1
|
Xie J, Guo Y, Ma Y, Jiang H, Zhang L, Mao L, Zhu L, Zheng Y, Liu X. Spontaneous In-Source Fragmentation Reaction Mechanism and Highly Sensitive Analysis of Dicofol by Electrospray Ionization Mass Spectrometry. Molecules 2023; 28:molecules28093765. [PMID: 37175171 PMCID: PMC10180504 DOI: 10.3390/molecules28093765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Although dicofol has been widely banned all over the world as a kind of organochlorine contaminant, it still exists in the environment. This study developed a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS) detection technique for dicofol, an environmental pollutant, for the first time using in-source fragmentation. The results confirmed that m/z 251 was the only precursor ion of dicofol after in-source fragmentation, and m/z 139 and m/z 111 were reasonable product ions. The main factors triggering the in-source fragmentation were the H+ content and solution conductivity when dicofol entered the mass spectrometer. Density functional theory can be used to analyze and interpret the mechanism of dicofol fragmentation reaction in ESI source. Dicofol reduced the molecular energy from 8.8 ± 0.05 kcal/mol to 1.0 ± 0.05 kcal/mol, indicating that the internal energy release from high to low was the key driving force of in-source fragmentation. A method based on HPLC-MS/MS was developed to analyze dicofol residues in environmental water. The LOQ was 0.1 μg/L, which was better than the previous GC or GC-MS methods. This study not only proposed an HPLC-MS/MS analysis method for dicofol for the first time but also explained the in-source fragmentation mechanism of compounds in ESI source, which has positive significance for the study of compounds with unconventional mass spectrometry behavior in the field of organic pollutant analysis and metabonomics.
Collapse
Affiliation(s)
- Jun Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yage Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Mitulović G. New HPLC Techniques for Proteomics Analysis: A Short Overview of Latest Developments. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.941266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Goran Mitulović
- a Clinical Institute of Laboratory Medicine and Proteomics Core Facility , Medical University of Vienna , Wien , Austria
| |
Collapse
|
3
|
Van Riper SK, de Jong EP, Higgins L, Carlis JV, Griffin TJ. Improved intensity-based label-free quantification via proximity-based intensity normalization (PIN). J Proteome Res 2014; 13:1281-92. [PMID: 24571364 PMCID: PMC3993879 DOI: 10.1021/pr400866r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Researchers are increasingly turning to label-free MS1 intensity-based quantification strategies within HPLC-ESI-MS/MS workflows to reveal biological variation at the molecule level. Unfortunately, HPLC-ESI-MS/MS workflows using these strategies produce results with poor repeatability and reproducibility, primarily due to systematic bias and complex variability. While current global normalization strategies can mitigate systematic bias, they fail when faced with complex variability stemming from transient stochastic events during HPLC-ESI-MS/MS analysis. To address these problems, we developed a novel local normalization method, proximity-based intensity normalization (PIN), based on the analysis of compositional data. We evaluated PIN against common normalization strategies. PIN outperforms them in dramatically reducing variance and in identifying 20% more proteins with statistically significant abundance differences that other strategies missed. Our results show the PIN enables the discovery of statistically significant biological variation that otherwise is falsely reported or missed.
Collapse
Affiliation(s)
- Susan K Van Riper
- Department of Biomedical Informatics and Computational Biology, University of Minnesota Rochester , 111 South Broadway, Rochester, Minnesota 55904, United States
| | | | | | | | | |
Collapse
|
4
|
Yoon H, Lee CH, Jeong YH, Gee HC, Jang WD. A zinc porphyrin-based molecular probe for the determination of contamination in commercial acetonitrile. Chem Commun (Camb) 2012; 48:5109-11. [PMID: 22513816 DOI: 10.1039/c2cc31149f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc porphyrin-based receptor containing four triazole groups at the ortho-position of each phenyl group (1) was utilized as a useful probe for the determination of contaminants in acetonitrile (MeCN). Through the simple observation of the absorption spectrum of 1 in MeCN, the cyanide contamination concentration could be directly determined.
Collapse
Affiliation(s)
- Hongsik Yoon
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
5
|
Jung S, Effelsberg U, Tallarek U. Microchip Electrospray: Improvements in Spray and Signal Stability during Gradient Elution by an Inverted Postcolumn Makeup Flow. Anal Chem 2011; 83:9167-73. [DOI: 10.1021/ac202413z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stephanie Jung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Uwe Effelsberg
- Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|