1
|
Le Droumaguet B, Guerrouache M, Carbonnier B. Contribution of the "Click Chemistry" Toolbox for the Design, Synthesis, and Resulting Applications of Innovative and Efficient Separative Supports: Time for Assessment. Macromol Rapid Commun 2022; 43:e2200210. [PMID: 35700224 DOI: 10.1002/marc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Indexed: 12/21/2022]
Abstract
The last two decades have seen the rapid expansion of click chemistry methodology in various domains closely related to organic chemistry. It has notably been widely developed in the area of surface chemistry, mainly because of the high-yielding character of reactions of the "click" type. Especially, this powerful chemical reaction toolbox has been adapted to the preparation of stationary phases from the corresponding chromatographic supports. A plethora of selectors can thus be immobilized on either organic, inorganic, or hybrid stationary phases that can be used in different chromatographic modes. This review first highlights the few different chemical ligation strategies of the "click" type that are up to now mainly devoted to the development of functionalized supports for separation sciences. Then, it gives in a second part an up-to-date survey of the different studies dedicated to the preparation of click chemistry-based chromatographic supports while highlighting the powerful and versatile character of the "click" ligation strategy for the design, synthesis, and developments of more and more complex systems that can find promising applications in the area of analytical sciences, in domains as varied as enantioselective separation, glycomics, proteomics, genomics, metabolomics, etc.
Collapse
Affiliation(s)
- Benjamin Le Droumaguet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Mohamed Guerrouache
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| | - Benjamin Carbonnier
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Thiais, F-94320, France
| |
Collapse
|
2
|
Zhou H, Chen J, Li H, Quan K, Zhang Y, Qiu H. Imidazolium ionic liquid-enhanced poly(quinine)-modified silica as a new multi-mode chromatographic stationary phase for separation of achiral and chiral compounds. Talanta 2020; 211:120743. [DOI: 10.1016/j.talanta.2020.120743] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/04/2023]
|
3
|
Recent advances in preparation and applications of monolithic chiral stationary phases. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Boratyński PJ, Zielińska-Błajet M, Skarżewski J. Cinchona Alkaloids-Derivatives and Applications. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2019; 82:29-145. [PMID: 30850032 DOI: 10.1016/bs.alkal.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Major Cinchona alkaloids quinine, quinidine, cinchonine, and cinchonidine are available chiral natural compounds (chiral pool). Unlike many other natural products, these alkaloids are available in multiple diastereomeric forms which are separated on an industrial scale. The introduction discusses in short conformational equilibria, traditional separation scheme, biosynthesis, and de novo chemical syntheses. The second section concerns useful chemical applications of the alkaloids as chiral recognition agents and effective chiral catalysts. Besides the Sharpless ethers and quaternary ammonium salts (chiral PTC), the most successful bifunctional organocatalysts are based on 9-amino derivatives: thioureas and squaramides. The third section reports the main transformations of Cinchona alkaloids. This covers reactions of the 9-hydroxyl group with the retention or inversion of configuration. Specific Cinchona rearrangements enlarging [2.2.2]bicycle of quinuclidine to [3.2.2] products are connected to the 9-OH substitution. The syntheses of numerous esterification and etherification products are described, including many examples of bi-Cinchona alkaloid ethers. Further derivatives comprise 9-N-substituted compounds. The amino group is introduced via an azido function with the inversion of configuration at the stereogenic center C9. The 9-epi-amino-alkaloids provide imines, amides, imides, thioureas, and squaramides. The syntheses of 9-carbon-, 9-sulfur-, and 9-selenium-substituted derivatives are discussed. Oxidation of the hydroxyl group of any alkaloid gives ketones, which can be selectively reduced, reacted with Grignard reagents, or subjected to the Corey-Chaykovsky reaction. The alkaloids were also partially degraded by splitting C4'-C9 or N1-C8 bonds. In order to immobilize Cinchona alkaloids the transformations of the 3-vinyl group were often exploited. Finally, miscellaneous functionalizations of quinuclidine, quinoline, and examples of various metal complexes of the alkaloids are considered.
