1
|
Kiszkiel-Taudul I, Starczewska B, Wierzbowska M. Development of chromatographic techniques connected with corona and tandem mass spectrometry detection systems for determination of amoxicillin in bovine milk. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Pauter K, Szultka-Młyńska M, Buszewski B. Determination and Identification of Antibiotic Drugs and Bacterial Strains in Biological Samples. Molecules 2020; 25:E2556. [PMID: 32486359 PMCID: PMC7321139 DOI: 10.3390/molecules25112556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Antibiotics were initially natural substances. However, nowadays, they also include synthetic drugs, which show their activity against bacteria, killing or inhibiting their growth and division. Thanks to these properties, many antibiotics have quickly found practical application in the fight against infectious diseases such as tuberculosis, syphilis, gastrointestinal infections, pneumonia, bronchitis, meningitis and septicemia. Antibiotic resistance is currently a detrimental problem; therefore, in addition to the improvement of antibiotic therapy, attention should also be paid to active metabolites in the body, which may play an important role in exacerbating the existing problem. Taking into account the clinical, cognitive and diagnostic purposes of drug monitoring, it is important to select an appropriate analytical method that meets all the requirements. The detection and identification of the microorganism responsible for the infection is also an essential factor in the implementation of appropriate antibiotic therapy. In recent years, clinical microbiology laboratories have experienced revolutionary changes in the way microorganisms are identified. The MALDI-TOF MS technique may be interesting, especially in some areas where a quick analysis is required, as is the case with clinical microbiology. This method is not targeted, which means that no prior knowledge of the infectious agent is required, since identification is based on a database match.
Collapse
Affiliation(s)
- Katarzyna Pauter
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
3
|
|
4
|
Yabré M, Ferey L, Somé IT, Gaudin K. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules 2018; 23:molecules23051065. [PMID: 29724076 PMCID: PMC6100308 DOI: 10.3390/molecules23051065] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
The greening of analytical methods has gained increasing interest in the field of pharmaceutical analysis to reduce environmental impacts and improve the health safety of analysts. Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most widely used analytical technique involved in pharmaceutical drug development and manufacturing, such as the quality control of bulk drugs and pharmaceutical formulations, as well as the analysis of drugs in biological samples. However, RP-HPLC methods commonly use large amounts of organic solvents and generate high quantities of waste to be disposed, leading to some issues in terms of ecological impact and operator safety. In this context, greening HPLC methods is becoming highly desirable. One strategy to reduce the impact of hazardous solvents is to replace classically used organic solvents (i.e., acetonitrile and methanol) with greener ones. So far, ethanol has been the most often used alternative organic solvent. Others strategies have followed, such as the use of totally aqueous mobile phases, micellar liquid chromatography, and ionic liquids. These approaches have been well developed, as they do not require equipment investments and are rather economical. This review describes and critically discusses the recent advances in greening RP-HPLC methods dedicated to pharmaceutical analysis based on the use of alternative solvents.
Collapse
Affiliation(s)
- Moussa Yabré
- ChemBioPharm Team, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Bordeaux University, F-33000 Bordeaux, France.
- Laboratoire de développement du médicament, Université Ouaga 1 Pr Joseph Ki-Zerbo, Ouaga 03 BP 7021, Burkina Faso.
| | - Ludivine Ferey
- ChemBioPharm Team, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Bordeaux University, F-33000 Bordeaux, France.
| | - Issa Touridomon Somé
- Laboratoire de développement du médicament, Université Ouaga 1 Pr Joseph Ki-Zerbo, Ouaga 03 BP 7021, Burkina Faso.
| | - Karen Gaudin
- ChemBioPharm Team, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Bordeaux University, F-33000 Bordeaux, France.
