1
|
Tuzimski T, Petruczynik A, Plech T, Kaproń B, Makuch-Kocka A, Szultka-Młyńska M, Misiurek J, Buszewski B, Waksmundzka-Hajnos M. Determination of Selected Isoquinoline Alkaloids from Chelidonium majus, Mahonia aquifolium and Sanguinaria canadensis Extracts by Liquid Chromatography and Their In Vitro and In Vivo Cytotoxic Activity against Human Cancer Cells. Int J Mol Sci 2023; 24:ijms24076360. [PMID: 37047332 PMCID: PMC10093986 DOI: 10.3390/ijms24076360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
The search for new substances with cytotoxic activity against various cancer cells, especially cells that are very resistant to currently used chemotherapeutic agents, such as melanoma cells, is a very important scientific aspect. We investigated the cytotoxic effect of Chelidonium majus, Mahonia aquifolium and Sanguinaria canadensis extracts obtained from different parts of these plants collected at various vegetation stages on FaDu, SCC-25, MCF-7, and MDA-MB-231 cancer cells. Almost all the tested extracts showed higher cytotoxicity against these cancer cells than the anticancer drug etoposide. The highest cytotoxicity against the FaDu, SCC-25, MCF-7 and MDA-MB-231 cancer cell lines was obtained for the Sanguinaria candensis extract collected before flowering. The cytotoxicity of extracts obtained from different parts of Chelidonium majus collected at various vegetation stages was also evaluated on melanoma cells (A375, G361 and SK-MEL-3). The highest cytotoxic activity against melanoma A375 cells was observed for the Chelidonium majus root extract, with an IC50 of 12.65 μg/mL. The same extract was the most cytotoxic against SK-MEL-3 cells (IC50 = 1.93 μg/mL), while the highest cytotoxic activity against G361 cells was observed after exposure to the extract obtained from the herb of the plant. The cytotoxic activity of Chelidonium majus extracts against melanoma cells was compared with the cytotoxicity of the following anticancer drugs: etoposide, cisplatin and hydroxyurea. In most cases, the IC50 values obtained for the anticancer drugs were higher than those obtained for the Chelidonium majus extracts. The most cytotoxic extract obtained from the root of Chelidonium majus was selected for in vivo cytotoxic activity investigations using a Danio rerio larvae xenograft model. The model was applied for the first time in the in vivo investigations of the extract’s anticancer potential. The application of Danio rerio larvae xenografts in cancer research is advantageous because of the transparency and ease of compound administration, the small size and the short duration and low cost of the experiments. The results obtained in the xenograft model confirmed the great effect of the investigated extract on the number of cancer cells in a living organism. Our investigations show that the investigated plant extracts exhibit very high cytotoxic activity and can be recommended for further experiments in order to additionally confirm their potential use in the treatment of various human cancers.
Collapse
|
2
|
John RV, Devasia T, Adigal SS, Lukose J, Kartha VB, Chidangil S. Serum protein profile study of myocardial infarction using a LED induced fluorescence based HPLC system. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123616. [PMID: 36796215 DOI: 10.1016/j.jchromb.2023.123616] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 02/12/2023]
Abstract
Cardiovascular diseases (CVDs) are the major health conditions for high mortality and morbidity in humans. Delay in the diagnosis of CVDs effect patients long and short-term health condition. In -house assembled UV-light emitting diode (LED) based fluorescence detector for high -performance liquid chromatography (HPLC) (HPLC-LED-IF) system is used to record serum chromatograms of three categories of samples namely, before medicated- myocardial infarction (B-MI), after medicated- MI (A-MI), and normal. The sensitivity and performance of HPLC-LED-IF system is estimated using commercial serum proteins. Statistical analysis tools like, descriptive statistics, principal component analysis (PCA), and Match/ No Match test were applied to visualize the variation in three groups of samples. Statistical analysis of the protein profile data showed fairly good discrimination among the three categories. The receiver operating characteristic (ROC) curve also supported the reliability of the method to diagnose MI.