Collapse
Affiliation(s)
| | | | - Jacek Skarżewski
- Department of Organic Chemistry, Wrocław University of Technology, Wrocław, Poland.
| |
Collapse
|
5
|
Kacprzak K, Ruszkowski P, Valentini L, Huczyński A, Steverding D. Cytotoxic and trypanocidal activities of cinchona alkaloid derivatives. Chem Biol Drug Des 2018; 92:1778-1787. [PMID: 29877033 DOI: 10.1111/cbdd.13346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 11/28/2022]
Abstract
A series of 27 cinchona alkaloid derivatives (1f-w, 2a-e and 3a-d) were investigated for their cytotoxic and trypanocidal activities using seven different cancer cell lines (KB, HeLa, MCF-7, A-549, Hep-G2, U-87 and HL-60), two normal cell lines (HDF and CHO) and bloodstream forms of Trypanosoma brucei brucei, respectively. Four compounds (1u, 1w, 2e and 3d) were identified with promising cytotoxic activity with 50% growth inhibition (GI50 ) values below 10 μM. Two (2e and 3d) of the four compounds also exhibited potent anti-trypanosomal activity with GI50 values of 0.3-0.4 μM. All four active compounds represented derivatives modified at their C-9 hydroxy group. With respect to anti-proliferative activity and selectivity, 2e (epi-N-quinidyl-N'-bis(3,5-trifluoromethyl)phenylthiourea) proved to be the most promising derivative for both cancer cells and bloodstream forms of T. b. brucei. The cytotoxic activity of compounds 1u, 1w, 2e and 3d was attributed to their ability to induce apoptosis in cancer cells. The results demonstrate the potential of cinchona alkaloid derivatives as novel anti-cancer and anti-trypanosome drug candidates.
Collapse
Affiliation(s)
- Karol Kacprzak
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Luisa Valentini
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Adam Huczyński
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | |
Collapse
|
6
|
Ilisz I, Bajtai A, Lindner W, Péter A. Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J Pharm Biomed Anal 2018; 159:127-152. [PMID: 29980014 DOI: 10.1016/j.jpba.2018.06.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
As the understanding of the various biological actions of compounds with different stereochemistry has grown, the necessity to develop methods for the analytical qualification and quantification of chiral products has become particularly important. The last quarter of the century has seen a vast growth of diverse chiral technologies, including stereocontrolled synthesis and enantioselective separation and analysis concepts. By the introduction of covalently bonded silica-based chiral stationary phases (CSPs), the so-called direct liquid chromatographic (LC) methods of enantiomer separation became the state-of-the-art methodology. Although a large number of CSPs is available nowadays, the design and development of new chiral selectors and CSPs are still needed since it is obvious that in practice one needs a good portfolio of different CSPs and focused "chiral columns" to tackle the challenging tasks. This review discusses and summarizes direct enantiomer separations of chiral acids and ampholytes applying anionic and zwitterionic ion-exchangers derived from Cinchona alkaloids with emphasis on literature data published in the last 10 years. Our aim is to provide an overview of practical solutions, while focusing on the integration of molecular recognition and methodological variables.
Collapse
Affiliation(s)
- István Ilisz
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Institute of Pharmaceutical Analysis, University of Szeged, Somogyi utca 4, H-6720 Szeged, Hungary.
