1
|
Qi D, Zheng T, Yang M, Huang Z, Wang T, Wang Q, Chen B. Bile Acid Composition and Transcriptome Analysis of the Liver and Small Intestine in Different Species. Metabolites 2024; 14:451. [PMID: 39195547 DOI: 10.3390/metabo14080451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Bile, a crucial fluid produced continuously by the liver, plays an essential role in digestion within the small intestine. Beyond its primary function in lipid digestion, bile also acts as a pathway for the elimination of various endogenous and exogenous substances. There have been limited studies focusing on interspecies differences. This study offers a comprehensive analysis of bile acid (BA) composition and its correlation with gene expression patterns across six different species, including mammals and poultry, through combining Liquid Chromatography-Mass Spectrometry (LC-MS) and transcriptome sequencing. The BA profiles revealed distinct metabolite clusters: D-glucuronic acid (GLCA) and glycochenodeoxycholic acid (GCDCA) were predominant in mammals, while taurolithocholic acid (TLCA) and T-alpha-MCA were prevalent in poultry, highlighting species-specific BA compositions. Differentially abundant metabolites, particularly GDCA, glycohyodeoxycholic acid (GHDCA) and taurodeoxycholic acid (TDCA) showed significant variations across species, with pigs showing the highest BA content. Transcriptome analysis of the liver and small intestine tissues of 56 cDNA libraries across the six species revealed distinct mRNA expression patterns. These patterns clustered samples into broad categories based on tissue type and phylogenetic relationships. Furthermore, the correlation between gene expression and BA content was examined, identifying the top 20 genes with significant associations. These genes potentially serve as biomarkers for BA regulation.
Collapse
Affiliation(s)
- Dongming Qi
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Tingting Zheng
- School of Life Sciences, China West Normal University, Nanchong 637009, China
| | - Maosen Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhiying Huang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030801, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qiang Wang
- Ningnan County Bureau of Agriculture and Rural Affairs, Xichang 615400, China
| | - Binlong Chen
- College of Animal Science, Xichang University, Xichang 615000, China
| |
Collapse
|
2
|
Li W, Zhang Y, Yang J, Xu H, Ye R, Wu J, Cao M, Zhao C, Yang B, Liu C, Li L. Effect of Bile Acids Supplementation in Fatty Liver Hemorrhagic Syndrome, Production Performance, Physiological and Quality Characteristics of Laying Hen Eggs. Animals (Basel) 2024; 14:1910. [PMID: 38998024 PMCID: PMC11240722 DOI: 10.3390/ani14131910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to investigate the effects of bile acids (BAs) supplementation on fatty liver hemorrhagic syndrome (FLHS), production performance, and physiological and quality characteristics of laying hen eggs. Sixty Sanhuang laying hens, aged 28 weeks, were randomly allocated to six dietary treatments over a 4-week period, including the control (CON) group (feeding basal diet), the high-fat diet (HFD)-treated group (basal diet containing 10% soybean oil), and HFD supplemented with 0.01% and 0.02% of chenodeoxycholic acid (CDCA) or hyodeoxycholic acid (HDCA) groups. Production performance, egg quality, liver morphology, serum biochemical indexes, antioxidant capacity, proinflammatory cytokines, and intestinal microbiota were evaluated. The average body weight in 0.01% CDCA was larger than in the HFD group (p < 0.05). Eggshell Thickness in the CON group was greater than in the HFD, 0.01% CDCA, and HDCA groups (p < 0.05). Albumen height in the 0.02% HDCA group was higher than the HFD group (p < 0.05). Eggshell weight in the HFD group was less than the CON group (p < 0.05). Haugh unit (HU) in the HDCA group was larger than the HFD group (p < 0.05). Albumen weight in the 0.02% HDCA group was greater than the CON and HFD groups (p < 0.05). In the HFD group, the levels of triglyceride (TG), total cholesterol (TC), and low-density lipo-protein cholesterol (LDL-C) were surpassing the other groups (p < 0.05). The levels of catalase (CAT) and total superoxide dismutase (T-SOD) in the HFD group was smaller than the other groups (p < 0.05). The level of malondialdehyde (MDA) in the HFD group was higher than in the other groups (p < 0.05). Tumor necrosis factor-α (TNF-α) levels were larger in the HFD group than in the other groups (p < 0.05). The 16S rRNA sequencing analysis indicated significant variations in the relative abundance of specific bacterial populations among the different treatment groups. The treatment and CON groups exhibited a higher presence of bacteria that inhibit host energy absorption or promote intestinal health such as Firmicutes, Bacteroidetes, and Ruminococcus, whereas the HFD group showed an increased prevalence of potentially pathogenic or deleterious bacteria, such as Desulfovibrio spp. In conclusion, the supplementation of BAs in poultry feed has been demonstrated to effectively mitigate the detrimental effects of FLHS in laying hens. This intervention regulates lipid metabolism, bolsters antioxidant defenses, reduces inflammation, and modulates the gut microbiota, offering a novel perspective on the application of BAs in the poultry industry.