| |
Collapse
|
5
|
An Q, Dong YM, Lu NW, Li N. Micellar liquid chromatographic method for the determination of ephedrine and pseudoephedrine in human serum by direct inject of the sample with simple dilution. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1287723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qiong An
- Department of Pharmacy, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, P. R. China
- Institute of Integration of Traditional Chinese and Western Medicine, Medical College, HeXi University, Zhangye, Gansu, P. R. China
| | - Yu-ming Dong
- Department of Pharmacy, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Ning-wei Lu
- Department of Pharmacy, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Ning Li
- Department of Pharmacy, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
6
|
Kukusamude C, Quirino JP, Srijaranai S. A coacervative extraction based on single-chain and double-chain cationic surfactants. J Chromatogr A 2016; 1472:10-15. [DOI: 10.1016/j.chroma.2016.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
7
|
Stępnik KE, Malinowska I, Maciejewska M. A new application of micellar liquid chromatography in the determination of free ampicillin concentration in the drug-human serum albumin standard solution in comparison with the adsorption method. Talanta 2016; 153:1-7. [PMID: 27130082 DOI: 10.1016/j.talanta.2016.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 11/24/2022]
Abstract
The determination of free drug concentration is a very important issue in the field of pharmacology because only the unbound drug fraction can achieve a pharmacological effect. Due to the ability to solubilize many different compounds in micellar aggregates, micellar liquid chromatography (MLC) can be used for direct determination of free drug concentration. Proteins are not retained on the stationary phase probably due to the formation of protein - surfactant complexes which are excluded from the pores of stationary phase. The micellar method is simple and fast. It does not require any pre-preparation of the tested samples for analysis. The main aim of this paper is to demonstrate a completely new applicability of the analytical use of MLC concerning the determination of free drug concentration in the standard solution of human serum albumin. The well-known adsorption method using RP-HPLC and the spectrophotometric technique was applied as the reference method. The results show that the free drug concentration value obtained in the MLC system (based on the RP-8 stationary phase and CTAB) is similar to that obtained by the adsorption method: both RP-HPLC (95.83μgmL(-1), 79.86% of free form) and spectrophotometry (95.71μgmL(-1), 79.76%). In the MLC the free drug concentration was 93.98μgmL(-1) (78.3%). This indicates that the obtained results are within the analytical range of % of free ampicillin fraction and the MLC with direct sample injection can be treated like a promising method for the determination of free drug concentration.
Collapse
Affiliation(s)
- Katarzyna E Stępnik
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Irena Malinowska
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Małgorzata Maciejewska
- Faculty of Chemistry, Department of Polymer Chemistry, Maria Curie - Skłodowska University, Gliniana St. 33, 20-614 Lublin, Poland
| |
Collapse
|
8
|
Yang Z, Hu X, Wu S. Preparative isolation of a cytotoxic principle of a forest mushroomSuillus luteusby sodium dodecyl sulfate based “salting-in” countercurrent chromatography. J Sep Sci 2016; 39:732-40. [DOI: 10.1002/jssc.201501028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi Yang
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences; Zhejiang University, Hangzhou 310058; China
| | - Xueqian Hu
- School of Medicine; Zhejiang University; Hangzhou 310058 China
| | - Shihua Wu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences; Zhejiang University, Hangzhou 310058; China
| |
Collapse
|
9
|
Dong YM, An Q, Lu NW, Li N. Development micellar HPLC method for simultaneous determination of ephedrine, pseudoephedrine, and methylephedrine in Ephedra Herb and traditional Chinese medicinal preparations. ACTA CHROMATOGR 2015. [DOI: 10.1556/achrom.27.2015.2.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Peris-Vicente J, Carda-Broch S, Esteve-Romero J. Quantification of tamoxifen in pharmaceutical formulations using micellar liquid chromatography. ANAL SCI 2015; 30:925-30. [PMID: 25213822 DOI: 10.2116/analsci.30.925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper describes a micellar liquid chromatographic method used to analyze tamoxifen (TAMO) in pharmaceutical formulations, while focusing in its interesting features. Solid samples were solved in a micellar solution, irradiated at 254 nm, filtered and injected. Extraction steps were avoided and thus expediting the procedure. Tamoxifen was resolved in <5 min, using a mobile phase containing 0.15 M sodium dodecyl sulfate-7% pentanol at pH 3, running at 1.5 mL/min under an isocratic mode at 40°C through a C18 column. Detection was achieved by fluorescence by excitation at 260 nm and emission at 380 nm. The validation was performed following the requirements of the International Conference on Harmonization (ICH) Tripartite Guidelines in terms of: specificity, sensitivity, calibration range (0.2 - 20 mg/L), accuracy (98.8 - 101.7%), precision (<1.5%) and robustness (<6.2%). The method was applied to quantify TAMO in TAMO citrate tablets supplied in Spain, and was found appropriate for the quality control of TAMO formulations.
