1
|
Lebar B, Lekić T, Košir P, Kastelic M, Zidar M, Mravljak J, Pajk S. Polysorbate stability: Effects of packaging materials, buffers, counterions, and pH. Int J Pharm 2024; 665:124598. [PMID: 39265852 DOI: 10.1016/j.ijpharm.2024.124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/14/2024]
Abstract
Polysorbates, widely used excipients in drug formulations, present a stability challenge due to complex degradation processes. This study investigates the hydrolysis of polysorbate (PS) under temperature stress (50 °C), focusing on the impact of primary packaging materials (glass vs. plastic vials), buffers (histidine and acetic acid), counterions (chloride vs. malate), and pH (4-7). Our findings reveal that leachables from plastic vials inhibit PS degradation in both histidine and acetic acid buffers. Kinetic parameters derived from sigmoidal fitting suggest distinct degradation mechanisms for each buffer. Furthermore, the malate counterion with histidine displays inhibitory effects on PS hydrolysis. Principal component analysis was employed to identify key factors. These results highlight the critical role of excipients and packaging in PS stability, providing valuable insights for biopharmaceutical formulation development and a deeper understanding of PS degradation complexities.
Collapse
Affiliation(s)
- Blaž Lebar
- Novartis Pharmaceutical Manufacturing LLC, Verovškova ulica 57, 1000, Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tinkara Lekić
- Novartis Pharmaceutical Manufacturing LLC, Verovškova ulica 57, 1000, Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Pija Košir
- Novartis Pharmaceutical Manufacturing LLC, Verovškova ulica 57, 1000, Ljubljana, Slovenia
| | - Miha Kastelic
- Novartis Pharmaceutical Manufacturing LLC, Verovškova ulica 57, 1000, Ljubljana, Slovenia
| | - Mitja Zidar
- Novartis Pharmaceutical Manufacturing LLC, Verovškova ulica 57, 1000, Ljubljana, Slovenia
| | - Janez Mravljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Lou H, Wu Y, Kuczera K, Schöneich C. Coarse-Grained Molecular Dynamics Simulation of Heterogeneous Polysorbate 80 Surfactants and their Interactions with Small Molecules and Proteins. Mol Pharm 2024; 21:5041-5052. [PMID: 39208298 DOI: 10.1021/acs.molpharmaceut.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polysorbate 80 (PS80) is widely used in pharmaceutical formulations, and its commercial grades exhibit certain levels of structural heterogeneity. The objective of this study was to apply coarse-grained molecular dynamics simulations to better understand the effect of PS80 heterogeneity on micelle self-assembly, the loading of hydrophobic small molecules into the micelle core, and the interactions between PS80 and a protein, bovine serum albumin (BSA). Four representative PS80 variants with different head and tail structures were studied. Our simulations found that PS80 structural heterogeneity could affect blank micelle properties such as solvent-accessible surface area, aggregation number, and micelle aspect ratio. It was also found that hydrophobic small molecules such as ethinyl estradiol preferentially partitioned into the PS80 micelle core and PS80 dioleates formed a more hydrophobic core compared to PS80 monooleates. Furthermore, multiple PS80 molecules could bind to BSA, and PS80 heterogeneity profoundly changed the binding ratio as well as the surfactant-protein contact area.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
3
|
Roy I, Wuchner K, Stahl P, Tran T, Yaragudi N. A comparison of Polysorbates and Alternative Surfactants for Interfacial Stress Protection and Mitigation of Fatty Acid Particle Formation in the Presence of an Esterase. J Pharm Sci 2024; 113:2688-2698. [PMID: 39009347 DOI: 10.1016/j.xphs.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
The hydrolysis of polysorbate surfactants in large molecule drug product formulations caused by residual host cell proteins presents numerous stability concerns for pharmaceuticals. The fatty acids (FA) released by polysorbate hydrolysis can nucleate into particulates or challenge the conformational stability of the proteinaceous active pharmaceutical ingredient (API). The loss of intact polysorbate may also leave the Drug Product (DP) vulnerable to interfacial stresses. Polysorbate 20 and 80 are available in several different quality grades (Multi-compendial, Super Refined, Pure Lauric Acid (PLA)/Pure Oleic Acid (POA)). All variations of polysorbate as well as three alternative surfactants: Brij L23, Brij O20 and Poloxamer 188 were compared for their ability to protect against air-water interfacial stresses as well as their risk for developing particulates when in the presence of lipoprotein lipase (LPL) (Pseudomonas). Results show a meaningful difference in the timing and morphology of FA particle formation depending on the type of polysorbate used. All grades of polysorbate, while susceptible to hydrolysis, still offered sufficient protection to interfacial stresses, even when hydrolyzed to concentrations as low as 0.005 % (w/v). Alternative surfactants that lack an ester bond were resistant to lipase degradation and showed good protection against shaking stress.
Collapse
Affiliation(s)
- Ian Roy
- Drug Product Development, BioTherapeutics Development and Supply, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA.
| | - Klaus Wuchner
- Analytical Development, BioTherapeutics Development and Supply, Janssen Research & Development, Hochstrasse 201, Schaffhausen 8200, Switzerland
| | - Patrick Stahl
- Drug Product Development, BioTherapeutics Development and Supply, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Tuan Tran
- Analytical Development, BioTherapeutics Development and Supply, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Naveen Yaragudi
- Drug Product Development, BioTherapeutics Development and Supply, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| |
Collapse
|
4
|
Park JW, Lee G, Shin JW, Yun CI, Kim YJ. Validation, measurement uncertainty, and determination of polysorbate-labeled foods distributed in Korea. Food Sci Biotechnol 2024; 33:2747-2754. [PMID: 39184988 PMCID: PMC11339194 DOI: 10.1007/s10068-024-01544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 08/27/2024] Open
Abstract
This study reports the improvement and validation of a colorimetric method to quantify polysorbates (20, 60, 65, and 80) in food by measuring absorbance at 620 nm using ultraviolet-visible spectrophotometry. The method was validated for linearity, limit of detection (LOD), limit of quantitation (LOQ), precision, accuracy, and measurement uncertainty. The coefficient of determination was linear (r 2 ≥ 0.9991) over the measured concentration range of 50-1000 mg/L. The LOD and LOQ were 2.3-4.9 and 7.0-15.0 mg/kg, respectively. Intra-day and inter-day accuracy and precision were 91.9-104.1% and 0.1-1.1% RSD, and 91.6-103.8% and 0.4-5.0% RSD, respectively. The result of inter-laboratory recovery was 90.9-99.8% and the measurement uncertainty was < 16% with the compliance of the CODEX recommendation. Sauce, bread, whipped cream, rice cake, ice cream, and various other polysorbate-labeled food products (n = 229, detection range; N.D.-16,442.3 mg/kg) distributed in Korea were analyzed to confirm the applicability of the analytical method. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01544-w.
Collapse
Affiliation(s)
- Jin-Wook Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Gayeong Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Jae-Wook Shin
- Korea Advanced Food Research Institute, Uiwang, 16001 Republic of Korea
| | - Choong-In Yun
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419 Korea
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Young-Jun Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| |
Collapse
|
5
|
Adhikari S, Berger SN, Rustum AM. Development of Relatively Simple Sample Pretreatment Strategies to Selectively Remove Chromatographic Interfering Peaks of Polysorbate 80 from Liquid Oral Finished Drug Product. J Chromatogr Sci 2024; 62:593-599. [PMID: 37592908 DOI: 10.1093/chromsci/bmad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Polysorbate 80 (PS 80) is a nonionic surfactant, used in myriad of pharmaceutical, food and cosmetic formulations. PS 80 components have strong UV absorbance and retain under reversed-phase chromatographic conditions, significantly masking sections of the chromatogram. PS 80-related peaks interferences in a sample are common and can be difficult to separate from the analyte peaks. A liquid oral finished product (LOFP) containing PS 80 and Ivermectin as the active pharmaceutical ingredient (API) was selected for this study. Herein, we report two sample pretreatment strategies focusing on the selective removal of PS 80 from the LOFP. Both methods significantly reduce and/or practically eliminate excipients and PS 80-related peaks interferences from the LOFP without a negative impact on the API and its key-related substances recovery. The solid-phase extraction (SPE) strategy uses a C18 SPE followed by a silica gel SPE, whereas the liquid-liquid extraction strategy uses in situ-generated sodium caprylate for the removal of formulation excipients and PS 80. These methods can significantly increase the reliability of high-performance liquid chromatography methods and decrease false positive out-of-specifications events because of coelution of PS 80-related peaks with peaks of interest.
Collapse
Affiliation(s)
- Sarju Adhikari
- Global Pharmaceutical Technical Support (GPTS), Boehringer Ingelheim Animal Health USA Inc. (BIAH), 631 US Route 1 South, North Brunswick, NJ 08902, USA
| | - Shane N Berger
- Global Pharmaceutical Technical Support (GPTS), Boehringer Ingelheim Animal Health USA Inc. (BIAH), 631 US Route 1 South, North Brunswick, NJ 08902, USA
| | - Abu M Rustum
- Global Pharmaceutical Technical Support (GPTS), Boehringer Ingelheim Animal Health USA Inc. (BIAH), 631 US Route 1 South, North Brunswick, NJ 08902, USA
| |
Collapse
|
6
|
Dow XY, Gao Q, Sperduto JL, Wen X, Thai C, Zhang L, McCoy MA. High-Throughput Fluorometric Assay For Quantifying Polysorbate In Biopharmaceutical Products Using Micelle Activated Fluorescence Probe N-Phenyl-1-Naphthylamine. Pharm Res 2024; 41:1455-1473. [PMID: 38955997 DOI: 10.1007/s11095-024-03723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Polysorbates are among the most used surfactants in biopharmaceutical products containing proteins. Our work aims to develop a high-throughput fluorometric assay to further diversify the analytical toolbox for quantification of PSs. METHOD The assay leverages the micelle activated fluorescence signal from N-Phenyl-1-Naphthylamine (NPN). The development and optimization of assay parameters were guided by the pre-defined analytical target profile. Furthermore, NMR was used to probe the interaction between protein, PS80 and NPN in the measurement system and understand protein interference. RESULTS All assay parameters including excitation and emission wavelengths, standard curve, NPN concentration, and incubation time have been optimized and adapted to a microplate format, making it compatible with automated solutions that will be pursued in the near future to drive consistency and efficiency in our workflows. The specificity, accuracy, and precision of the assay have been demonstrated through a case study. Furthermore, NMR results provided additional insight into the change of the interaction dynamics between PS80 and NPN as the protein concentration increases. The results indicate minimal interaction between the protein and PS80 at lower concentration. However, when the concentration exceeds 75 mg/mL, there is a significant interaction between the protein and PS-80 micelle and monomer. CONCLUSION A high-throughput fluorometric assay has been developed for quantification of polysorbates in biopharmaceutical samples including in-process samples, drug substance and drug product. The assay reported herein could serve as a powerful analytical tool for polysorbate quantification and control, complementing the widely used liquid chromatography with charged aerosol detection method.