Collapse
Affiliation(s)
- Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Karnataka 576104, India
| | - Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
3
|
Li L, Zhao D, Du KZ, Li J, Fang S, He J, Tian F, Chang Y. A vortex-enhanced magnetic solid phase extraction for the selective enrichment of four quaternary ammonium alkaloids from Zanthoxyli Radix. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123617. [PMID: 36716512 DOI: 10.1016/j.jchromb.2023.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Zanthoxyli Radix, the dried root of Zanthozylum nitidum (Roxb.) DC, one of traditional Chinese medicines (TCMs), exhibits various pharmacological activities such as anti-bacterial, anti-inflammatory, anti-tumor, analgesic activity. A sustainable vortex-enhanced magnetic solid phase extraction (VE-MSPE) method combined with ultra-high performance liquid chromatography (UHPLC) was established to enrich and analyze the bioactive quaternary ammonium alkaloids (QAAs) of Zanthoxyli Radix. Fe3O4@C@CMCS magnetic nanoparticles (MNPs) was first synthesized for selectively adsorbing target QAAs (magnolinine, sanguinarine, nitidine chloride and chelerythrine), which possess excellent adsorption performance after being reused 10 times. The results revealed that the great adsorption rate of Fe3O4@C@CMCS MNPs for the four QAAs could reach 55.1-78.7 %. In addition, a reliable linear relationship (r ≥ 0.9995) and good recovery (97.5-104 %) was obtained. Consequently, the VE-MSPE method applying Fe3O4@C@CMCS MNPs as a sustainable adsorbent exhibited great potential in the selective enrichment of QAAs in TCM.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danhui Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kun-Ze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Liu X, Jiao X, Cheng Y, Ma Y, Bu J, Jin B, Li Q, Hu Z, Tang J, Lai C, Wang J, Cui G, Chen Y, Guo J, Huang L. Structure-function analysis of CYP719As involved in methylenedioxy bridge-formation in the biosynthesis of benzylisoquinoline alkaloids and its de novo production. Microb Cell Fact 2023; 22:23. [PMID: 36737755 PMCID: PMC9898898 DOI: 10.1186/s12934-023-02024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a type of secondary metabolite with clinical application value. (S)-stylopine is a special BIA which contains methylenedioxy bridge structures. CYP719As could catalyze the methylenedioxy bridge-formation on the A or D rings of protoberberine alkaloids, while displaying significant substrate regiospecificity. To explore the substrate preference of CYP719As, we cloned and identified five CyCYP719A candidates from Corydalis yanhusuo. Two CyCYP719As (CyCYP719A39 and CyCYP719A42) with high catalytic efficiency for the methylenedioxy bridge-formation on the D or A rings were characterized, respectively. The residues (Leu 294 for CyCYP719A42 and Asp 289 for CyCYP719A39) were identified as the key to controlling the regioselectivity of CYP719As affecting the methylenedioxy bridge-formation on the A or D rings by homology modeling and mutation analysis. Furthermore, for de novo production of BIAs, CyCYP719A39, CyCYP719A42, and their mutants were introduced into the (S)-scoulerine-producing yeast to produce 32 mg/L (S)-stylopine. These results lay a foundation for understanding the structure-function relationship of CYP719A-mediated methylenedioxy bridge-formation and provide yeast strains for the BIAs production by synthetic biology.
Collapse
Affiliation(s)
- Xiuyu Liu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China ,grid.256922.80000 0000 9139 560XSchool of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046 China
| | - Xiang Jiao
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Yatian Cheng
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Ying Ma
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Junling Bu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Baolong Jin
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Qishuang Li
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Zhimin Hu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Jinfu Tang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Changjiangsheng Lai
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Jian Wang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Guanghong Cui
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Yun Chen
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Juan Guo
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| |
Collapse
|
5
|
Mazur O, Bałdysz S, Warowicka A, Nawrot R. Tap the sap - investigation of latex-bearing plants in the search of potential anticancer biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2022; 13:979678. [PMID: 36388598 PMCID: PMC9664067 DOI: 10.3389/fpls.2022.979678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Latex-bearing plants have been in the research spotlight for the past couple of decades. Since ancient times their extracts have been used in folk medicine to treat various illnesses. Currently they serve as promising candidates for cancer treatment. Up to date there have been several in vitro and in vivo studies related to the topic of cytotoxicity and anticancer activity of extracts from latex-bearing plants towards various cell types. The number of clinical studies still remains scarce, however, over the years the number is systematically increasing. To the best of our knowledge, the scientific community is still lacking in a recent review summarizing the research on the topic of cytotoxicity and anticancer activity of latex-bearing plant extracts. Therefore, the aim of this paper is to review the current knowledge on in vitro and in vivo studies, which focus on the cytotoxicity and anticancer activities of latex-bearing plants. The vast majority of the studies are in vitro, however, the interest in this topic has resulted in the substantial growth of the number of in vivo studies, leading to a promising number of plant species whose latex can potentially be tested in clinical trials. The paper is divided into sections, each of them focuses on specific latex-bearing plant family representatives and their potential anticancer activity, which in some instances is comparable to that induced by commonly used therapeutics currently available on the market. The cytotoxic effect of the plant's crude latex, its fractions or isolated compounds, is analyzed, along with a study of cell apoptosis, chromatin condensation, DNA damage, changes in gene regulation and morphology changes, which can be observed in cell post plant extract addition. The in vivo studies go beyond the molecular level by showing significant reduction of the tumor growth and volume in animal models. Additionally, we present data regarding plant-mediated biosynthesis of nanoparticles, which is regarded as a new branch in plant latex research. It is solely based on the green-synthesis approach, which presents an interesting alternative to chemical-based nanoparticle synthesis. We have analyzed the cytotoxic effect of these particles on cells. Data regarding the cytotoxicity of such particles raises their potential to be involved in the design of novel cancer therapies, which further underlines the significance of latex-bearing plants in biotechnology. Throughout the course of this review, we concluded that plant latex is a rich source of many compounds, which can be further investigated and applied in the design of anticancer pharmaceuticals. The molecules, to which this cytotoxic effect can be attributed, include alkaloids, flavonoids, tannins, terpenoids, proteases, nucleases and many novel compounds, which still remain to be characterized. They have been studied extensively in both in vitro and in vivo studies, which provide an excellent starting point for their rapid transfer to clinical studies in the near future. The comprehensive study of molecules from latex-bearing plants can result in finding a promising alternative to several pharmaceuticals on the market and help unravel the molecular mode of action of latex-based preparations.