Collapse
Affiliation(s)
- Wen Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Yu Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Jingyi Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Hao Xu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Ruiqi Ye
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Jiale Wu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
| | - Mixia Cao
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China
| | - Chang Liu
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China
| | - Lei Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (W.L.); (Y.Z.); (J.Y.); (H.X.); (R.Y.); (J.W.); (M.C.); (C.Z.); (B.Y.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang 233100, China
- Key Laboratory of Quality & Safety Control for Pork, Ministry of Agriculture and Rural, Fengyang 233100, China
| |
Collapse
|
3
|
Zhou ZR, Liu F, Li S, Dong CZ, Zhang L. A fungal P450 enzyme from Fusarium equiseti HG18 with 7β-hydroxylase activity in biosynthesis of ursodeoxycholic acid. J Steroid Biochem Mol Biol 2024; 240:106507. [PMID: 38508471 DOI: 10.1016/j.jsbmb.2024.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Cytochrome P450 enzyme with 7β-hydroxylation capacity has attracted widespread attentions due to the vital roles in the biosynthesis of ursodeoxycholic acid (UDCA), a naturally active molecule for the treatment of liver and gallbladder diseases. In this study, a novel P450 hydroxylase (P450FE) was screen out from Fusarium equiseti HG18 and identified by a combination of genome and transcriptome sequencing, as well as heterologous expression in Pichia pastoris. The biotransformation of lithocholic acid (LCA) by whole cells of recombinant Pichia pastoris further confirmed the C7β-hydroxylation with 5.2% UDCA yield. It was firstly identified a fungal P450 enzyme from Fusarium equiseti HG18 with the capacity to catalyze the LCA oxidation producing UDCA. The integration of homology modeling and molecular docking discovered the substrate binding to active pockets, and the key amino acids in active center were validated by site-directed mutagenesis, and revealed that Q112, V362 and L363 were the pivotal residues of P450FE in regulating the activity and selectivity of 7β-hydroxylation. Specifically, V362I mutation exhibited 2.6-fold higher levels of UDCA and higher stereospecificity than wild-type P450FE. This advance provided guidance for improving the catalytic efficiency and selectivity of P450FE in LCA hydroxylation, indicative of the great potential in green synthesis of UDCA from biologically toxic LCA.
Collapse
Affiliation(s)
- Zhen-Ru Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fen Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shan Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chang-Zhi Dong
- Université Paris Cité, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, Cedex 13, Paris 75205, France
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; NMPA Key Laboratory for Quality Control of Blood Products, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Yang J, Pontoglio M, Terzi F. Bile Acids and Farnesoid X Receptor in Renal Pathophysiology. Nephron Clin Pract 2024; 148:618-630. [PMID: 38412845 DOI: 10.1159/000538038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bile acids (BAs) act not only as lipids and lipid-soluble vitamin detergents but also function as signaling molecules, participating in diverse physiological processes. The identification of BA receptors in organs beyond the enterohepatic system, such as the farnesoid X receptor (FXR), has initiated inquiries into their organ-specific functions. Among these organs, the kidney prominently expresses FXR. SUMMARY This review provides a comprehensive overview of various BA species identified in kidneys and delves into the roles of renal apical and basolateral BA transporters. Furthermore, we explore changes in BAs and their potential implications for various renal diseases, particularly chronic kidney disease. Lastly, we center our discussion on FXR, a key BA receptor in the kidney and a potential therapeutic target for renal diseases, providing current insights into the protective mechanisms associated with FXR agonist treatments. KEY MESSAGES Despite the relatively low concentrations of BAs in the kidney, their presence is noteworthy, with rodents and humans exhibiting distinct renal BA compositions. Renal BA transporters efficiently facilitate either reabsorption into systemic circulation or excretion into the urine. However, adaptive changes in BA transporters are evident during cholestasis. Various renal diseases are accompanied by alterations in BA concentrations and FXR expression. Consequently, the activation of FXR in the kidney could be a promising target for mitigating kidney damage.