Collapse
Affiliation(s)
- Ximeng Y Dow
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Qi Gao
- Analytical Research & Development, MRL, Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ, 07065, USA
| | - John L Sperduto
- Process Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Xiaona Wen
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Christopher Thai
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Lei Zhang
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Mark A McCoy
- Quantitative Biosciences, MRL, Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
7
|
Wang SQ, Zhao X, Zhang LJ, Zhao YM, Chen L, Zhang JL, Wang BC, Tang S, Yuan T, Yuan Y, Zhang M, Lee HK, Shi HW. Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library. J Pharm Anal 2024; 14:100929. [PMID: 38799234 PMCID: PMC11126531 DOI: 10.1016/j.jpha.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Analyzing polysorbate 20 (PS20) composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance. The similar structures and polarities of PS20 components make accurate separation, identification, and quantification challenging. In this work, a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography (HPLC) with charged aerosol detection (CAD) to separate 18 key components with multiple esters. The separated components were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with an identical gradient as the HPLC-CAD analysis. The polysorbate compound database and library were expanded over 7-time compared to the commercial database. The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship. UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources. The method observed the impact of 4 degradation conditions on peak components, identifying stable components and their tendencies to change. HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences, distinguishing quasi products.
Collapse
Affiliation(s)
- Shi-Qi Wang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Xun Zhao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Li-Jun Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Yue-Mei Zhao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lei Chen
- Chinese Pharmacopoeia Commission, Beijing, 100061, China
| | - Jin-Lin Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Bao-Cheng Wang
- Nanjing Well Pharmaceutical Group Co., Ltd., Nanjing, 210018, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Tom Yuan
- University of Massachusetts Amherst, Amherst, 01003, USA
| | - Yaozuo Yuan
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Mei Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hai-Wei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| |
Collapse
|
8
|
Zegota MM, Schuster G, De Pra M, Müllner T, Menzen T, Steiner F, Hawe A. High throughput multidimensional liquid chromatography approach for online protein removal and characterization of polysorbates and poloxamer in monoclonal antibody formulations. J Chromatogr A 2024; 1720:464777. [PMID: 38432108 DOI: 10.1016/j.chroma.2024.464777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The majority of commercially available monoclonal antibody (mAb) formulations are stabilized with one of three non-ionic surfactants: polysorbate 20 (PS20), polysorbate 80 (PS80), or poloxamer 188 (P188). All three surfactants are susceptible to degradation, which can result in functionality loss and subsequent protein aggregation or free fatty acid particle formation. Consequently, quantitative, and qualitative analysis of surfactants is an integral part of formulation development, stability, and batch release testing. Due to the heterogeneous nature of both polysorbates and poloxamer, online isolation of all the compounds from the protein and other excipients that may disturb the subsequent liquid chromatography with charged aerosol detection (LC-CAD) analysis poses a challenge. Herein, we present an analytical method employing LC-CAD, utilizing a combination of anion and cation exchange columns to completely remove proteins online before infusing the isolated surfactant onto a reversed-phase column. The method allows high throughput analysis of polysorbates within 8 minutes and poloxamer 188 within 12 minutes, providing a separation of the surfactant species of polysorbates (unesterified species, lower esters, and higher esters) and poloxamer 188 (early eluters and main species). Accuracy and precision assessed according to the International Council for harmonisation (ICH) guideline were 96 - 109 % and ≤1 % relative standard deviation respectively for all three surfactants in samples containing up to 110 mg/mL mAb. Subsequently, the method was effectively applied to quantify polysorbate 20 and polysorbate 80 in nine commercial drug products with mAb concentration of up to 180 mg/mL.
Collapse
Affiliation(s)
| | - Georg Schuster
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Mauro De Pra
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Tibor Müllner
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Tim Menzen
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Frank Steiner
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Andrea Hawe
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Carle S, Evers DH, Hagelskamp E, Garidel P, Buske J. All-in-one stability indicating polysorbate 20 degradation root-cause analytics via UPLC-QDa. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123955. [PMID: 38128165 DOI: 10.1016/j.jchromb.2023.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Polysorbates (PS) are the most frequently used surfactants to stabilize biologicals. Ironically, these excellent stabilizing non-ionic surfactants have inherent structural properties, which lead to instabilities of their own. Such PS degradation can be triggered by multiple root-causes, like chemical and enzymatic hydrolysis or oxidative degradation. This can on the one hand reduce the concentration of surface-active PS and on the other hand lead to the formation of unfavorable degradants, like poorly soluble free fatty acids (FFA), which may phase separate and form visible FFA particles. Due to the potential criticality of PS degradation in biopharmaceutical formulations, various analytics have been established in recent years not only to monitor the PS content but also to evaluate specific PS markers and crucial degradants. However, in most cases sample preparations and several analytical assays have to be conducted to obtain a comprehensive picture of potential PS degradation root-causes. Here we show a novel approach for PS degradation UPLC-QDa based root-cause analytics, which utilizes previously established analytics for (i) most relevant polysorbate 20 (PS20) esters, (ii) PS20 free fatty acids and (iii) a newly developed method for the evaluation of PS20 specific oxidation markers. Thereby, this triad of analytical methods uses the same sample preparation and detector, which reduces the overall necessary effort, time investment and sample volume. Furthermore, the innovative PS20 oxidation marker method allows to quantify specific concentrations of the determined markers by external calibration and possible perception of oxidative degradation processes prior to relevant losses of PS20 esters, which could serve as an early indication during formulation development. The applicability of this method set was verified using several PS20 containing stress samples, which cover the most relevant root-causes, including acidic and alkaline hydrolysis, enzyme mediated hydrolysis, oxidative AAPH stress and Fe2+/H2O2 mediated degradation as well as autoxidation via long-term storage at elevated temperatures. Overall, this analytical setup has shown to deliver in-depth data about PS20 degradation, which can be used to narrow down the causative stress without the necessity of fundamentally different methods. Therefore, it can be seen as all-in-one solution during sometimes troublesome development of biopharmaceutical formulations, that supports the elucidation of the PS degradation mechanism(s) and thus establish mitigation strategies.
Collapse
Affiliation(s)
- Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| | - Dirk-H Evers
- RaDes GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany.
| | | | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| |
Collapse
|
10
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
11
|
Glücklich N, Carle S, Diederichs T, Buske J, Mäder K, Garidel P. How enzymatic hydrolysis of polysorbate 20 influences colloidal protein stability. Eur J Pharm Sci 2023; 191:106597. [PMID: 37770006 DOI: 10.1016/j.ejps.2023.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Polysorbates (PS) are esters of ethoxylated sorbitol anhydrides of different composition and are widely used surfactants in biologics. PSs are applied to increase protein stability and concomitant shelf-life via shielding against e.g., interfacial stresses. Due to the presence of specific lipolytic host cell protein (HCP) contaminations in the drug substance, PSs can be degraded via enzymatic hydrolysis. Surfactant hydrolysis leads to the formation of degradants, such as free fatty acids that might form fatty acid particles. In addition, PS degradation may reduce surfactant functionality and thus reduce the protection of the active pharmaceutical ingredient (API). Although enzymatic degradation was observed and reported in the last years, less is known about the relationship between certain polysorbate degradation patterns and the increase of mechanical and interfacial stress towards the API. In this study, the impact of specifically hydrolyzed polysorbate 20 (PS20) towards the stabilization of two monoclonal antibodies (mAbs) during accelerated shaking stress conditions was investigated. The results show that a specific enzymatic degradation pattern of PS20 can influence the colloidal stability of biopharmaceutical formulations. Furthermore, the kinetics of the appearance of visual phenomena, opalescence, and particle formation depended on the polysorbate degradation fingerprint as induced via the presence of surrogate enzymes. The current case study shows the importance of focusing on specific polysorbate ester fractions to understand the overall colloidal protein stabilizing effect. The performed study gives first insight into the functional properties of PS and helps to evaluate the impact of PS degradation in the formulation development of biopharmaceuticals in general.
Collapse
Affiliation(s)
- Nils Glücklich
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Stefan Carle
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Julia Buske
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany; Institute of Chemistry, Faculty of Physical and Theoretical Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) 06120, Germany.
| |
Collapse
|
12
|
Kopf R, Paschen C, Müller L, Kocar B, Wolfring M, Vincent M, Klemm D, Bell C, Pinto C. Leveraging mass detection to simultaneously quantify surfactant content and degradation mode for highly concentrated biopharmaceuticals. J Pharm Biomed Anal 2023; 236:115651. [PMID: 37688908 DOI: 10.1016/j.jpba.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
Non-ionic surfactants are commonly used in parenteral protein formulations and include polysorbate 20, polysorbate 80 and poloxamer188. Recently, quantification and characterization of surfactants has generated considerable interest due to their connection to visible particle formation, a critical quality attribute for parenteral formulations. Typically, surfactant quantification is performed by mixed mode chromatography with evaporative light scattering detection (ELSD) or charged aerosol detection (CAD). However, these methods often suffer from loss of specificity in highly concentrated protein formulations. Here we present a mixed mode chromatography method using single quad mass detection, overcoming current limitations for highly concentrated proteins. In addition to content determination of intact surfactants, this method allows to quantify and characterize the predominant degradation patterns of polysorbates within a single measurement. Formulations with up to 200 mg/mL active pharmaceutical product (API) containing surfactant levels between 0.16 and 0.64 mg/mL were tested during method qualification. The obtained results for linearity (r > 0.99), precision (max. 3.8 % RSD) and accuracy (96-116 % recovery) meet current requirements for pharmaceutical products as defined in ICH Q2.