Collapse
|
11
|
El-Shaheny RN, El-Maghrabey MH, Belal FF. Micellar Liquid Chromatography from Green Analysis Perspective. OPEN CHEM 2015. [DOI: 10.1515/chem-2015-0101] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractMicellar liquid chromatography (MLC) is a simple well-established branch of high-performance liquid chromatography. The applications of MLC for the determination of numerous compounds in pharmaceutical formulations, biological samples, food, and environmental samples have been growing very rapidly. MLC technique has several advantages over other techniques, such as simultaneous separation of charged and uncharged solutes, rapid gradient capability, direct on-column injection of physiological fluids, unique separation selectivity, high reproducibility, robustness, enhanced luminescence detection, low cost, and safety. This review is devoted to the evaluation of the agreement of MLC with the principles of green chemistry which recently represents a universal trend. Also, it provides an overview on the basics of MLC, in addition to a survey of MLC methods published in the past five years for the assay of various compounds in different matrices.
Collapse
|
12
|
Agrawal N, Esteve-Romero J, Bose D, Dubey NP, Peris-Vicente J, Carda-Broch S. Determination of selective serotonin reuptake inhibitors in plasma and urine by micellar liquid chromatography coupled to fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 965:142-9. [DOI: 10.1016/j.jchromb.2014.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/24/2014] [Accepted: 06/25/2014] [Indexed: 11/26/2022]
|
13
|
Development and validation of a rapid turbidimetric assay to determine the potency of cefuroxime sodium in powder for dissolution for injection. Pathogens 2014; 3:656-66. [PMID: 25438016 PMCID: PMC4243433 DOI: 10.3390/pathogens3030656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 11/22/2022] Open
Abstract
The cefuroxime sodium is a second generation cephalosporin indicated for infections caused by Gram-positive and Gram-negative microorganisms. Although this drug is highly studied and researched regarding the antimicrobial activity, pharmacokinetics and pharmacodynamics, there are few studies regarding the development of analytical methodology for this cephalosporin. Thus, research involving analytical methods is essential and highly relevant to optimize its analysis in the pharmaceutical industry and guarantee the quality of the product already sold. This study describes the development and validation of a microbiological assay applying the turbidimetric method for the determination of cefuroxime, using Micrococcus luteus ATCC 9341 as micro-organism test and 3x3 parallel line assay design, with nine tubes for each assay, as recommended by the Brazilian Pharmacopoeia. The developed and validated method showed excellent results of linearity, seletivity, precision and robustness, in the concentration range from 30.0 to 120.0 mg/mL, with 100.21% accuracy and content 99.97% to cefuroxime sodium in injectable pharmaceutical form.
Collapse
|
14
|
Biological sample preparation: attempts on productivity increasing in bioanalysis. Bioanalysis 2014; 6:1691-710. [DOI: 10.4155/bio.14.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sample preparation is an important step of any biomedical analysis. Development and validation of fast, reproducible and reliable sample preparation methods would be very helpful in increasing productivity. Except for a few direct injection methods, almost all biological samples should at least be diluted before any analysis. Sometimes dilution is not possible because of the low concentration of the target analyte in the sample, and alternative pretreatments, such as filtration, precipitation and sample clean up using different extraction methods, are needed. This review focuses on the recent achievements in the pretreatment of biological samples and investigates them in six categories (i.e., dilution, filtration/dialysis, precipitation, extraction [solid-phase extraction, liquid–liquid extraction], novel techniques [turbulent flow chromatography, immunoaffinity method, electromembrane extraction] and combined methods). Each category will be discussed according to its productivity rate and suitability for routine analysis, and the discussed methods will be compared according to the mentioned indices.
Collapse
|