Collapse
Affiliation(s)
- Jiufang Yang
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France,
| | - Marco Pontoglio
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Boscolo O, Flor S, Salvo L, Dobrecky C, Höcht C, Tripodi V, Moretton M, Lucangioli S. Formulation and Characterization of Ursodeoxycholic Acid Nanosuspension Based on Bottom-Up Technology and Box-Behnken Design Optimization. Pharmaceutics 2023; 15:2037. [PMID: 37631251 PMCID: PMC10458560 DOI: 10.3390/pharmaceutics15082037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) is a therapeutic agent used for the treatment of cholestatic hepatobiliary diseases in pediatric patients. It is a bile acid that presents high lipophilicity, and it belongs to Class II of the Biopharmaceutical Classification System (BCS), which exhibits low water solubility and high intestinal permeability, which leads to poor oral absorption. The objective of this work was to design and optimize UDCA nanosuspensions by means of the precipitation-ultrasonication method to improve the solubility, dissolution, and oral bioavailability of UDCA. METHODS A three-level, three-factor Box-Behnken design was used to optimize formulation variables and obtain uniform, small-particle-size UDCA nanosuspensions. The independent variables were: stabilizer percentage (X1), amplitude (X2), and sonication time (X3), and the dependent variable was the particle size (Y1). In the precipitation-ultrasonication method, UDCA was dissolved in acetone:PEG 400 (1:1 v/v) and quickly incorporated into the antisolvent (pre-cooled aqueous dispersion of HPMC E-15 0.3%), by means of intense sonication at 50 W for 5 min, controlling temperature through an ice water bath. The lyophilization efficacy was evaluated by means of a cryoprotective efficacy test, working with 10% maltose at -80 °C. The nanosuspensions were characterized by dynamic light scattering (DLS), X-ray diffraction, and scanning electron microscopy (SEM). The physicochemical stability was determined at 25 °C and 4 °C at 7, 14, 30, and 60 days, and the UDCA content was analyzed via HPLC-UV. An in vitro dissolution assay and an oral bioavailability study were performed in male Wistar rats. RESULTS A significant impact was achieved in the optimized nanosuspension with 0.3% (stabilizer), 50 W (amplitude), and 5 min (sonication time), with a particle size of 352.4 nm, PDI of 0.11, and zeta potential of -4.30 mV. It presented adequate physicochemical stability throughout the study and the UDCA content was between 90% and 110%. In total, 86% of UDCA was dissolved in the in vitro dissolution test. The relative oral bioavailability was similar without significant statistical differences when comparing the lyophilized nanosuspension and the commercial tablet, the latter presenting a more erratic behavior. The pharmacokinetic parameters of the nanosuspension and the commercial tablet were Tmax (1.0 ± 0.9 h vs. 2.0 ± 0.8 h, respectively), Cmax (0.558 ± 0.118 vs. 0.366 ± 0.113 µM, respectively), ΔCmax (0.309 ± 0.099 vs. 0.232 ± 0.056, respectively), AUC (4.326 ± 0.471 vs. 2.188 ± 0.353 µg/mL.h, respectively, p < 0.02), and IAUC0-24h (2.261 ± 0.187 µg/mL.h vs. 1.924 ± 0.440 µg/mL.h, respectively). CONCLUSIONS The developed nanosuspension presents an appropriate dosage and administration for pediatric patients. On the other hand, it exhibits an adequate absorption and UDCA oral bioavailability.