Collapse
Affiliation(s)
- Robert Kopf
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland.
| | - Christoph Paschen
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Lavinia Müller
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Berk Kocar
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Martin Wolfring
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Mathilde Vincent
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Denis Klemm
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Christian Bell
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Cosimo Pinto
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| |
Collapse
|
13
|
Maher S, Geoghegan C, Brayden DJ. Safety of surfactant excipients in oral drug formulations. Adv Drug Deliv Rev 2023; 202:115086. [PMID: 37739041 DOI: 10.1016/j.addr.2023.115086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Surfactants are a diverse group of compounds that share the capacity to adsorb at the boundary between distinct phases of matter. They are used as pharmaceutical excipients, food additives, emulsifiers in cosmetics, and as household/industrial detergents. This review outlines the interaction of surfactant-type excipients present in oral pharmaceutical dosage forms with the intestinal epithelium of the gastrointestinal (GI) tract. Many surfactants permitted for human consumption in oral products reduce intestinal epithelial cell viability in vitro and alter barrier integrity in epithelial cell monolayers, isolated GI tissue mucosae, and in animal models. This suggests a degree of mis-match for predicting safety issues in humans from such models. Recent controversial preclinical research also infers that some widely used emulsifiers used in oral products may be linked to ulcerative colitis, some metabolic disorders, and cancers. We review a wide range of surfactant excipients in oral dosage forms regarding their interactions with the GI tract. Safety data is reviewed across in vitro, ex vivo, pre-clinical animal, and human studies. The factors that may mitigate against some of the potentially abrasive effects of surfactants on GI epithelia observed in pre-clinical studies are summarised. We conclude with a perspective on the overall safety of surfactants in oral pharmaceutical dosage forms, which has relevance for delivery system development.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Caroline Geoghegan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Kozuch B, Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Comparative Stability Study of Polysorbate 20 and Polysorbate 80 Related to Oxidative Degradation. Pharmaceutics 2023; 15:2332. [PMID: 37765302 PMCID: PMC10537708 DOI: 10.3390/pharmaceutics15092332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The surfactants polysorbate 20 (PS20) and polysorbate 80 (PS80) are utilized to stabilize protein drugs. However, concerns have been raised regarding the degradation of PSs in biologics and the potential impact on product quality. Oxidation has been identified as a prevalent degradation mechanism under pharmaceutically relevant conditions. So far, a systematic stability comparison of both PSs under pharmaceutically relevant conditions has not been conducted and little is known about the dependence of oxidation on PS concentration. Here, we conducted a comparative stability study to investigate (i) the different oxidative degradation propensities between PS20 and PS80 and (ii) the impact of PS concentration on oxidative degradation. PS20 and PS80 in concentrations ranging from 0.1 mg⋅mL-1 to raw material were stored at 5, 25, and 40 °C for 48 weeks in acetate buffer pH 5.5 and water, respectively. We observed a temperature-dependent oxidative degradation of the PSs with strong (40 °C), moderate (25 °C), and weak/no degradation (5 °C). Especially at elevated temperatures such as 40 °C, fast oxidative PS degradation processes were detected. In this case study, a stronger degradation and earlier onset of oxidation was observed for PS80 in comparison to PS20, detected via the fluorescence micelle assay. Additionally, degradation was found to be strongly dependent on PS concentration, with significantly less oxidative processes at higher PS concentrations. Iron impurities, oxygen in the vial headspaces, and the pH values of the formulations were identified as the main contributing factors to accelerate PS oxidation.
Collapse
Affiliation(s)
- Benedykt Kozuch
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Johanna Weber
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Julia Buske
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Patrick Garidel
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Tim Diederichs
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
15
|
Chen W, Klemm D, Gregoritza K, Satya Krishna Kishore R, Olaf Stracke J, Wurth C, Pinto C, Sancho Oltra N. Screening techniques for monitoring the sub-visible particle formation of free fatty acids in biopharmaceuticals. Eur J Pharm Biopharm 2023; 190:242-247. [PMID: 37524212 DOI: 10.1016/j.ejpb.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Free fatty acid (FFA) particles that originate from the enzymatic hydrolysis of polysorbate (PS) via co-purified host cell proteins generally appear abruptly in drug products during real-time (long-term) storage. Efforts were taken to understand the kinetics of FFA particle formation, aiming for a mitigation strategy. However, it is rather challenging particularly in the sub-visible particle (SVP) range, due to either the insufficient sensitivity of the analytical techniques used or the interference of the formulation matrices of proteinaceous drug products. In this study, we examined the feasibility of Raman microscopy, backgrounded membrane imaging (BMI) and total holographic characterization (THC) on the detection of FFA sub-visible particles (SVPs). The results indicate that THC is the most sensitive technique to track their occurrence during the course of PS hydrolysis. Moreover, with this technique we are able to distinguish different stages of FFA particle formation in the medium. In addition, a real time stability study of a biopharmaceutical was analyzed, demonstrating the viability of THC to monitor SVPs in a real sample and correlate it to the visible particles (VPs) occurrence.
Collapse
Affiliation(s)
- Wei Chen
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Denis Klemm
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | | | - Jan Olaf Stracke
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christine Wurth
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Cosimo Pinto
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Nuria Sancho Oltra
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
16
|
Konya Y, Ochiai R, Fujiwara S, Tsujino K, Okumura T. Profiling polysorbate 80 components using comprehensive liquid chromatography-tandem mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9438. [PMID: 36410723 DOI: 10.1002/rcm.9438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Polysorbate 80 (PS80) is an amphipathic, nonionic surfactant commonly used in pharmaceutical protein formulations and is composed of fatty acid (FA) esters of polyethoxylated sorbitan. However, commercial PS80 products contain substantial amounts of by-products. The development of simple and reliable methods for PS80 component analysis is challenging given the inherent heterogeneity. METHOD We developed a comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to profile the components of PS80. Semi-comprehensive LC-MS/MS analyses of 11 subspecies in three commercial PS80 products were performed to estimate the average degree of polymerization of the ethylene oxide units (Avg-n) in the molecules. Furthermore, three subspecies (polyoxyethylene sorbitan monoester, polyoxyethylene isosorbide monoester, and polyoxyethylene monoester) were analyzed to estimate the composition ratios of the seven ester-bonded FAs present in PS80. RESULTS The Avg-n values of five polyoxyethylene sorbitan esters (none, mono, di, tri, and tetra), three polyoxyethylene isosorbide esters (none, mono, and di), and three polyoxyethylene esters (none, mono, and di) were 26.5-30.6, 12.1-14.6, and 11.4-15.8, respectively. These values were comparable regardless of the number of ester-bonded FAs. Each product had a similar FA composition ratio regardless of the differences in the subspecies. However, the obtained C18:2 values were higher than those reported in the product certificates. CONCLUSION The proposed LC-MS/MS method evaluated the overall PS80 components, revealing the possibility of underestimation of ester-bonded linoleic acid using the conventional gas chromatography-mass spectrometry method. The similarity of Avg-n values and FA compositions among subspecies suggested the high reliability of these results, indicating that the presented approach may help in the quality control of PS80 formulations.
Collapse
Affiliation(s)
- Yutaka Konya
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Ryosuke Ochiai
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Satoshi Fujiwara
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Kazushige Tsujino
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Takeshi Okumura
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| |
Collapse
|
17
|
Diederichs T, Mittag JJ, Humphrey J, Voss S, Carle S, Buske J, Garidel P. Existence of a superior polysorbate fraction in respect to protein stabilization and particle formation? Int J Pharm 2023; 635:122660. [PMID: 36740078 DOI: 10.1016/j.ijpharm.2023.122660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Biologicals including monoclonal antibodies are the current flagships in pharmaceutical industry. However, they are exposed to a multitude of destabilization conditions like for instance hydrophobic interfaces, leading to reduced biological activity. Polysorbates are commonly applied to effectively stabilize these active pharmaceutical ingredients against colloidal stress. Nevertheless, chemical instability of polysorbate via hydrolysis or oxidation results in degradation products that might form particles via phase separation. Polysorbates are mixtures of hundreds of individual components, and recently purer quality grades with reduced variations in the fatty acid composition are available. As the protective function of polysorbate itself is not completely understood, even less is known about its individual components, raising the question of the existence of a superior polysorbate species in respect to protein stabilization or degradation susceptibility. Here, we evaluated the protective function of four main fractions of polysorbate 20 (PS20) in agitation studies with monoclonal antibodies, followed by particle analysis as well as protein and polysorbate content determination. The commercially-available inherent mixtures PS20 high purity and PS20 all-laurate, as well as the fraction isosorbide-POE-monolaurate showed superior protection against mechanical-induced stress (visual inspection and turbidity) at the air-water interface in comparison to sole sorbitan-POE-monolaurate, -dilaurate, and -trilaurate. Fractions composed mainly of higher-order esters like sorbitan-POE-dilaurate and sorbitan-POE-trilaurate indicated high turbidities as indication for subvisible and small particles accompanied by a reduced protein monomer content after agitation. For the isosorbide-POE-monolaurates as well as for the inherent polysorbate mixtures no obvious differences in protein content and protein aggregation (SEC) were observed, reflecting the observations from visual appearance. However, absolute polysorbate concentrations vary drastically between different species in the actual formulations. As there are still open questions in respect to protein specificity or regarding mixtures versus individual components of PS20, further studies must be performed, to gain a better understanding of a "generalized" stabilizing effect of polysorbates on monoclonal antibodies. The knowledge of the characteristics of individual polysorbate species can have the potential to pave the way to superior detergents in respect to protein stabilization and/or degradation susceptibility.