Collapse
Affiliation(s)
- Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
7
|
Kumar A, Malik AK, Singh B. Recent advances in the analysis of plant alkaloids by capillary electrophoresis and micellar electrokinetic chromatography. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ashwini Kumar
- Government Post‐Graduate College Department of Chemistry Una Himachal Pradesh India
| | | | - Baljinder Singh
- Department of Biotechnology Panjab University Chandigarh India
| |
Collapse
|
8
|
Gackowski M, Przybylska A, Kruszewski S, Koba M, Mądra-Gackowska K, Bogacz A. Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations. Molecules 2021; 26:4141. [PMID: 34299418 PMCID: PMC8307982 DOI: 10.3390/molecules26144141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022] Open
Abstract
The present review summarizes scientific reports from between 2010 and 2019 on the use of capillary electrophoresis to quantify active constituents (i.e., phenolic compounds, coumarins, protoberberines, curcuminoids, iridoid glycosides, alkaloids, triterpene acids) in medicinal plants and herbal formulations. The present literature review is founded on PRISMA guidelines and selection criteria were formulated on the basis of PICOS (Population, Intervention, Comparison, Outcome, Study type). The scrutiny reveals capillary electrophoresis with ultraviolet detection as the most frequently used capillary electromigration technique for the selective separation and quantification of bioactive compounds. For the purpose of improvement of resolution and sensitivity, other detection methods are used (including mass spectrometry), modifiers to the background electrolyte are introduced and different extraction as well as pre-concentration techniques are employed. In conclusion, capillary electrophoresis is a powerful tool and for given applications it is comparable to high performance liquid chromatography. Short time of execution, high efficiency, versatility in separation modes and low consumption of solvents and sample make capillary electrophoresis an attractive and eco-friendly alternative to more expensive methods for the quality control of drugs or raw plant material without any relevant decrease in sensitivity.
Collapse
Affiliation(s)
- Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Anna Przybylska
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Stefan Kruszewski
- Biophysics Department, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellońska 13 Street, PL–85067 Bydgoszcz, Poland;
| | - Marcin Koba
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| | - Artur Bogacz
- Department of Otolaryngology and Oncology, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| |
Collapse
|
9
|
Radiometric characterisation of light sources used in analytical chemistry - A review. Anal Chim Acta 2020; 1123:113-127. [PMID: 32507235 DOI: 10.1016/j.aca.2020.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Light sources are an indispensable component of an overwhelmingly large number of analytical methods. Radiometric characterisation of light sources in analytical chemistry is therefore of fundamental importance. This review presents up to date knowledge on methods to characterise radiometric properties of light sources in terms of radiometric power, irradiance, brightness, luminous efficacy, luminous efficiency and emission spectra, all of which are crucial parameters for their use in analytical chemistry. Special attention is paid to radiometric characterisation of new generations of light sources with focus on miniaturised and low-cost light sources suitable for portable analytical instrumentation. Miniaturised light sources, especially new generations of solid-state light sources including solution processable quantum dot light emitting diodes (QLEDs), organic LEDs (OLEDs) as well as conventional LEDs and lasers, are radiometrically characterised through various spectrophotometric, actinometric as well as new facile radiometric methods. Although the areas of analytical use of new light sources including QLEDs, OLEDs as well as other important light sources such as deep ultraviolet (DUV) and infrared LEDs in analytical chemistry are yet to reach their potential, their radiometric characterisation opens future options for their wider deployment in analytical chemistry.