Collapse
Affiliation(s)
- Oriana Boscolo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Sabrina Flor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Leandro Salvo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
| | - Cecilia Dobrecky
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires C1113AAD, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires C1113AAD, Argentina
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires C1113AAD, Argentina
| | - Marcela Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Silvia Lucangioli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
6
|
Zhan J, Li G, Dang Y, Pan D. Purification and identification of a novel hypotensive and antioxidant peptide from porcine plasma. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4933-4941. [PMID: 35278236 DOI: 10.1002/jsfa.11860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/08/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pig plasma contains a large amount of protein. Porcine plasma polypeptide can be prepared by the enzymatic hydrolysis of porcine plasma protein. The present study investigated the function, structure, and mechanisms of porcine plasma peptides. RESULTS The results showed that WVRQAPGKGL had a major ability to scavenge hydroxyl radical scavenging activity (HRSA) (35.25%), 2,2'-azino-bis (3-ethylbenzothiazo line-6-sulfonic acid) diammonium salt radical scavenging activity (ABTS RSA) (93.09%) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH RSA) (25.72%), as well as in angiotensin converting enzyme (ACE) inhibition (91.64%). WVRQAPGKGL could inactivate ACE by binding to Zn2+ because of the presence of carboxyl in WVRQAPGKGL. The ACE inhibition, HRSA, and DPPH of synthetic WVRQAPGKGL were improved by 12.70%, 16.06%, and 117.11% respectively after in vitro digestion. It (0.1 mg mL-1 ) also increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) by 59.78%, 69.05%, and 59.06%, and decreased reactive oxygen species (ROS) and malondialdehyde (MDA) by 22.08% and 50.59%, respectively, to protect HepG2 cells induced by H2 O2 . Furthermore, in a spontaneously hypertensive rat (SHR) model, the systolic blood pressure (SBP) and diastolic blood pressure (DBP) of the peptide group (30 mg kg-1 ) both decreased by about 33.33% in comparison with captopril. CONCLUSION A new difunctional (antioxidant and hypotensive) peptide, WVRQAPGKGL, derived from porcine plasma hydrolyzate was isolated by gel filtration and reverse phase chromatography, and identified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-1 . The difunctional peptide WVRQAPGKGL from porcine plasma could therefore be used in formulating functional foods or pharmaceuticals. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junqi Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Gaoshang Li
- Institute of Food Engineering, Zhejiang University, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Analysis of fecal bile acids and metabolites by high resolution mass spectrometry in farm animals and correlation with microbiota. Sci Rep 2022; 12:2866. [PMID: 35190565 PMCID: PMC8861013 DOI: 10.1038/s41598-022-06692-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
There is a growing interest in the named “acidic sterolbiome” and in the genetic potential of the gut microbiome (GM) to modify bile acid (BA) structure. Indeed, the qualitative composition of BAs in feces correlates with the bowel microorganisms and their collective genetic material. GM is responsible for the production of BA metabolites, such as secondary and oxo-BAs. The specific BA profiles, as microbiome-host co-metabolic products, could be useful to investigate the GM-host interaction in animals under physiological conditions, as well as in specific diseases. In this context, we developed and validated an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method for the simultaneous analysis of up to 21 oxo-BAs and their 9 metabolic precursors. Chromatographic separation was achieved in 7 min with adequate analytical performance in terms of selectivity, sensitivity (LOQ from 0.05 to 0.1 µg/mL), accuracy (bias% < 5%), precision (CV% < 5%) and matrix effect (ME% < 10%). A fast solvent extraction protocol has been fine-tuned, achieving recoveries > 90%. In parallel, the gut microbiota assessment in farming animals was evaluated by 16S rRNA next-generation sequencing, and the correlation with the BA composition was performed by multivariate analysis, allowing to reconstruct species-specific associations between the BA profile and specific GM components.
Collapse
|
8
|
Babu AF, Koistinen VM, Turunen S, Solano-Aguilar G, Urban JF, Zarei I, Hanhineva K. Identification and Distribution of Sterols, Bile Acids, and Acylcarnitines by LC-MS/MS in Humans, Mice, and Pigs-A Qualitative Analysis. Metabolites 2022; 12:metabo12010049. [PMID: 35050171 PMCID: PMC8781580 DOI: 10.3390/metabo12010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Sterols, bile acids, and acylcarnitines are key players in human metabolism. Precise annotations of these metabolites with mass spectrometry analytics are challenging because of the presence of several isomers and stereoisomers, variability in ionization, and their relatively low concentrations in biological samples. Herein, we present a sensitive and simple qualitative LC–MS/MS (liquid chromatography with tandem mass spectrometry) method by utilizing a set of pure chemical standards to facilitate the identification and distribution of sterols, bile acids, and acylcarnitines in biological samples including human stool and plasma; mouse ileum, cecum, jejunum content, duodenum content, and liver; and pig bile, proximal colon, cecum, heart, stool, and liver. With this method, we detected 24 sterol, 32 bile acid, and 27 acylcarnitine standards in one analysis that were separated within 13 min by reversed-phase chromatography. Further, we observed different sterol, bile acid, and acylcarnitine profiles for the different biological samples across the different species. The simultaneous detection and annotation of sterols, bile acids, and acylcarnitines from reference standards and biological samples with high precision represents a valuable tool for screening these metabolites in routine scientific research.