Collapse
Affiliation(s)
- Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany.
| | - Judith J Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - James Humphrey
- Croda Europe Ltd, Cowick Hall, DN14 9AA, Snaith, United Kingdom
| | - Söhnke Voss
- Croda Europe Ltd, Cowick Hall, DN14 9AA, Snaith, United Kingdom
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
18
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
19
|
Yuk IH, Koulis T, Doshi N, Gregoritza K, Hediger C, Lebouc-Haefliger V, Giddings J, Khan TA. Formulation mitigations for particle formation induced by enzymatic hydrolysis of polysorbate 20 in protein-based drug products: insights from a full-factorial longitudinal study. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hydrolytic degradation of the polysorbate 20 (PS20) surfactant in protein-based liquid formulations releases free fatty acids (FFAs), which can accumulate to form particles in drug products during real-time (long-term) storage. To identify formulation conditions that mitigate the risk of particle formation, we conducted a longitudinal study using purified recombinant monoclonal antibody (mAb) formulated in 24 conditions. In this real-time stability study at 5 °C, three key formulation parameters—mAb concentration, initial PS20 concentration, and pH—were varied across representative ranges in a full-factorial design. A longitudinal regression analysis was used to evaluate the effects of these parameters and their interactions on PS20 degradation (via measurements of PS20, FFAs, and PS20 ester distribution) and on particle formation (via visible particle observations and subvisible particle counts). The time-dependent onset of visible particles trended with the rise in subvisible particle counts and FFA levels and fall in PS20 concentration. In the ranges studied here, lower mAb concentration and higher initial PS20 concentration delayed the onset of particles, whereas pH had a negligible effect. These observations were consistent with the general trends predicted by our previously published FFA solubility model. Taken together, these findings highlight the complex relationships between formulation parameters, PS20 degradation, and particle formation.
Collapse
|
20
|
Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Brun VL. Industry Perspective on the Use and Characterization of Polysorbates for Biopharmaceutical Products Part 2: Survey Report on Control Strategy Preparing for the Future. J Pharm Sci 2022; 111:2955-2967. [PMID: 36002077 DOI: 10.1016/j.xphs.2022.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Collapse
Affiliation(s)
- Klaus Wuchner
- Janssen R&D, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland.
| | - Linda Yi
- Analytical Development, Biogen, Morrisville, NC 27709, USA
| | - Cyrille Chery
- UCB, Analytical Development Sciences for Biologicals, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Felix Nikels
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Friederike Junge
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH& Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - George Crotts
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Gianluca Rinaldi
- Merck Serono SpA, Guidonia Montecelio, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Jason A Starkey
- Pfizer, Inc. Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development 875 W. Chesterfield Parkway, Chesterfield, MO 63017, USA
| | | | - Melissa Shuman
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Rien de Ruiter
- Byondis B.V., Downstream Processing, Nijmegen, the Netherlands
| | - Sarah M Richer
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shawn Cao
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sebastian Peuker
- Bayer AG, Product Supply, Analytical Development and Clinical QC for Biotech Products, Friedrich-Ebert-Str. 217-233, 42117 Wuppertal, Germany
| | - Sylvain Huille
- Sanofi R&D, Biologics Drug Products Development,13 quai Jules Guesde, 94403 Vitry-sur Seine, France
| | - Tingting Wang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Virginie Le Brun
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
21
|
A Mechanistic Understanding of Monoclonal Antibody Interfacial Protection by Hydrolytically Degraded Polysorbate 20 and 80 under IV Bag Conditions. Pharm Res 2022; 39:563-575. [PMID: 35277841 DOI: 10.1007/s11095-022-03217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Polysorbates (PS) contain polyoxyethylene (POE) sorbitan/isosorbide fatty acid esters that can partially hydrolyze over time in liquid drug products to generate degradants and a remaining intact PS fraction with a modified ester distribution. The degradants are composed of free fatty acids (FFAs) --primarily lauric acid for PS20 and oleic acid for PS80-- and POE head groups. We previously demonstrated that under IV bag agitation conditions, mAb1 (a surface-active IgG4) aggregation increased with increasing amounts of degradants for PS20 but not for PS80. The purpose of this work is to understand the mechanism behind this observation. METHODS The surface tension of the remaining intact PS fraction without degradants was modeled and compared with that of enzymatically degraded PS solutions. Next, mAb1 aggregation in saline was measured in the presence of laurate and oleate salts during static storage. Lastly, colloidal and conformational stability of mAb1 in the presence of these salts was investigated through differential scanning fluorimetry and dynamic light scattering under IV bag solution conditions. RESULTS The surface tension was primarily influenced by FFAs rather than the modified ester distribution of the remaining intact PS. MAb1 bulk aggregation increased in the presence of laurate but not oleate salts. Both salt types increased the melting temperature of mAb1 indicating FFA-mAb1 interactions. However, only laurate salt increased mAb1 self-association potentially explaining the higher aggregation propensity in its presence. CONCLUSION Our results help explain the observed differences between hydrolytically degraded PS20 and PS80 in affecting mAb1 aggregation under IV bag agitation conditions.
Collapse
|
22
|
Industry perspective on the use and characterization of polysorbates for biopharmaceutical products Part 1: Survey report on current state and common practices for handling and control of polysorbates. J Pharm Sci 2022; 111:1280-1291. [PMID: 35192858 DOI: 10.1016/j.xphs.2022.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Polysorbates (PS) are widely used as a stabilizer in biopharmaceutical products. Industry practices on various aspects of PS are presented in this part 1 survey report based on a confidential survey and following discussions by 16 globally acting major biotechnology companies. The current practice and use of PS during manufacture across their global manufacturing sites are covered in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature. Part 2 of the survey report (upcoming) will focus on understanding, monitoring, prediction, and mitigation of PS degradation pathways to develop an effective control strategy.
Collapse
|
23
|
Gilbert PH, Zhang Z, Qian KK, Allen DP, Ford R, Wagner NJ, Liu Y. Aggregation Kinetics of Polysorbate 80/ m-Cresol Solutions: A Small-Angle Neutron Scattering Study. Mol Pharm 2022; 19:862-875. [PMID: 35138864 DOI: 10.1021/acs.molpharmaceut.1c00803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polysorbate 80 (PS80), a nonionic surfactant used in pharmaceutical formulation, is known to be incompatible with m-cresol, an antimicrobial agent for multi-dose injectable formulations. This incompatibility results in increased turbidity caused by micelle aggregation progressing over weeks or longer, where storage temperature, ionic strength, and component concentration influence the aggregation kinetics. Small-angle neutron scattering (SANS) analysis of PS80/m-cresol solutions over a pharmaceutically relevant concentration range of each component reveals the cause of aggregation, the coalescence mechanism, and aggregate structure. PS80 solutions containing m-cresol concentrations below ≈2.0 mg/mL and above ≈4.5 mg/mL are kinetically stable and do not aggregate over a 50 h period. At 5 mg/mL of m-cresol, the mixture forms a kinetically stable microemulsion phase, despite being well below the aqueous solubility limit of m-cresol. Solutions containing intermediate m-cresol concentrations (2.0-4.5 mg/mL) are unstable, resulting in aggregation, coalescence, and eventual phase separation. In unstable solutions, two stages of aggregate growth (nucleation and power-law growth) are observed at m-cresol concentrations at or below ≈3.6 mg/mL. At higher m-cresol concentrations, aggregates experience a third stage of exponential growth. A single kinetic model is developed to explain the stages of aggregate growth observed in both kinetic mechanisms. This work establishes the phase diagram of PS80/m-cresol solution stability and identifies component concentrations necessary for producing stable formulations.
Collapse
Affiliation(s)
- Peter H Gilbert
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Zhenhuan Zhang
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - David P Allen
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Rachel Ford
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Norman J Wagner
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, Delaware 19716, United States
| | - Yun Liu
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
24
|
Glücklich N, Carle S, Buske J, Mäder K, Garidel P. Assessing the polysorbate degradation fingerprints and kinetics of lipases - how the activity of polysorbate degrading hydrolases is influenced by the assay and assay conditions. Eur J Pharm Sci 2021; 166:105980. [PMID: 34419573 DOI: 10.1016/j.ejps.2021.105980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Two of the most widely used surfactants to stabilize biologicals against e.g. interfacial stresses are polysorbate 20 (PS20) and polysorbate 80 (PS80). In recent years, numerous cases of hydrolytic polysorbate (PS) degradation in liquid formulations of biopharmaceuticals have been observed. Concomitant with the degradation of PSs, formulated proteins become inherently instable and more susceptible to aggregation. Furthermore, poorly soluble fatty acids (FA) are released from the PSs, which might lead to FA precipitation and the formation of visible and subvisible particles. Therefore, possible particle inducing factors have to be monitored closely. The major root cause of hydrolytic PS degradation in biologicals is the presence of enzymatic active host cell proteins (HCP), like lipases and esterases, which are co-purified with the active pharmaceutical ingredient. Such contaminants can be detected via their hydrolytic activity, either using ester-based substrates or PS itself. However, each approach has its up- and downsides, which makes the comparison of the results from other publications difficult. It was therefore the aim of the present study to investigate the impact of lipase specificities on the assay readouts. This study evaluates three different surrogate (model) lipases with distinctively different degradation kinetics and substrate specificities using specific analytical methods. The analytical panel contains on one hand two lipase activity assays with ester-based substrates, either detecting the release of para-nitrophenol or 4-methylumbelliferone, and on the other hand two PS-based monitoring analyses (fluorescence micelle assay and reverse phase high performance liquid chromatography - charged aerosol detection), which detect hydrolytic "activity" directly in the target substrate. Thereby, strengths and weaknesses of each assay are discussed, and recommendations are made for the respective use cases. Our results show that the determined lipase activities vary not only from assay to assay, but also significantly for the lipase tested, thus showing a different degradation fingerprint in the RP-HPLC-CAD chromatogram. This demonstrates that a comprehensive monitoring approach is essential to assess potential HCP contaminations.