Collapse
|
10
|
Huo F, Wan T, Wang Y, Liu Y, Karmaker PG, Yang X. Enhanced light-emitting diode induced fluorescence detection system with capillary electrophoresis. J Chromatogr A 2020; 1619:460935. [PMID: 32067761 DOI: 10.1016/j.chroma.2020.460935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 11/26/2022]
Abstract
An enhanced fluorescence detection system of capillary electrophoresis (CE) was equipped with a concave silver mirror, by which the detection sensitivity of light-emitting diode induced fluorescence (LEDIF) can be increased greatly. The silver concave mirror and the cathode window in photomultiplier tube (PMT) were accurately set face to face at the same axis. When the two labeled tumor markers exactly moved to the center of detection window, the emission from analytes are excitated by LED source. Currently, the analytes may be regarded as a luminescent source point. When the source point exactly moves to the focus of the concave mirror, the emission of the labeled sample was collected effectively, enhanced by convergence and reflected by the concave mirror. Then it was sensitively detected by the PMT. The optical mechanism of enhancing detection sensitivity was explored. A simple comparative test on sensitivity was carried out, which aimed to compare sensitivity of the new detection system with concave mirror to that without concave mirror but the other conditions were kept the same. Two tumor markers labeled with FITC were selected for the test, using the simple LEDIF detect system. The results (LOD, 150 nM for L-Leu and L-Val) showed that the detection sensitivity matched with concave mirror reached more 16 times than the detection method without concave mirror.
Collapse
Affiliation(s)
- Feng Huo
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Ting Wan
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Yaohui Wang
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Pran Gopal Karmaker
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro&Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, PR China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China.
| |
Collapse
|
11
|
Czeszak A, Resztak M, Czyrski A, Nowak I. Determination of the partition coefficient of isoquinoline alkaloids from Chelidonium majus by reversed phase thin layer chromatography. NEW J CHEM 2020. [DOI: 10.1039/d0nj00307g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determination of the partition coefficient (log P) of alkaloids by the RP-TLC method at different pH values. Distribution coefficient (log D) values were calculated. The investigated chlorides were found to be the most lipophilic of the compounds studied.
Collapse
Affiliation(s)
- Aleksandra Czeszak
- Laboratory of Applied Chemistry
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Matylda Resztak
- Chair and Department of Physical Pharmacy and Pharmacokinetics
- Faculty of Pharmacy
- University of Medical Sciences in Poznań
- 60-781 Poznań
- Poland
| | - Andrzej Czyrski
- Chair and Department of Physical Pharmacy and Pharmacokinetics
- Faculty of Pharmacy
- University of Medical Sciences in Poznań
- 60-781 Poznań
- Poland
| | - Izabela Nowak
- Laboratory of Applied Chemistry
- Faculty of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| |
Collapse
|
12
|
Lang DE, Morris JS, Rowley M, Torres MA, Maksimovich VA, Facchini PJ, Ng KKS. Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. J Biol Chem 2019; 294:14482-14498. [PMID: 31395658 DOI: 10.1074/jbc.ra119.009214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse class of plant-specialized metabolites that have been particularly well-studied in the order Ranunculales. The N-methyltransferases (NMTs) in BIA biosynthesis can be divided into three groups according to substrate specificity and amino acid sequence. Here, we report the first crystal structures of enzyme complexes from the tetrahydroprotoberberine NMT (TNMT) subclass, specifically for GfTNMT from the yellow horned poppy (Glaucium flavum). GfTNMT was co-crystallized with the cofactor S-adenosyl-l-methionine (d min = 1.6 Å), the product S-adenosyl-l-homocysteine (d min = 1.8 Å), or in complex with S-adenosyl-l-homocysteine and (S)-cis-N-methylstylopine (d min = 1.8 Å). These structures reveal for the first time how a mostly hydrophobic L-shaped substrate recognition pocket selects for the (S)-cis configuration of the two central six-membered rings in protoberberine BIA compounds. Mutagenesis studies confirm and functionally define the roles of several highly-conserved residues within and near the GfTNMT-active site. The substrate specificity of TNMT enzymes appears to arise from the arrangement of subgroup-specific stereospecific recognition elements relative to catalytic elements that are more widely-conserved among all BIA NMTs. The binding mode of protoberberine compounds to GfTNMT appears to be similar to coclaurine NMT, with the isoquinoline rings buried deepest in the binding pocket. This binding mode differs from that of pavine NMT, in which the benzyl ring is bound more deeply than the isoquinoline rings. The insights into substrate recognition and catalysis provided here form a sound basis for the rational engineering of NMT enzymes for chemoenzymatic synthesis and metabolic engineering.