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland; (V.M.K.); (I.Z.); (K.H.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland;
- Correspondence: ; Tel.: +358-45-20-30-433
| | - Ville Mikael Koistinen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland; (V.M.K.); (I.Z.); (K.H.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland;
- Department of Biochemistry, Food Chemistry and Food Development Unit, University of Turku, 20014 Turku, Finland
| | - Soile Turunen
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland;
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gloria Solano-Aguilar
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; (G.S.-A.); (J.F.U.J.)
| | - Joseph F. Urban
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; (G.S.-A.); (J.F.U.J.)
| | - Iman Zarei
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland; (V.M.K.); (I.Z.); (K.H.)
| | - Kati Hanhineva
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland; (V.M.K.); (I.Z.); (K.H.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland;
- Department of Biochemistry, Food Chemistry and Food Development Unit, University of Turku, 20014 Turku, Finland
| |
Collapse
|
9
|
Reiter S, Dunkel A, Dawid C, Hofmann T. Targeted LC-MS/MS Profiling of Bile Acids in Various Animal Tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10572-10580. [PMID: 34490775 DOI: 10.1021/acs.jafc.1c03433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bile acids are being increasingly investigated in humans and laboratory animals as markers for various diseases in addition to their important functions, such as promoting the emulsification in fat digestion and preventing gallstone formation. In humans and animals, primary bile acids are formed from cholesterol in the liver, converted in the intestine into various secondary bile acids by the intestinal microbiota and reabsorbed in the terminal ileum, and partially returned to the liver. A universal high-throughput workflow, including a simple workup, was applied as a tool for bile acid analysis in animal studies. The complex bile acid profiles in various tissues, organs, and body fluids from different animals were mapped using a newly developed comprehensive liquid chromatography-tandem mass spectrometry method. The method can also be used in screening food to obtain information about the nutritional content of bile acids. This could be relevant to investigations on various animal diseases and on the bioavailability of bile acids that pass through the gastric tract.
Collapse
Affiliation(s)
- Sinah Reiter
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
- ZIEL-Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
10
|
Junker J, Kamp F, Winkler E, Steiner H, Bracher F, Müller C. Effective sample preparation procedure for the analysis of free neutral steroids, free steroid acids and sterol sulfates in different tissues by GC-MS. J Steroid Biochem Mol Biol 2021; 211:105880. [PMID: 33757894 DOI: 10.1016/j.jsbmb.2021.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Steroids play an important role in cell regulation and homeostasis. Many diseases like Alzheimer's disease or Smith-Lemli-Opitz syndrome are known to be associated with deviations in the steroid profile. Most published methods only allow the analysis of small subgroups of steroids and cannot give an overview of the total steroid profile. We developed and validated a method that allows the analysis of free neutral steroids, including intermediates of cholesterol biosynthesis, free oxysterols, C19 and C21 steroids, free steroid acids, including bile acids, and sterol sulfates using gas chromatography-mass spectrometry. Samples were analyzed in scan mode for screening purposes and in dynamic multiple reaction monitoring mode for highly sensitive quantitative analysis. The method was validated for mouse brain and liver tissue and consists of sample homogenization, lipid extraction, steroid group separation, deconjugation, derivatization and gas chromatography-mass spectrometry analysis. We applied the method on brain and liver samples of mice (10 months and 3 weeks old) and cultured N2a cells and report the endogenous concentrations of 29 physiological steroids.
Collapse
Affiliation(s)
- Julia Junker
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Edith Winkler
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians University-Munich, Feodor-Lynen-Straße 17, 81377, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University-Munich, Butenandtstraße 5-13, 81377, Munich, Germany.