Collapse
Affiliation(s)
- Nils Glücklich
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Chemistry, Faculty of Physical and Theoretical Chemistry, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
25
|
Doshi N, Ritchie K, Shobha T, Giddings J, Gregoritza K, Taing R, Rumbelow S, Chu J, Tomlinson A, Kannan A, Saggu M, Cai SK, Nicoulin V, Liu W, Russell S, Luis L, Yadav S. Evaluating a Modified High Purity Polysorbate 20 Designed to Reduce the Risk of Free Fatty Acid Particle Formation. Pharm Res 2021; 38:1563-1583. [PMID: 34495486 DOI: 10.1007/s11095-021-03087-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate a modified high purity polysorbate 20 (RO HP PS20)-with lower levels of stearate, palmitate and myristate esters than the non-modified HP PS20-as a surfactant in biopharmaceutical drug products (DP). RO HP PS20 was designed to provide functional equivalence as a surfactant while delaying the onset of free fatty acid (FFA) particle formation upon hydrolytic degradation relative to HP PS20. METHODS Analytical characterization of RO HP PS20 raw material included fatty acid ester (FAE) distribution, higher order ester (HOE) fraction, FFA levels and trace metals. Functional assessments included 1) vial and intravenous bag agitation; 2) oxidation via a placebo and methionine surrogate study; and 3) hydrolytic PS20 degradation studies to evaluate FFA particle formation with and without metal nucleation. RESULTS Interfacial protection and oxidation propensity were comparable between the two polysorbates. Upon hydrolytic degradation, FFA particle onset was delayed in RO HP PS20. The delay was more pronounced when HOEs of PS20 were preferentially degraded. Furthermore, the hydrolytic degradants of RO HP PS20 formed fewer particles in the presence of spiked aluminum. CONCLUSION This work highlights the criticality of having tighter control on long chain FAE levels of PS20 to reduce the occurrence of FFA particle formation upon hydrolytic degradation and lower the variability in its onset. By simultaneously meeting compendial PS20 specifications while narrowing the allowable range for each FAE and shifting its composition towards the shorter carbon chain species, RO HP PS20 provides a promising alternative to HP PS20 for biopharmaceutical DPs.
Collapse
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Kyle Ritchie
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tamanna Shobha
- Pharmaceutical Technical Innovation, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jamie Giddings
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kathrin Gregoritza
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Rosalynn Taing
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Stephen Rumbelow
- Croda Inc, 777 Scudders Mill Road, Bldg. 2, Plainsboro, NJ, 08536, USA
| | - Jeff Chu
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Anthony Tomlinson
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Aadithya Kannan
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Miguel Saggu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Si Kai Cai
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Victor Nicoulin
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4054, Basel, Switzerland
| | - Wenqiang Liu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Steve Russell
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Lin Luis
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Sandeep Yadav
- Pharmaceutical Technical Innovation, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
26
|
Webster GK, Chang JC, Heflin JL. Stability Indicating Method for Polysorbate 80 in Protein Formulations. J Chromatogr Sci 2021; 59:706-713. [PMID: 33367524 DOI: 10.1093/chromsci/bmaa116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 11/14/2022]
Abstract
Polysorbates (also known as "Tween") are common components of protein formulations used to minimize protein adsorption and stabilize the protein. These nonionic surfactants are heterogenous mixtures of fatty acids with a complex reversed-phase profile due to the inhomogeneity of the polymers present. Polysorbates can be oxidized, which can be hard to detect in the complex polymer profile. Further adding to the analytical challenge is the lack of a chromophore for the detection of these polymers. The routine analysis of polysorbates in protein formulations was greatly improved through the introduction of online solid-phase extraction (SPE) to simplify the polysorbate profile for quantification. However, this method combines many of the polysorbate polymers into a single peak for detection, thus limiting its effectiveness for detecting degradation. To address the need for a stability indicating method without the complexity of the reversed-phase profile, an optimized online SPE method was developed and investigated. Using polysorbate 80, this investigation shows that further expanding the step gradient can yield a profile that is stability indicating and available for routine testing of protein formulation.
Collapse
Affiliation(s)
- Gregory K Webster
- Analytical Research and Development, AbbVie Inc., North Chicago, IL 60064 USA
| | - Jean C Chang
- Analytical Research and Development, AbbVie Inc., North Chicago, IL 60064 USA
| | - Julie L Heflin
- Analytical Research and Development, AbbVie Inc., North Chicago, IL 60064 USA
| |
Collapse
|
27
|
Liu H, Jin Y, Menon R, Laskowich E, Bareford L, de Vilmorin P, Kolwyck D, Yeung B, Yi L. Characterization of Polysorbate 80 by Liquid Chromatography-Mass Spectrometry to Understand Its Susceptibility to Degradation and Its Oxidative Degradation Pathway. J Pharm Sci 2021; 111:323-334. [PMID: 34416271 DOI: 10.1016/j.xphs.2021.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
A liquid chromatography-mass spectrometry (LC-MS) method was developed to provide a fingerprint of polysorbate 80 (PS80) subspecies that enables identification of PS80 degradation pathway. The developed method demonstrates unique monoester peak profile of PS80 from different vendors, attributed by differences in relative abundance of the fatty acid monoesters. The LC-MS method was also applied to examine the susceptibility of PS80, at different grades, to auto-oxidation and hydrolysis. PS80 oxidative degradation induced by iron or occurred in open bottle without nitrogen overlay was found to follow the same pathway, but at a much faster rate in the former scenario. The oxidation preferentially occurs at the double bond of fatty acid chains, thus providing explanation on the faster degradation observed in PS80 at Chinese Pharmacopia (ChP) grade than at multi-compendial (MC) grade. In contrast, the difference in susceptibility of MC and ChP grade PS80 against esterase-induced hydrolysis in placebo was not pronounced. The method was also able to provide a fingerprint to identify both PS80 hydrolysis and oxidation in mAb drug product stability samples, but it required a solid phase extraction step to remove protein prior to the analysis.
Collapse
Affiliation(s)
- Haiyan Liu
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Yutong Jin
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Rashmi Menon
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Erin Laskowich
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Lisa Bareford
- Materials Science, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Phil de Vilmorin
- Materials Science, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Dave Kolwyck
- Materials Science, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Bernice Yeung
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Linda Yi
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States.
| |
Collapse
|
28
|
Ludwig M, Geisler R, Prévost S, von Klitzing R. Shape and Structure Formation of Mixed Nonionic-Anionic Surfactant Micelles. Molecules 2021; 26:molecules26144136. [PMID: 34299413 PMCID: PMC8307929 DOI: 10.3390/molecules26144136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Aqueous solutions of a nonionic surfactant (either Tween20 or BrijL23) and an anionic surfactant (sodium dodecyl sulfate, SDS) are investigated, using small-angle neutron scattering (SANS). SANS spectra are analysed by using a core-shell model to describe the form factor of self-assembled surfactant micelles; the intermicellar interactions are modelled by using a hard-sphere Percus–Yevick (HS-PY) or a rescaled mean spherical approximation (RMSA) structure factor. Choosing these specific nonionic surfactants allows for comparison of the effect of branched (Tween20) and linear (BrijL23) surfactant headgroups, both constituted of poly-ethylene oxide (PEO) groups. The nonionic–anionic surfactant mixtures are studied at various concentrations up to highly concentrated samples (ϕ ≲ 0.45) and various mixing ratios, from pure nonionic to pure anionic surfactant solutions. The scattering data reveal the formation of mixed micelles already at concentrations below the critical micelle concentration of SDS. At higher volume fractions, excluded volume effects dominate the intermicellar structuring, even for charged micelles. In consequence, at high volume fractions, the intermicellar structuring is the same for charged and uncharged micelles. At all mixing ratios, almost spherical mixed micelles form. This offers the opportunity to create a system of colloidal particles with a variable surface charge. This excludes only roughly equimolar mixing ratios (X≈ 0.4–0.6) at which the micelles significantly increase in size and ellipticity due to specific sulfate–EO interactions.
Collapse
Affiliation(s)
- Michael Ludwig
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, Technical University of Darmstadt, D-64289 Darmstadt, Germany; (M.L.); (R.G.)
| | - Ramsia Geisler
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, Technical University of Darmstadt, D-64289 Darmstadt, Germany; (M.L.); (R.G.)
| | - Sylvain Prévost
- Large Scale Structures Group, DS/LSS, Institut Laue-Langevin, CEDEX 9, 38042 Grenoble, France;
| | - Regine von Klitzing
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, Technical University of Darmstadt, D-64289 Darmstadt, Germany; (M.L.); (R.G.)
- Correspondence:
| |
Collapse
|
29
|
Graf T, Tomlinson A, Yuk IH, Kufer R, Spensberger B, Falkenstein R, Shen A, Li H, Duan D, Liu W, Wohlrab S, Edelmann F, Leiss M. Identification and Characterization of Polysorbate-Degrading Enzymes in a Monoclonal Antibody Formulation. J Pharm Sci 2021; 110:3558-3567. [PMID: 34224732 DOI: 10.1016/j.xphs.2021.06.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Degradation of polysorbate (PS) by hydrolytically active host cell proteins (HCPs) in drug products may impair the protein-stabilizing properties of PS and lead to the formation of particles due to the accumulation of poorly soluble free fatty acids upon long-term storage. The identification of the causative enzymes is challenging due to their low-abundance even when using state-of-the-art instrumentation and workflows. To overcome these challenges, we developed a rigorous enrichment strategy for HCPs, utilizing both Protein A and anti-HCP affinity chromatography, which facilitated the in-depth characterization of the HCP population in a monoclonal antibody formulation prone to PS hydrolysis. Based on the HCPs identified by liquid chromatography coupled to tandem mass spectrometry, a number of enzymes annotated as hydrolases were recombinantly expressed and characterized in terms of polysorbate degradation. Among the selected candidates, Lipoprotein Lipase, Lysosomal Acid Lipase (LIPA) and Palmitoyl-Protein Thioesterase 1 (PPT1) exhibited notable activity towards PS. To our knowledge, this is the first report to identify LIPA and PPT1 as residual HCPs that can contribute to PS degradation in a biological product.
