for multiple selected ssDNA fragments using isolated extraction channels. J Chromatogr A 2011; 1218:997-1003. [DOI: 10.1016/j.chroma.2010.12.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/16/2010] [Accepted: 12/19/2010] [Indexed: 11/30/2022]
|
23
|
Baker CA, Bulloch R, Roper MG. Comparison of separation performance of laser-ablated and wet-etched microfluidic devices. Anal Bioanal Chem 2010; 399:1473-9. [PMID: 20827468 DOI: 10.1007/s00216-010-4144-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
Laser ablation of glass allows for production of microfluidic devices without the need for hydrofluoric acid and photolithography. The goal of this study was to compare the separation performance of microfluidic devices produced using a low-cost laser ablation system and conventional wet etching. During laser ablation, cracking of the glass substrate was prevented by heating the glass to 300 °C. A range of laser energy densities was found to produce channel depths ranging from 4 to 35 μm and channel widths from 118 to 162 μm. The electroosmotic flow velocity was lower in laser-ablated devices, 0.110±0.005 cm s(-1), as compared to wet-etched microfluidic chips, 0.126±0.003 cm s(-1). Separations of both small and large molecules performed on both wet- and laser-ablated devices were compared by examining limits of detection, theoretical plate count, and peak asymmetry. Laser-induced fluorescence detection limits were 10 pM fluorescein for both types of devices. Laser-ablated and wet-etched microfluidic chips had reproducible migration times with ≤ 2.8% relative standard deviation and peak asymmetries ranged from 1.0 to 1.8. Numbers of theoretical plates were between 2.8- and 6.2-fold higher on the wet-etched devices compared to laser-ablated devices. Nevertheless, resolution between small and large analytes was accomplished, which indicates that laser ablation may find an application in pedagogical studies of electrophoresis or microfluidic devices, or in settings where hydrofluoric acid cannot be used.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Dittmer Building, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|