| |
Collapse
|
11
|
Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT. Modifikation der Regioselektivität einer P450‐Monooxygenase ermöglicht die Synthese von Ursodeoxycholsäure durch die 7β‐Hydroxylierung von Lithocholsäure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sascha Grobe
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Christoffel P. S. Badenhorst
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Thomas Bayer
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Emil Hamnevik
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Shuke Wu
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Christoph W. Grathwol
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Deutschland
| | - Andreas Link
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Deutschland
| | - Sven Koban
- Enzymicals AG Walther-Rathenau-Str. 49 17487 Greifswald Deutschland
| | - Henrike Brundiek
- Enzymicals AG Walther-Rathenau-Str. 49 17487 Greifswald Deutschland
| | - Beatrice Großjohann
- HERBRAND PharmaChemicals GmbH, Betriebsstätte Anklam An der Redoute 1 17390 Murchin Deutschland
| | - Uwe T. Bornscheuer
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| |
Collapse
|
12
|
Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT. Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β-Hydroxylation of Lithocholic Acid. Angew Chem Int Ed Engl 2021; 60:753-757. [PMID: 33085147 PMCID: PMC7839452 DOI: 10.1002/anie.202012675] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/11/2022]
Abstract
We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo- and regioselective 7β-hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β-position but LCA is exclusively hydroxylated at the 6β-position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity-determining residues. Alanine scanning identified S240A as a UDCA-producing variant. A synthetic "small but smart" library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio- and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10-fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA.
Collapse
Affiliation(s)
- Sascha Grobe
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Emil Hamnevik
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Christoph W. Grathwol
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Str. 1717487GreifswaldGermany
| | - Andreas Link
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Str. 1717487GreifswaldGermany
| | - Sven Koban
- Enzymicals AGWalther-Rathenau-Str. 4917487GreifswaldGermany
| | | | - Beatrice Großjohann
- HERBRAND PharmaChemicals GmbH, Betriebsstätte AnklamAn der Redoute 117390MurchinGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
13
|
A novel voltammetric approach to the detection of primary bile acids in serum samples. Bioelectrochemistry 2020; 134:107539. [DOI: 10.1016/j.bioelechem.2020.107539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/10/2023]
|
14
|
Rohawi NS, Ramasamy K, Agatonovic-Kustrin S, Lim SM. A new high-performance thin-layer chromatographic method for determining bile salt hydrolase activity. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:145-151. [DOI: 10.1016/j.jchromb.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
|
15
|
Liu Y, Rong Z, Xiang D, Zhang C, Liu D. Detection technologies and metabolic profiling of bile acids: a comprehensive review. Lipids Health Dis 2018; 17:121. [PMID: 29792192 PMCID: PMC5966875 DOI: 10.1186/s12944-018-0774-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Bile acids (BAs) are important regulatory factors of life activities, which are involved in the regulation of glucose, lipid and energy metabolisms, and closely associated with intestinal hormones, microbiotas and energy balance. BAs abnormalities easily lead to inflammation and metabolic diseases, in turn, the progress of diseases could influence characteristics of BAs. Therefore, accurate detection of BAs contents is of great significance to disease prevention, diagnosis and treatment. At present, the most widely used enzymatic method in clinical practice is applicable to the detection of total bile acid (TBA). In laboratory research, different types of BAs can be accurately separated and quantified by liquid chromatography-mass spectrometry (LC-MS). The metabolic profiling of BAs based on detection technologies can completely and accurately monitor their types and contents, playing a crucial role in disease prevention, diagnosis and treatment. We herein reviewed the main detection technologies of BAs and the application of metabolic profiling in related diseases in recent years.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Zhihui Rong
- Department of Paediatrics of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Dong Xiang
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Chengliang Zhang
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China.
| |
Collapse
|
16
|
Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y. Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol 2018; 38:1323-1335. [DOI: 10.1002/jat.3644] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Rhishikesh Thakare
- Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - A. David Rodrigues
- Pharmacokinetics, Pharmacodynamics & Metabolism, Medicine Design, Pfizer Inc.; Groton CT 06340 USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy; University of Nebraska Medical Center; Omaha NE 68198 USA
| |
Collapse
|
17
|
Yeo S, Lee S, Park H, Shin H, Holzapfel W, Huh CS. Development of putative probiotics as feed additives: validation in a porcine-specific gastrointestinal tract model. Appl Microbiol Biotechnol 2016; 100:10043-10054. [PMID: 27633101 PMCID: PMC5102953 DOI: 10.1007/s00253-016-7812-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/10/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022]
Abstract
Enforced restrictions on the use of antibiotics as growth promoters (AGPs) in animal production have prompted investigations into alternative feed additives in recent decades. Probiotics are currently the main feed additive used in livestock. However, the selection of probiotic candidates relies on human-based methods and little is known about the verification criteria for host-specific selection. We investigated the probiotic potential of Lactobacillus salivarius strains isolated from fed pig feces for their use as porcine feed additives. Two methods were developed that simulated the pig gastrointestinal (GI) tract and the intestinal epithelium, and these were compared with human-based in vitro methods and used for selecting porcine probiotics. Lactobacillus salivarius strain LS6 was identified as a promising probiotic strain for potential use as a porcine feed additive. This strain prevented disruption of the epithelial integrity of pig small intestine (PSI) cells by inhibiting the adherence of enterotoxigenic Escherichia coli K88. It also showed high survival rates in the in vitro pig GI tract model and good adhesion to PSI cells. We propose that host target-specific screening and validation methods are important tools in the development of effective probiotic feed additives, and this approach may support future-oriented agriculture.