Collapse
Affiliation(s)
- Tobias Graf
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Anthony Tomlinson
- Pharma Technical Development, Genentech, 1 DNA Way, South San Francisco, California, USA
| | - Inn H Yuk
- Pharma Technical Development, Genentech, 1 DNA Way, South San Francisco, California, USA
| | - Regina Kufer
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | | | | | - Amy Shen
- Pharma Technical Development, Genentech, 1 DNA Way, South San Francisco, California, USA
| | - Hong Li
- Pharma Technical Development, Genentech, 1 DNA Way, South San Francisco, California, USA
| | - Dana Duan
- Pharma Technical Development, Genentech, 1 DNA Way, South San Francisco, California, USA
| | - Wenqiang Liu
- Pharma Technical Development, Genentech, 1 DNA Way, South San Francisco, California, USA
| | | | | | - Michael Leiss
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|
30
|
Gilbert PH, Zhang Z, Qian KK, Allen DP, Wagner NJ, Liu Y. Preservative Induced Polysorbate 80 Micelle Aggregation. J Pharm Sci 2021; 110:2395-2404. [PMID: 33387597 PMCID: PMC11165925 DOI: 10.1016/j.xphs.2020.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022]
Abstract
Small angle neutron scattering (SANS) studies of a model pharmaceutical formulation reveal how formulation stability depends on the compatibility of individual components. Solutions of two common protein formulation excipients, polysorbate 80 (PS80), a nonionic surfactant that prevents aggregation, and m-cresol, an antimicrobial agent for multi-dose injectable formulations, are investigated. The addition of m-cresol to PS80 solutions leads to solution turbidity and irreversibly alters PS80 micelle morphology. This slow preservative-induced destabilization of PS80 micelles progresses over days or even weeks, which highlights the essential role that aggregation kinetics plays in preservative-surfactant interactions. The temperature-dependence of PS80 micelle growth kinetics is quantified by SANS in the presence of m-cresol. Aggregation is a two-step process, where initial formation of small aggregates is followed by a period of monotonic power-law growth, providing evidence for the mechanism. Total aggregate mass stays constant after initial aggregate formation, and addition of a pH-regulating citrate buffer dramatically accelerates aggregation kinetics.
Collapse
Affiliation(s)
- Peter H Gilbert
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, DE 19716; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Zhenhuan Zhang
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, DE 19716; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, IN 46225.
| | | | - Norman J Wagner
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, DE 19716.
| | - Yun Liu
- Department of Chemical and Biomolecular Engineering Department, Center for Neutron Science, University of Delaware, Newark, DE 19716; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899.
| |
Collapse
|
31
|
Roy I, Patel A, Kumar V, Nanda T, Assenberg R, Wuchner K, Amin K. Polysorbate Degradation and Particle Formation in a High Concentration mAb: Formulation Strategies to Minimize Effect of Enzymatic Polysorbate Degradation. J Pharm Sci 2021; 110:3313-3323. [PMID: 34077768 DOI: 10.1016/j.xphs.2021.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022]
Abstract
Polysorbate (PS) 20 and 80 are the most common surfactants in monoclonal antibody (mAb) drug product (DP) formulations. Residual host cell proteins (HCP) present at extremely low concentrations in DP formulations can maintain enough enzymatic activity to degrade PS surfactants. Over time, the hydrolysis of surfactant causes the accumulation of minimally soluble free fatty acids resulting in precipitation and formation of subvisible and visible particulates. This manuscript summarizes the investigation of a batch of high concentration (>100 mg/mL) mAb DP where subvisible particles formed abruptly after prolonged storage at 5C°. The work also summarizes the effectiveness of different strategies for managing host cell proteins and fatty acid particles. The concentration and fatty acid composition of polysorbates were found to be significant factors in particle development. Solubilizers and alternative surfactants were all shown to be effective means of preventing particle formation. Lipase inhibitors proved to be a simple means to identify the problem but are more difficult to utilize as a solution.
Collapse
Affiliation(s)
- Ian Roy
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA.
| | - Ashaben Patel
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Vineet Kumar
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Tatiana Nanda
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Rene Assenberg
- Analytical Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Klaus Wuchner
- Analytical Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| | - Ketan Amin
- Drug Product Development, BioTherapeutics Development, Janssen Research & Development, 200 Great Valley Parkway, Malvern, PA 19355, USA
| |
Collapse
|
32
|
Hydrolytic polysorbate 20 degradation - Sensitive detection of free fatty acids in biopharmaceuticals via UPLC-QDa analytics with isolator column. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122717. [PMID: 33975273 DOI: 10.1016/j.jchromb.2021.122717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 11/21/2022]
Abstract
The enzymatic hydrolysis of polysorbates, e.g. induced by specific host cell proteins in biologics, is a known risk factor regarding the potential particle formation in the product over time. One of the root causes for this observation is an increase in free fatty acids (FA) within the formulation, which indicates the need for convenient monitoring of FA release. This study presents a novel UPLC-QDa based method to evaluate the content of the FAs esterified to polysorbate 20 (PS20) after hydrolysis. The presented method is label-free, i.e. independent of elaborate fluorophore-labeling and able to directly measure the ionized FAs. Furthermore, the method allows the determination of released FAs as percentage of ester bond hydrolysis and as absolute concentration expressed in ng/mL. Additionally, we describe for the first time in FA analytics the application of an isolator column, to remove trace levels of FAs present in the eluents to improve the sensitivity of the method. Lastly, the capabilities of the newly developed method are proven in case studies with three different monoclonal antibodies, which display characteristic FA release patterns in PS20-containing formulations. In summary, we developed a reliable, sensitive method for FA quantification in biologics, which could also be used as a predictive tool, considering FA solubility, regarding the formation of particles.
Collapse
|
33
|
Doshi N, Giddings J, Luis L, Wu A, Ritchie K, Liu W, Chan W, Taing R, Chu J, Sreedhara A, Kannan A, Kei P, Shieh I, Graf T, Hu M. A Comprehensive Assessment of All-Oleate Polysorbate 80: Free Fatty Acid Particle Formation, Interfacial Protection and Oxidative Degradation. Pharm Res 2021; 38:531-548. [PMID: 33713012 DOI: 10.1007/s11095-021-03021-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Enzymatic polysorbate (PS) degradation and resulting free fatty acid (FFA) particles are detrimental to biopharmaceutical drug product (DP) stability. Different types and grades of polysorbate have varying propensity to form FFA particles. This work evaluates the homogenous all-oleate (AO) PS80 alongside heterogeneous PS20 and PS80 grades in terms its propensity to form FFA particles and other important attributes like interfacial protection and oxidation susceptibility. METHODS FFA particle formation rates were compared by degrading PS using non-immobilized hydrolases and fast degrading DP formulations. Interfacial protection of monoclonal antibodies (mAbs) was assessed by agitation studies in saline using non-degraded and degraded PS. Several antioxidants were assessed for their ability to mitigate AO PS80 oxidation and subsequent mAb oxidation by a 40°C placebo stability study and a 2, 2'-Azobis (2-amidinopropane) dihydrochloride stress model, respectively. RESULTS Visible and subvisible particles were significantly delayed in AO PS80 formulations compared with heterogeneous PS20 and PS80 formulations. Non-degraded AO PS80 was less protective of mAbs against the air-water interface compared with heterogeneous PS20. Interfacial protection by AO PS80 improved upon degradation owing to high surface activity of FFAs. Diethylenetriaminepentaacetic acid (DTPA) completely mitigated AO PS80 oxidation unlike L-methionine and N-Acetyl-DL-Tryptophan. However, DTPA did not mitigate radical mediated mAb oxidation. CONCLUSION AO PS80 is a promising alternative to reduce FFA particle formation compared with other PS types and grades. However, limitations observed here---such as lower protection against interfacial stresses and higher propensity for oxidation---need to be considered in assessing the risk/benefit ratio in using AO PS80.
Collapse
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Jamie Giddings
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Lin Luis
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Arthur Wu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kyle Ritchie
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wenqiang Liu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wayman Chan
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Rosalynn Taing
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jeff Chu
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Alavattam Sreedhara
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Aadithya Kannan
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Pervina Kei
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Ian Shieh
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tobias Graf
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Mark Hu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
34
|
High-Throughput, Fluorescence-Based Esterase Activity Assay for Assessing Polysorbate Degradation Risk during Biopharmaceutical Development. Pharm Res 2021; 38:397-413. [PMID: 33655394 DOI: 10.1007/s11095-021-03011-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Hydrolytic degradation of polysorbate during 2-8°C storage of monoclonal antibody drug products has been attributed to residual enzymes (e.g., esterases) from bioprocessing steps. Robust detection of esterase activity using sensitive, non-polysorbate surrogate substrates can provide an alternate method to assess polysorbate degradation risk, if the correlation between the esterase activity and polysorbate degradation is established. METHODS A general esterase activity assay was developed as a monitoring and characterization tool during bioprocess development of monoclonal antibodies. RESULTS We report a fluorescence plate-based assay for quantifying esterase activity, utilizing 4-methylumbelliferyl caprylate (MU-C8) as the esterase substrate. The assay was first assessed for substrate, inhibitor and pH specificity using both model enzymes and purified protein samples. The assay was then extensively tested to understand sample matrix effects on activity rates. CONCLUSIONS The use of this high-throughput method will allow for rapid characterization of protein samples in under three hours. The esterase activity correlated directly with polysorbate degradation and can provide valuable information on polysorbate degradation risk throughout drug development.