Collapse
Affiliation(s)
- Dean E Lang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jeremy S Morris
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Michael Rowley
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Miguel A Torres
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Vook A Maksimovich
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kenneth K S Ng
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
13
|
Zielińska S, Wójciak-Kosior M, Dziągwa-Becker M, Gleńsk M, Sowa I, Fijałkowski K, Rurańska-Smutnicka D, Matkowski A, Junka A. The Activity of Isoquinoline Alkaloids and Extracts from Chelidonium majus against Pathogenic Bacteria and Candida sp. Toxins (Basel) 2019; 11:toxins11070406. [PMID: 31336994 PMCID: PMC6669454 DOI: 10.3390/toxins11070406] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 01/06/2023] Open
Abstract
Chelidonium majus (Papaveraceae) extracts exhibit antimicrobial activity due to the complex alkaloid composition. The aim of the research was to evaluate the antimicrobial potential of extracts from wild plants and in vitro cultures, as well as seven major individual alkaloids. Plant material derived from different natural habitats and in vitro cultures was used for the phytochemical analysis and antimicrobial tests. The composition of alkaloids was analyzed using chromatographic techniques (HPLC with DAD detection). The results have shown that roots contained higher number and amounts of alkaloids in comparison to aerial parts. All tested plant extracts manifested antimicrobial activity, related to different chemical structures of the alkaloids. Root extract used at 31.25–62.5 mg/L strongly reduced bacterial biomass. From the seven individually tested alkaloids, chelerythrine was the most effective against P. aeruginosa (MIC at 1.9 mg/L), while sanguinarine against S. aureus (MIC at 1.9 mg/L). Strong antifungal activity was observed against C. albicans when chelerythrine, chelidonine, and aerial parts extract were used. The experiments with plant extracts, individually tested alkaloids, and variable combinations of the latter allowed for a deeper insight into the potential mechanisms affecting the activity of this group of compounds.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Dziągwa-Becker
- Departament of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation, Orzechowa 61, 50-540 Wrocław, Poland
| | - Michał Gleńsk
- Department of Pharmacognosy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Karol Fijałkowski
- West Pomeranian University of Technology in Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Immunology, Microbiology and Physiological Chemistry, Piastów 45, 70-311 Szczecin, Poland
| | - Danuta Rurańska-Smutnicka
- Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Adam Matkowski
- Department of Pharmaceutical Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wroclaw, Poland
| | - Adam Junka
- Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
14
|
Rapid and sensitive capillary electrophoresis method for the analysis of Ecstasy in an oral fluid. Talanta 2019; 197:390-396. [DOI: 10.1016/j.talanta.2019.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
|
15
|
Zielińska S, Jezierska-Domaradzka A, Wójciak-Kosior M, Sowa I, Junka A, Matkowski AM. Greater Celandine's Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today's Pharmacology. Front Pharmacol 2018; 9:299. [PMID: 29713277 PMCID: PMC5912214 DOI: 10.3389/fphar.2018.00299] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
As antique as Dioscorides era are the first records on using Chelidonium as a remedy to several sicknesses. Inspired by the "signatura rerum" principle and an apparent ancient folk tradition, various indications were given, such as anti-jaundice and cholagogue, pain-relieving, and quite often mentioned-ophthalmological problems. Central and Eastern European folk medicine has always been using this herb extensively. In this region, the plant is known under many unique vernacular names, especially in Slavonic languages, associated or not with old Greek relation to "chelidon"-the swallow. Typically for Papaveroidae subfamily, yellow-colored latex is produced in abundance and leaks intensely upon injury. Major pharmacologically relevant components, most of which were first isolated over a century ago, are isoquinoline alkaloids-berberine, chelerythrine, chelidonine, coptisine, sanguinarine. Modern pharmacology took interest in this herb but it has not ended up in gaining an officially approved and evidence-based herbal medicine status. On the contrary, the number of relevant studies and publications tended to drop. Recently, some controversial reports and sometimes insufficiently proven studies appeared, suggesting anticancer properties. Anticancer potential was in line with anecdotical knowledge spread in East European countries, however, in the absence of directly-acting cytostatic compounds, some other mechanisms might be involved. Other properties that could boost the interest in this herb are antimicrobial and antiviral activities. Being a common synanthropic weed or ruderal plant, C. majus spreads in all temperate Eurasia and acclimates well to North America. Little is known about the natural variation of bioactive metabolites, including several aforementioned isoquinoline alkaloids. In this review, we put together older and recent literature data on phytochemistry, pharmacology, and clinical studies on C. majus aiming at a critical evaluation of state-of-the-art from the viewpoint of historical and folk indications. The controversies around this herb, the safety and drug quality issues and a prospective role in phytotherapy are discussed as well.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
| | - Anna Jezierska-Domaradzka
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| | | | - Ireneusz Sowa
- Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Adam Junka
- Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Wrocław, Poland
| | - Adam M. Matkowski
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
16
|
Tian Y, Zhang C, Guo M. Comparative study on alkaloids and their anti-proliferative activities from three Zanthoxylum species. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:460. [PMID: 28899423 PMCID: PMC5596839 DOI: 10.1186/s12906-017-1966-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/01/2017] [Indexed: 11/25/2022]