Collapse
Affiliation(s)
- Soyoung Yeo
- Research Institute of Eco-friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 232-916, South Korea
| | - Suro Lee
- Research Institute of Eco-friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 232-916, South Korea
| | - Hyunjoon Park
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, Gyeongbuk, 791-708, South Korea
| | - Heuynkil Shin
- School of Life Sciences, Handong Global University, Pohang, Gyeongbuk, 791-708, South Korea
| | - Wilhelm Holzapfel
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, Gyeongbuk, 791-708, South Korea
| | - Chul Sung Huh
- Research Institute of Eco-friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 232-916, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do, 232-916, South Korea.
| |
Collapse
|
18
|
Fan L, Tian X, Shuang S, Dong C. A Simple and Novel Electrochemical Sensor Based on Phosphomolybdic-Polypyrrole Film Modified Electrode for Highly Sensitive Detection of Cholic Acid. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Yilmaz UT, Uzun D, Yilmaz H. A new method for rapid and sensitive determination of cholic acid in gallbladder bile using voltammetric techniques. Microchem J 2015. [DOI: 10.1016/j.microc.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Wang H, Yeh CY, Li K, Chung-Davidson YW, Li W. An UPLC–MS/MS method for quantitative profiling of bile acids in sea lamprey plasma and tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 980:72-8. [DOI: 10.1016/j.jchromb.2014.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
21
|
John C, Werner P, Worthmann A, Wegner K, Tödter K, Scheja L, Rohn S, Heeren J, Fischer M. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids. J Chromatogr A 2014; 1371:184-95. [DOI: 10.1016/j.chroma.2014.10.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/07/2023]
|
22
|
Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2014; 406:7799-815. [PMID: 25384335 DOI: 10.1007/s00216-014-8230-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/28/2014] [Accepted: 10/01/2014] [Indexed: 01/17/2023]
Abstract
An ultra high performance liquid chromatography tandem mass spectrometry method (UHPLC-MS/MS) was developed for the determination of 33 target and 28 unknown bile acids (BAs) in biological samples. Sixty-one BAs could be measured in 20 min using only a small amount of sample and with a simple sample preparation. The method proved to be very sensitive (limit of detection 5-350 pg/mL, lower limit of quantitation 0.1-2.6 ng/mL), linear (R(2) > 0.99) and reproducible (typically CV <15 % in biological matrixes). The method was used to analyze human adipose tissue, plasma, and serum (from same subjects) and mouse serum, gall bladder, small intestine, and colon samples (from same animals). Cholic acid, ursodeoxycholic acid, and chenodeoxycholic acid, deoxycholic acid, and their conjugates (mainly glycine, but also taurine conjugates) were the main metabolites in human samples, and cholic acid, glycine cholic acid, and several taurine conjugates in mouse samples. Using the method, 28 unknown BAs could also be detected. UHPLC-MS/MS spectra, accurate mass, and tissue distribution suggested that nine of the unknown bile acids were taurine conjugates, 13 were glycine conjugates, and six were intact BAs, respectively. To our knowledge, this was the first time BAs were detected in adipose tissue. Results showed that 17 targeted BAs were found at ng/g level in human adipose tissue. Our findings give a novel insight of the endogenous role of BAs in adipose tissue and their role as biomarkers (e.g., in metabolic diseases).