Collapse
|
35
|
Glücklich N, Dwivedi M, Carle S, Buske J, Mäder K, Garidel P. An in-depth examination of fatty acid solubility limits in biotherapeutic protein formulations containing polysorbate 20 and polysorbate 80. Int J Pharm 2020; 591:119934. [DOI: 10.1016/j.ijpharm.2020.119934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 12/25/2022]
|
36
|
Evers DH, Schultz-Fademrecht T, Garidel P, Buske J. Development and validation of a selective marker-based quantification of polysorbate 20 in biopharmaceutical formulations using UPLC QDa detection. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122287. [DOI: 10.1016/j.jchromb.2020.122287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
|
37
|
Impact of Silicone Oil on Free Fatty Acid Particle Formation due to Polysorbate 20 Degradation. Pharm Res 2020; 37:216. [PMID: 33029664 DOI: 10.1007/s11095-020-02936-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Polysorbate 20 (PS20), a commonly used surfactant in biopharmaceutical formulations, can undergo hydrolytic degradation resulting in free fatty acids (FFAs) that precipitate to form particles. This work investigates the ability for silicone oil (si-oil) coated on the interior walls of prefilled syringes (PFSs) to act as a sink for FFAs and potentially delay FFA particle formation. METHODS Myristic acid distribution coefficient was measured in a two-phase system containing si-oil and formulation buffer at a range of aqueous conditions. An empirical model was built from these data to predict distribution coefficient based on aqueous conditions. To verify the model, PS20 was degraded using model lipases side-by-side in glass vials and PFSs while monitoring sub-visible particles. RESULTS The empirical model demonstrates that the partitioning of myristic acid into si-oil is maximized at low pH and low PS20 concentration. The model predicts that the presence of si-oil at levels typical in PFSs provides at most an 8.5% increase in the total carrying capacity for myristic acid compared to a non-coated glass vial. The time to onset of FFA particles was equivalent between degradations performed in two PFS models coated with differing levels of silicone oil and in non-coated glass vials. CONCLUSION Herein, we demonstrate that FFAs partition from aqueous solution into si-oil. However, the extent of the partitioning effect is not large enough to delay PS20-related FFA particle formation at typical formulation conditions (pH 5.0-7.5, 0.01% - 0.1% w/v PS20) filled in typical PFSs (<1.0 mg si-oil/mL aqueous fill).
Collapse
|
38
|
Allmendinger A, Lebouc V, Bonati L, Woehr A, Kishore RSK, Abstiens K. Glass Leachables as a Nucleation Factor for Free Fatty Acid Particle Formation in Biopharmaceutical Formulations. J Pharm Sci 2020; 110:785-795. [PMID: 33035535 DOI: 10.1016/j.xphs.2020.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Surfactants are essential components in protein formulations protecting them against interfacial stress. One of the current industry-wide challenges is enzymatic degradation of parenteral surfactants such as polysorbate 20 (PS20) and polysorbate 80, which leads to the accumulation of free fatty acids (FFAs) potentially forming visible particles over the drug product shelf-life. While the concentration of FFAs can be quantified, the time point of particle formation remains unpredictable. In this work, we studied the influence of glass leachables as nucleation factors for FFA particle formation. We demonstrate the feasibility of nucleation of FFA particles in the presence of inorganic salts like NaAlO2 and CaCl2 simulating relevant glass leachables. We further demonstrate FFA particle formation depending on relevant aluminum concentrations. FFA particle formation was subsequently confirmed with lauric/myristic acid in the presence of different quantities and compositions of glass leachables obtained by several sterilization cycles using different types of glass vials. We further verified the formation of particles in aged protein formulation containing degraded PS20 through the spiking of glass leachables. Particles were characterized as a complex of glass leachables, such as aluminum and FFAs. Based on our findings, we propose a likely pathway for FFA particle formation that considers specific nucleation factors.
Collapse
Affiliation(s)
- Andrea Allmendinger
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel.
| | - Vanessa Lebouc
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Lucia Bonati
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Anne Woehr
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Ravuri S K Kishore
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Kathrin Abstiens
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| |
Collapse
|
39
|
Doshi N, Martin J, Tomlinson A. Improving Prediction of Free Fatty Acid Particle Formation in Biopharmaceutical Drug Products: Incorporating Ester Distribution during Polysorbate 20 Degradation. Mol Pharm 2020; 17:4354-4363. [DOI: 10.1021/acs.molpharmaceut.0c00794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joelle Martin
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
- Therapeutic Discovery, Amgen Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, California 94080, United States
| | - Anthony Tomlinson
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
40
|
Paschen CA, Klemm D, Graf T, Kopf R, Pinto C, Müller C, Bell CH, Pfaff J. Simultaneous quantification of polysorbate 20 and poloxamer 188 in biopharmaceutical formulations using evaporative light scattering detection. J Pharm Biomed Anal 2020; 192:113640. [PMID: 33002754 DOI: 10.1016/j.jpba.2020.113640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
Polysorbates and Poloxamer 188 constitute the most common surfactants used in biopharmaceutical formulations owing to their excellent protein-stabilizing properties and good safety profiles. In recent years, however, a vast number of reports concerning potential risk factors closely related with their applications, such as the accumulation of degradation products, their inherent heterogeneity and adsorption effects of proteins at silicon/oil interfaces have drawn the focus to potential alternatives. Apart from tedious efforts to evaluate new excipient candidates, the use of mixed formulations leveraging combinations of well-established surfactants appears to be a promising approach to eliminate or, at least, minimize and postpone adverse effects associated with the single compounds. Due to the similar molecular properties of non-ionic surfactants, however, baseline separation of these mixtures, which is mandatory for their reliable quantification, poses a great challenge to analytical scientists. For this purpose, the present work describes the development of a robust mixed-mode liquid chromatography method coupled to evaporative light scattering detection (mixed-mode LC-ELSD) for simultaneous determination of the (intact) Polysorbate 20 and Poloxamer 188 content in biopharmaceutical formulations containing monoclonal antibodies. Extensive qualification and validation studies, comprising the evaluation of method specificity, robustness, linearity, accuracy and precision according to ICH guidelines, demonstrated its suitability for quality control studies. A case study on the storage stability of a formulated antibody was conducted to underline the method's practical utility. Finally, the versatility of the developed approach was successfully tested by quantifying Polysorbate 20-related surfactants, such as Polysorbate 80 and super-refined Polysorbate.
Collapse
Affiliation(s)
| | - Denis Klemm
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Tobias Graf
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Robert Kopf
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cosimo Pinto
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Claudia Müller
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christian H Bell
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Janina Pfaff
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
41
|
Brovč EV, Mravljak J, Šink R, Pajk S. Degradation of polysorbates 20 and 80 catalysed by histidine chloride buffer. Eur J Pharm Biopharm 2020; 154:236-245. [PMID: 32693155 DOI: 10.1016/j.ejpb.2020.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022]
Abstract
Polysorbates are amphiphilic, non-ionic surfactants, and they represent one of the key components of biopharmaceuticals. They serve as stabilisers, and their degradation can cause particle formation, which has been an industry-wide issue over the past decade. To determine the influence of the buffers most frequently used in biopharmaceuticals on polysorbate degradation, an accelerated stability study was carried out using placebo formulations containing 0.02% polysorbates and 20 mM buffers (pH 5.5, 6.5). These included histidine chloride, sodium citrate, sodium succinate and sodium phosphate buffers. The rate of polysorbate degradation was highest in histidine chloride buffer, and therefore we further focused on the mechanism here. The predominant degradation pathway of polysorbates in this buffer was ester hydrolysis, catalysed by the imidazole moiety of the histidine. Interestingly, the presence of therapeutic proteins in the formulations slowed histidine-catalysed degradation of polysorbates in 50% of cases, with negligible degradation seen otherwise. This emphasises the complex nature of the interactions between the components of biopharmaceutical drug products. Nonetheless, there are disadvantages of using histidine chloride buffers in biopharmaceuticals that contain polysorbates. Careful consideration should be given to selection of excipients used in parenteral formulations, whereby compatibility between buffer and surfactant is of key importance.
Collapse
Affiliation(s)
- Ema Valentina Brovč
- University of Ljubljana, Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; Global Drug Development, Technical Research & Development, Novartis, Biologics Technical Development Mengeš, Drug Product Development Biosimilars, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - Janez Mravljak
- University of Ljubljana, Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Roman Šink
- Global Drug Development, Technical Research & Development, Novartis, Biologics Technical Development Mengeš, Drug Product Development Biosimilars, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia.
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
42
|
Tomlinson A, Zarraga IE, Demeule B. Characterization of Polysorbate Ester Fractions and Implications in Protein Drug Product Stability. Mol Pharm 2020; 17:2345-2353. [DOI: 10.1021/acs.molpharmaceut.0c00093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anthony Tomlinson
- Pharmaceutical Development, Genentech, Inc., San Francisco, California 94080-4990, United States
| | - Isidro E. Zarraga
- Pharmaceutical Development, Genentech, Inc., San Francisco, California 94080-4990, United States
| | - Barthélemy Demeule
- Pharmaceutical Development, Genentech, Inc., San Francisco, California 94080-4990, United States
| |
Collapse
|
43
|
Graf T, Abstiens K, Wedekind F, Elger C, Haindl M, Wurth C, Leiss M. Controlled polysorbate 20 hydrolysis - A new approach to assess the impact of polysorbate 20 degradation on biopharmaceutical product quality in shortened time. Eur J Pharm Biopharm 2020; 152:318-326. [PMID: 32445968 DOI: 10.1016/j.ejpb.2020.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 11/17/2022]
Abstract
Hydrolysis of polysorbate in biopharmaceutical liquid formulations upon long-term storage represents a risk factor, since reduction of the intact surfactant concentration may compromise protein stability. Moreover, accumulation of polysorbate degradation products is associated with the formation of particulates potentially affecting drug product stability and quality. These effects are conventionally assessed by real-time end-of-shelf life studies constituting an integral yet lengthy process of formulation development. To accelerate this procedure, we describe here a powerful tool to conduct shake stress studies based on the controlled hydrolysis of polysorbate 20 by beads-immobilized lipases. For this purpose, the production of stable, partially degraded material characterized by a representative presence of non-emulsifying degradants such as ethoxylated sorbitan and free fatty acids was monitored by state-of-the-art chromatographic methods ensuring realistic pharmaceutical conditions. Freeze-thaw, shaking and shipping stress studies of a mAb formulation did not only demonstrate that this approach is useful to determine the critical degradation level impairing drug product quality, but furthermore revealed significant differences in protective effects depending on the hydrolysis pattern. As these results emphasize, the outlined strategy may support formulation scientists to unveil the interrelationship between polysorbate hydrolysis products and stabilization of the active pharmaceutical ingredient in a holistic and time-saving manner.