Abstract
Background Alkaloids have been considered as the most promising bioactive ingredients in plant species from the genus Zanthoxylum. This study reports on the compositions and contents of the Zanthoxylum alkaloids (ZAs) from three Zanthoxylum species, and their potential anti-proliferation activities. Methods An HPLC-UV/ESI-MS/MS method was established and employed to analyze the alkaloids in different Zanthoxylum extracts. The common and unique peaks and their relative contents were summarized and compared to evaluate the similarity and dissimilarity of the three Zanthoxylum species. Meanwhile, inhibitory activity tests to four carcinoma cell lines, i.e., stomach tumor cells (SGC-7901), cervical tumor cells (Hela), colon tumor cells (HT-29) and Hepatic tumor cells (Hep G2), were carried out in vitro to evaluate the bioactivities of the ZAs. Results Seventy peaks were detected in the crude total alkaloid samples, and 58 of them were identified. As a result, 13 common peaks were found in the extracts of all the three Zanthoxylum species, while some unique peaks were also observed in specific species, with 17 peaks in Z. simulans, 15 peaks in Z. ailanthoides and 11 peaks in Z. chalybeum, respectively. The comparison of the composition and relative contents indicated that alkaloids of benzophenanthridine type commonly present in all the three Zanthoxylum species with high relative contents among the others, which are 60.52% in Z. ailanthoides, 30.52% in Z. simulans and 13.84% in Z. chalybeum, respectively. In terms of activity test, Most of the crude alkaloids extracts showed remarkable inhibitory activities against various tumor cells, and the inhibitory rates ranged from 60.71 to 93.63% at a concentration of 200 μg/mL. However, SGC-7901 cells seemed to be more sensitive to the ZAs than the other three cancer cells. Conclusion The alkaloid profiles detected in this work revealed significant differences in both structures and contents among Zanthoxylum species. The inhibitory rates for different cancer cells in this study indicated that the potential anti-cancer activity should be attributed to quaternary alkaloids in these three species, which will provide great guidance for further exploring this traditional medicinal resource as new healthcare products.
Collapse
|
17
|
Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF). Electrophoresis 2016; 38:135-149. [DOI: 10.1002/elps.201600248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023]
|
18
|
Banerjee A, Sanyal S, Dutta S, Chakraborty P, Das PP, Jana K, Vasudevan M, Das C, Dasgupta D. The plant alkaloid chelerythrine binds to chromatin, alters H3K9Ac and modulates global gene expression. J Biomol Struct Dyn 2016; 35:1491-1499. [PMID: 27494525 DOI: 10.1080/07391102.2016.1188154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chelerythrine (CHL), a plant alkaloid, possesses antimicrobial, anti-inflammatory, and antitumor properties. Although CHL influences several key signal transduction pathways, its ability to interact directly with nucleoprotein complex chromatin, in eukaryotic cells has so far not been looked into. Here we have demonstrated its association with hierarchically assembled chromatin components, viz. long chromatin, chromatosome, nucleosome, chromosomal DNA, and histone H3 and the consequent effect on chromatin structure. CHL was found to repress acetylation at H3K9. It is more target-specific in terms of gene expression alteration and less cytotoxic compared to its structural analog sanguinarine.
Collapse
Affiliation(s)
- Amrita Banerjee
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Sulagna Sanyal
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Shreyasi Dutta
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Payal Chakraborty
- b Genome Informatics Research Group , Bionivid Technology Pvt Ltd. , Bangalore 560043 , India
| | - Prajna Paramita Das
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Kuladip Jana
- c Division of Molecular Medicine, Centre for Translational Animal Research , Bose Institute , P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054 , India
| | - Madavan Vasudevan
- b Genome Informatics Research Group , Bionivid Technology Pvt Ltd. , Bangalore 560043 , India
| | - Chandrima Das
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Dipak Dasgupta
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| |
Collapse
|
19
|
Sun Y, Li Y, Zeng J, Lu Q, Li PCH. Microchip electrophoretic separation and fluorescence detection of chelerythrine and sanguinarine in medicinal plants. Talanta 2015; 142:90-6. [PMID: 26003696 DOI: 10.1016/j.talanta.2015.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/29/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022]
Abstract
A new method has been developed for separation of chelerythrine and sanguinarine in medicinal plants used in traditional Chinese medicine (TCM). The separation is achieved by microchip electrophoresis (CE) using laser-induced fluorescence detection. The CE separation is achieved by using a hydro-organic medium as the electrolyte buffer. The experimental results are consistent with the prediction by theory in terms of resolution and migration speed because of the low Joule heat generated in microchip CE. In addition, formamide was found to have a potential for separation of molecules with similar chemical structures. Based on these findings, a run buffer containing 50% formamide was used to separate chelerythrine (CHE) and sanguinarine (SAN). The influencing factors, such as solvent of run buffer, pH of buffer, separation distance, and separation voltage, were optimized. Baseline separation of chelerythrine and sanguinarine was achieved within 120 s under an electrical voltage of 1.8 kV. Good linearity was observed in the concentration range of 0.15-550 μg mL(-1) (r=0.9993) for CHE and in the range of 0.3-600 μg mL(-1) (r=0.9998) for SAN. A low limit of detection (LOD) was achieved because of the high sensitivity achieved by laser-induced fluorescence detection (i.e. 5.0 ng mL(-1) and 2.0 ng mL(-1) for CHE and SAN, respectively). The contents of CHE are found to be 641.8±7.5 and 134.0±2.3 mg/kg in extracts of Macleaya cordata and Chelidonium majus, respectively, with good recovery of above 99%. The corresponding values for SAN found in these Chinese herbal extracts are 681.8±7.9 mg/kg and 890.5±8.9 mg/kg, respectively.