Collapse
|
23
|
Matysik S, Schmitz G. Application of gas chromatography–triple quadrupole mass spectrometry to the determination of sterol components in biological samples in consideration of the ionization mode. Biochimie 2013; 95:489-95. [DOI: 10.1016/j.biochi.2012.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
|
24
|
Zhang X, Deng W, Ban Y, Gao J, Ding M. A highly sensitive electrically driven electrochemiluminescent assay for quantification of bile acids in human serum. Analyst 2013; 138:5074-80. [DOI: 10.1039/c3an00938f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Uddin MH, Li S, Bae YM, Choi MH, Hong ST. In vitro maintenance of Clonorchis sinensis adult worms. THE KOREAN JOURNAL OF PARASITOLOGY 2012; 50:309-15. [PMID: 23230328 PMCID: PMC3514422 DOI: 10.3347/kjp.2012.50.4.309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/09/2012] [Accepted: 08/11/2012] [Indexed: 11/23/2022]
Abstract
Clonorchis sinensis is a biological carcinogen inducing human cholangiocarcinoma, and clonorchiasis is one of the important endemic infectious diseases in East Asia. The present study investigated survival longevity of C. sinensis adult worms in various in vitro conditions to find the best way of keeping the worms longer. The worms were maintained in 0.85% NaCl, 1×PBS, 1×Locke's solution, RPMI-1640, DMEM, and IMDM media, and in 1×Locke's solution with different supplements. All of the worms died within 3 and 7 days in 0.85% NaCl and 1×PBS, respectively, but survived up to 57 days in 1×Locke's solution. The worms lived for 106 days in DMEM, and 114 days in both RPMI-1640 and IMDM media. The survival rate in RPMI-1640 medium was the highest (50%) compared to that in DMEM (20±10%) and in IMDM (33.3±25.2%) after 3 months. The 1×Locke's solution with 0.005% bovine bile supplement showed increased duration of maximum survival from 42 days to 70 days. Higher concentration of bile supplements than 0.005% or addition of glucose were disadvantageous for the worm survival. The worms died rapidly in solutions containing L-aspartic acid, L-glutamic acid, and adenine compared to L-arginine, L-serine, and L-tryptophan. In conclusion, the 1×Locke's solution best supports the worms alive among inorganic solutions for 57 days, and the RPMI-1640 medium maintains living C. sinensis adults better and longer up to 114 days in vitro than other media.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | |
Collapse
|
26
|
Gold–silver-nanoclusters having cholic acid imprinted nanoshell. Talanta 2012; 93:364-70. [DOI: 10.1016/j.talanta.2012.02.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 02/02/2023]
|
27
|
Effect of Tetrabutylammonium Cation on Solid-Phase Analytical Derivatization as a Function of Analyte Lipophilicity. Chromatographia 2011. [DOI: 10.1007/s10337-011-2160-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Castro-Perez JM, Roddy TP, Shah V, Wang SP, Ouyang X, Ogawa A, McLaren DG, Tadin-Strapps M, Robinson MJ, Bartz SR, Ason B, Chen Y, Previs SF, Wong KK, Vreeken RJ, Johns DG, Hubbard BK, Hankemeier T, Mitnaul L. Attenuation of Slc27a5 gene expression followed by LC-MS measurement of bile acid reconjugation using metabolomics and a stable isotope tracer strategy. J Proteome Res 2011; 10:4683-91. [PMID: 21819150 DOI: 10.1021/pr200475g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to evaluate the use of high resolution LC-MS together with metabolomics and D(4)-cholic acid (D(4)-CA) as a metabolic tracer to measure the metabolism and reconjugation of bile acids (BAs) in vitro and in vivo. Metabolic tracers are very important because they allow for the direct detection (substrate-to-product) of small and significant biological perturbations that may not be apparent when monitoring "static" endogenous levels of particular metabolites. Slc27a5, also known as fatty acid transport protein 5 (FATP5), is the hepatic BA-CoA ligase involved in reconjugating BAs during enterohepatic BA recycling. Using Slc27a5-cKD mice, silencing of ∼90% gene expression was achieved followed by reduction in the reconjugation of D(4)-CA to D(4)-taurocholic acid (D(4)-TCA), as well as other conjugated BA metabolites in plasma (p = 0.0031). The method described allowed a rapid measure of many D(4) and endogenous BA. Analysis of bile resulted in the detection of 39 BA metabolites from a 13 min analytical run. Finally, the utilization of a novel high resolution mass spectrometry method in combination with metabolomics and a stable isotope metabolic tracer allowed for the detection of targeted and untargeted BAs following silencing of the Slc27a5 gene in primary hepatocytes and in mice.
Collapse
|