Collapse
Affiliation(s)
- Tobias Graf
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Kathrin Abstiens
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4054, Switzerland
| | - Frank Wedekind
- Instrumental Analytics, Early Development & Reagent Design, Centralised and Point of Care Solutions, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Carsten Elger
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Markus Haindl
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Christine Wurth
- Pharma Technical Development Biologics, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4054, Switzerland
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany.
| |
Collapse
|
44
|
Pan J, Tang Y, Shen Z, Du Z. Development of supercritical fluid chromatography coupled with mass spectrometry method for characterization of a nonionic surfactant and comparison with liquid chromatography coupled with mass spectrometry method. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4499. [PMID: 31919971 DOI: 10.1002/jms.4499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) method and liquid chromatography coupled with mass spectrometry (LC-MS) method were developed for the separation and characterization of poly (ethylene oxide) methyl glucose sesquistearate (PEO-Glu-sesquistearate). The products of PEO-Glu-sesquistearate are composed of complex oligomers. The relationship between molecular structure of these oligomers and chromatographic retention behavior in both SFC and LC were discussed and compared. As compared with LC, hydrophobic moieties of compounds favor the fast elution in SFC. The different series can be better separated by LC, while the homologues compounds in same series can be better separated by SFC, and SFC-MS provided more comprehensive structural information. Different series such as PEO-distearate, PEO-stearate, PEO, PEO-Glu-tetrastearate, PEO-Glu-tristearate, PEO-Glu-distearate, PEO-Glu-stearate, and PEO-Glu were identified by MS/MS.
Collapse
Affiliation(s)
- Jinheng Pan
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Tang
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengchao Shen
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenxia Du
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
45
|
Acidic and alkaline hydrolysis of polysorbates under aqueous conditions: Towards understanding polysorbate degradation in biopharmaceutical formulations. Eur J Pharm Sci 2020; 144:105211. [DOI: 10.1016/j.ejps.2019.105211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 11/21/2022]
|
46
|
Mondal B, Kote M, Lunagariya C, Patel M. Development of a simple high performance liquid chromatography (HPLC)/evaporative light scattering detector (ELSD) method to determine Polysorbate 80 in a pharmaceutical formulation. Saudi Pharm J 2020; 28:325-328. [PMID: 32194334 PMCID: PMC7078541 DOI: 10.1016/j.jsps.2020.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 10/31/2022] Open
Abstract
The amount of polysorbate 80 in pharmaceutical formulations affects the product quality and efficacy. A reliable test method is required to quantify the amount of Polysorbate 80 present in the drug product formulations. The test method for the determination of Polysorbate 80 may be used during process development and final product quality assessment. A simple, fast and efficient quantitative method, making use of HPLC-ELSD and a C18 column without sample pretreatment was developed. The developed method demonstrated specificity to polysorbate 80 with high precision as indicated by percent relative standard deviation (%RSD) of 3.0% for six determinations. The accuracy of this method for the determination of polysorbate 80 in a pharmaceutical formulation was demonstrated with an overall recovery of 94.9%.
Collapse
Affiliation(s)
- Bikash Mondal
- Research and Development, Akorn Pharmaceuticals, 50 Lake View Parkway, Suite#112, Vernon Hills, IL, 60061, United States
| | - Mahesh Kote
- Research and Development, Akorn Pharmaceuticals, 50 Lake View Parkway, Suite#112, Vernon Hills, IL, 60061, United States
| | - Chandrakant Lunagariya
- Research and Development, Akorn Pharmaceuticals, 50 Lake View Parkway, Suite#112, Vernon Hills, IL, 60061, United States
| | - Milan Patel
- Research and Development, Akorn Pharmaceuticals, 50 Lake View Parkway, Suite#112, Vernon Hills, IL, 60061, United States
| |
Collapse
|
47
|
Wang Z, Wang Y, Tie C, Zhang J. A fast strategy for profiling and identifying pharmaceutic excipient polysorbates by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. J Chromatogr A 2020; 1609:460450. [DOI: 10.1016/j.chroma.2019.460450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
48
|
Nilsson EJ, Lind TK, Scherer D, Skansberger T, Mortensen K, Engblom J, Kocherbitov V. Mechanisms of crystallisation in polysorbates and sorbitan esters. CrystEngComm 2020. [DOI: 10.1039/d0ce00236d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-state behaviour of the commonly used pharmaceutical excipient polysorbates, and their non-ethoxylated equivalents.
Collapse
Affiliation(s)
- Emelie J. Nilsson
- Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-205 06 Malmö
- Sweden
| | - Tania K. Lind
- Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-205 06 Malmö
- Sweden
| | | | - Tatyana Skansberger
- Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-205 06 Malmö
- Sweden
| | - Kell Mortensen
- Niels Bohr Institute
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Johan Engblom
- Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-205 06 Malmö
- Sweden
| | - Vitaly Kocherbitov
- Biomedical Sciences
- Faculty of Health and Society
- Malmö University
- SE-205 06 Malmö
- Sweden
| |
Collapse
|
49
|
Nayem J, Zhang Z, Tomlinson A, Zarraga IE, Wagner NJ, Liu Y. Micellar Morphology of Polysorbate 20 and 80 and Their Ester Fractions in Solution via Small-Angle Neutron Scattering. J Pharm Sci 2019; 109:1498-1508. [PMID: 31887262 DOI: 10.1016/j.xphs.2019.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 11/15/2022]
Abstract
Surfactants are commonly used in therapeutic protein formulations in biopharmaceuticals to impart protein stability; however, their solution morphology and the role of the individual components in these structurally heterogeneous commercial grade surfactants at physiologically and pharmaceutically relevant temperatures have not been investigated systematically. The micellar morphologies of Polysorbate 20 and Polysorbate 80 and their primary components monoester fractions, as well as the diester fractions, are evaluated at 4, 22°C, 40°C, and 50°C using small-angle neutron scattering to determine the aggregation number, radius of gyration, core radius, critical micelle concentration, shell thickness, and shell hydration. The sizes and aggregation numbers of the diester fractions of PS20 above 80°C and PS80 above 50°C exhibit significant changes in shape. The analysis of the small-angle neutron scattering data of PS20 confirms that the critical micellar concentration of the monoester fraction is significantly higher at 4°C compared to the diester fraction and their original material, all-laurate PS20. Overall, these experiments identify the dominant components responsible for the temperature-dependent behavior of these surfactants in pharmaceutical protein formulations.
Collapse
Affiliation(s)
- Jannatun Nayem
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Zhenhuan Zhang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Anthony Tomlinson
- Late Stage Pharmaceutical Development, Genentech Inc., South San Francisco, California 94080
| | - Isidro E Zarraga
- Late Stage Pharmaceutical Development, Genentech Inc., South San Francisco, California 94080
| | - Norman J Wagner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716.
| | - Yun Liu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716.
| |
Collapse
|
50
|
Choyke S, Ferguson PL. Molecular characterization of nonionic surfactant components of the Corexit® 9500 oil spill dispersant by high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1683-1694. [PMID: 31245872 DOI: 10.1002/rcm.8512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Approximately 7 million liters of Corexit® dispersants were applied during the 2010 Deepwater Horizon oil spill to facilitate the dispersion of crude oil. At the time of application, the exact chemical composition of Corexit® was relatively unknown. Characterization of Corexit® 9500 was performed using high-resolution mass spectrometry to further understand the complexity of the nonionic surfactant components of this mixture. METHODS Corexit®9500 was analyzed by ultra-high-performance liquid chromatography (UHPLC) coupled to a high resolution Orbitrap Fusion Lumos mass spectrometer operated in positive electrospray ionization mode and a charged aerosol detector. Chromatographic conditions were optimized to efficiently separate isobaric and isomeric compounds. Polyethoxylated nonionic surfactants in Corexit® 9500 were identified using the following criteria: accurate mass (<3 ppm), retention time, and homologue series; in addition, interpretation of high-resolution tandem mass spectra was used to annotate tentative component structures. RESULTS More than 2000 polysorbate nonionic surfactants in 87 homologue series were detected. Polysorbate surfactants were characterized by the type of molecular basis group (sorbitan, isosorbide, or fatty acid), degree of esterification (n = 0-4), ester chain length (C6-C24), and ester saturation, in addition to polydispersion by ethoxylation. Isomeric compounds were differentiated by LC/HRMS/MS analysis with product ion assignment. Results from the charged aerosol detector showed that the diesters (23.9 ± 0.78%) were the most abundant component in Corexit® 9500 followed by dioctyl sodium sulfosuccinate (DOSS) (19.2 ± 1.5%), triesters (17.3 ± 1.5%), and monoesters (15.7 ± 2.3%). CONCLUSIONS Our analytical approach facilitated the characterization of polysorbate surfactants within Corexit® 9500 and allowed a systematic study to differentiate isomeric and isobaric compounds, when standards were not available. The characterized composition of Corexit® 9500 will facilitate future studies to determine the chemical and biological transformation kinetics and byproducts of Corexit® 9500 under environmental conditions.
Collapse
Affiliation(s)
- Sarah Choyke
- Nicholas School of the Environment, Duke University, 140 Science Drive, Durham, NC, 27708-0187, USA
| | - P Lee Ferguson
- Civil and Environmental Engineering, Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708-0187, USA
- Environmental Chemistry, Nicholas School of the Environment, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708-0187, USA
| |
Collapse
|