Collapse
Affiliation(s)
- Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of State Administration of TCM for Digital Quality Evaluation of Chinese Materia Medica, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China.
| | - Yuanyuan Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiajian Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qixian Lu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Paul C H Li
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6.
| |
Collapse
|
20
|
Mazina J, Vaher M, Kuhtinskaja M, Poryvkina L, Kaljurand M. Fluorescence, electrophoretic and chromatographic fingerprints of herbal medicines and their comparative chemometric analysis. Talanta 2015; 139:233-46. [PMID: 25882431 DOI: 10.1016/j.talanta.2015.02.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to compare the polyphenolic compositions of 47 medicinal herbs (HM) and four herbal tea mixtures from Central Estonia by rapid, reliable and sensitive Spectral Fluorescence Signature (SFS) method in a front face mode. The SFS method was validated for the main identified HM representatives including detection limits (0.037mgL(-1) for catechin, 0.052mgL(-1) for protocatechuic acid, 0.136mgL(-1) for chlorogenic acid, 0.058mgL(-1) for syringic acid and 0.256mgL(-1) for ferulic acid), linearity (up to 5.0-15mgL(-1)), intra-day precision (RSDs=6.6-10.6%), inter-day precision (RSDs=6.4-13.8%), matrix effect (-15.8 to +5.5) and recovery (85-107%). The phytochemical fingerprints were differentiated by parallel factor analysis (PARAFAC) combined with hierarchical cluster analysis (CA) and principal component analysis (PCA). HM were clustered into four main clusters (catechin-like, hydroxycinnamic acid-like, dihydrobenzoic acid-like derivatives containing HM and HM with low/very low content of fluorescent constituents) and 14 subclusters (rich, medium, low/very low contents). The average accuracy and precision of CA for validation HM set were 97.4% (within 85.2-100%) and 89.6%, (within 66.7-100%), respectively. PARAFAC-PCA/CA has improved the analysis of HM by the SFS method. The results were verified by two separation methods CE-DAD and HPLC-DAD-MS also combined with PARAFAC-PCA/CA. The SFS-PARAFAC-PCA/CA method has potential as a rapid and reliable tool for investigating the fingerprints and predicting the composition of HM or evaluating the quality and authenticity of different standardised formulas. Moreover, SFS-PARAFAC-PCA/CA can be implemented as a laboratory and/or an onsite method.
Collapse
Affiliation(s)
- Jekaterina Mazina
- Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12816 Tallinn, Estonia; NarTest AS, Kopliranna 49, 11713 Tallinn, Estonia.