| | - Attila Bajtai
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 83, 1090 Vienna, Austria
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
7
|
Kohout M, Wernisch S, Tůma J, Hettegger H, Pícha J, Lindner W. Effect of different immobilization strategies on chiral recognition properties of Cinchona
-based anion exchangers. J Sep Sci 2018; 41:1355-1364. [DOI: 10.1002/jssc.201701213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Michal Kohout
- Department of Organic Chemistry; University of Chemistry and Technology Prague; Prague Czech Republic
| | - Stefanie Wernisch
- Department of Internal Medicine-Nephrology; University of Michigan; Ann Arbor MI USA
| | - Jiří Tůma
- Department of Organic Chemistry; University of Chemistry and Technology Prague; Prague Czech Republic
| | - Hubert Hettegger
- Division of Chemistry of Renewable Resources; Department of Chemistry; University of Natural Resources and Life Sciences; Tulln Austria
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry; The Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Wolfgang Lindner
- Department of Analytical Chemistry; University of Vienna; Vienna Austria
| |
Collapse
|
8
|
Ilisz I, Péter A, Lindner W. State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and Isoprenoids Modification by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition (Click Chemistry): Toward New Functions and Molecular Architectures. Chem Rev 2016; 116:5689-743. [DOI: 10.1021/acs.chemrev.5b00302] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karol Kacprzak
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Iwona Skiera
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Monika Piasecka
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Zdzisław Paryzek
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
10
|
Roszak K, Piasecka M, Katrusiak A, Kacprzak K. Double helix quinine-based supergelator. SOFT MATTER 2016; 12:1368-1373. [PMID: 26701368 DOI: 10.1039/c5sm02723c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
10,11-Didehydroquinine is a simple, low molecular weight supergelator which forms, in nonpolar media, stable chiral organogels composed of unique double-helix nano-sized fibers. A novel gelation mechanism involves a hydrogen bonding network formed by an acidic alkyne proton of the Cinchona gelator and the carbonyl group of ethyl acetate used as a solvent.
Collapse
Affiliation(s)
- Kinga Roszak
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
11
|
Wolrab D, Frühauf P, Moulisová A, Kuchař M, Gerner C, Lindner W, Kohout M. Chiral separation of new designer drugs (Cathinones) on chiral ion-exchange type stationary phases. J Pharm Biomed Anal 2016; 120:306-15. [DOI: 10.1016/j.jpba.2015.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022]
|
12
|
Novel carbamoyl type quinine and quinidine based chiral anion exchangers implementing alkyne–azide cycloaddition immobilization chemistry. J Chromatogr A 2014; 1337:85-94. [DOI: 10.1016/j.chroma.2014.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 11/18/2022]
|
13
|
Marechal A, El-Debs R, Dugas V, Demesmay C. Is click chemistry attractive for separation sciences? J Sep Sci 2013; 36:2049-62. [DOI: 10.1002/jssc.201300231] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Audrey Marechal
- Institut des Sciences Analytiques; UMR CNRS 5280, Université de Lyon; Villeurbanne France
| | - Racha El-Debs
- Institut des Sciences Analytiques; UMR CNRS 5280, Université de Lyon; Villeurbanne France
| | - Vincent Dugas
- Institut des Sciences Analytiques; UMR CNRS 5280, Université de Lyon; Villeurbanne France
| | - Claire Demesmay
- Institut des Sciences Analytiques; UMR CNRS 5280, Université de Lyon; Villeurbanne France
| |
Collapse
|
14
|
Development of chiral stationary phases for high-performance liquid chromatographic separation. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.07.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Yu H, Yin C, Jia C, Jin Y, Ke Y, Liang X. Evaluation of “click” binaphthyl chiral stationary phases by liquid chromatography. Chirality 2012; 24:391-9. [DOI: 10.1002/chir.22039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/08/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy; East China University of Science and Technology; Shanghai; China
| | - Chenghua Yin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy; East China University of Science and Technology; Shanghai; China
| | - Cunyu Jia
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy; East China University of Science and Technology; Shanghai; China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy; East China University of Science and Technology; Shanghai; China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy; East China University of Science and Technology; Shanghai; China
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; China
| |
Collapse
|
16
|
Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F. Recent applications in chiral high performance liquid chromatography: A review. Anal Chim Acta 2011; 706:205-22. [DOI: 10.1016/j.aca.2011.08.038] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/08/2011] [Accepted: 08/25/2011] [Indexed: 01/17/2023]
|
17
|
Kacprzak KM, Lindner W. Novel Pirkle-type quinine 3,5-dinitrophenylcarbamate chiral stationary phase implementing click chemistry. J Sep Sci 2011; 34:2391-6. [DOI: 10.1002/jssc.201100395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/10/2022]
|