| | - Merike Vaher
- Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12816 Tallinn, Estonia
| | - Maria Kuhtinskaja
- Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12816 Tallinn, Estonia
| | | | - Mihkel Kaljurand
- Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12816 Tallinn, Estonia
| |
Collapse
|
21
|
Chen Y, Li M, Liu J, Yan Q, Zhong M, Liu J, Di D, Liu J. Simultaneous determination of the content of isoquinoline alkaloids inDicranostigma leptopodum(Maxim) Fedde and the effective fractionation of the alkaloids by high-performance liquid chromatography with diode array detection. J Sep Sci 2014; 38:9-17. [DOI: 10.1002/jssc.201400905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Yali Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
- Institute of Medicinal Chemistry; School of Pharmacy, Lanzhou University; Lanzhou PR China
| | - Min Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Jianjun Liu
- University hospital of Gansu Traditional Chinese Medicine; Lanzhou PR China
| | - Qian Yan
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Mei Zhong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Duolong Di
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Jinxia Liu
- Institute of Biology; Gansu Academy of Sciences; Lanzhou PR China
| |
Collapse
|
22
|
Zhao J, Hu DJ, Lao K, Yang ZM, Li SP. Advance of CE and CEC in phytochemical analysis (2012–2013). Electrophoresis 2014; 35:205-24. [PMID: 24114928 DOI: 10.1002/elps.201300321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022]
Abstract
This article presents an overview of the advance of CE and CEC in phytochemical analysis, based on the literature not mentioned in our previous review papers [Chen, X. J., Zhao, J., Wang, Y. T., Huang, L. Q., Li, S. P., Electrophoresis 2012, 33, 168–179], mainly covering the years 2012–2013. In this article, attention is paid to online preconcentration, rapid separation, and sensitive detection. Selected examples illustrate the applicability of CE and CEC in biomedical, pharmaceutical, environmental, and food analysis. Finally, some general conclusions and future perspectives are given.
Collapse
|
23
|
Kma L. Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review. Asian Pac J Cancer Prev 2014; 15:2405-25. [DOI: 10.7314/apjcp.2014.15.6.2405] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
He K, Gao JL. Protopine inhibits heterotypic cell adhesion in MDA-MB-231 cells through down-regulation of multi-adhesive factors. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:415-24. [PMID: 25435628 DOI: 10.4314/ajtcam.v11i2.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND A Chinese herb Corydalis yanhusuo W.T. Wang that showed anticancer and anti-angiogenesis effects in our previous studies was presented for further studies. In the present study, we studied the anticancer proliferation and adhesion effects of five alkaloids which were isolated from Corydalis yanhusuo. MATERIALS AND METHODS MTT dose response curves, cell migration assay, cell invasion assay, as well as three types of cell adhesive assay were performed on MDA-MB-231 human breast cancer cells. The mechanism of the compounds on inhibiting heterotypic cell adhesion were further explored by determining the expression of epidermal growth factor receptor (EGFR), Intercellular adhesion molecule 1 (ICAM-1), αv-integrin, β1-integrin and β5-integrin by western blotting assay. RESULTS In five tested alkaloids, only protopine exhibited anti-adhesive and anti-invasion effects in MDA-MB-231 cells, which contributed to the anti-metastasis effect of Corydalis yanhusuo. The results showed that after treatment with protopine for 90 min, the expression of EGFR, ICAM-1, αv-integrin, β1-integrin and β5-integrin were remarkably reduced. CONCLUSION The present results suggest that protopine seems to inhibit the heterotypic cell adhesion between MDA-MB-231 cells, and human umbilical vein endothelial cells by changing the expression of adhesive factors.
Collapse
Affiliation(s)
- Kai He
- The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China ; Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jian-Li Gao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
25
|
Tubaon RMS, Rabanes H, Haddad PR, Quirino JP. Capillary electrophoresis of natural products: 2011-2012. Electrophoresis 2014; 35:190-204. [DOI: 10.1002/elps.201300473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Ria Marni S. Tubaon
- Australian Centre for Research on Separation Science (ACROSS); School of Physical Sciences-Chemistry; University of Tasmania; Hobart Tasmania Australia
| | - Heide Rabanes
- Australian Centre for Research on Separation Science (ACROSS); School of Physical Sciences-Chemistry; University of Tasmania; Hobart Tasmania Australia
- Chemistry Department; Xavier University, Ateneo de Cagayan; Cagayan de Oro City Philippines
- Department of Chemistry; School of Science and Engineering; Loyola Schools; Ateneo de Manila University; Quezon City Philippines
| | - Paul R. Haddad
- Australian Centre for Research on Separation Science (ACROSS); School of Physical Sciences-Chemistry; University of Tasmania; Hobart Tasmania Australia
| | - Joselito P. Quirino
- Australian Centre for Research on Separation Science (ACROSS); School of Physical Sciences-Chemistry; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
26
|
de Kort BJ, de Jong GJ, Somsen GW. Native fluorescence detection of biomolecular and pharmaceutical compounds in capillary electrophoresis: Detector designs, performance and applications: A review. Anal Chim Acta 2013; 766:13-33. [DOI: 10.1016/j.aca.2012.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 01/05/2023]
|
27
|
Kulp M, Bragina O. Capillary electrophoretic study of the synergistic biological effects of alkaloids from Chelidonium majus L. in normal and cancer cells. Anal Bioanal Chem 2013; 405:3391-7. [DOI: 10.1007/s00216-013-6755-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/08/2013] [Accepted: 01/16/2013] [Indexed: 11/24/2022]
|
28
|
Zhou Q, Liu Y, Wang X, Di X. A sensitive and selective liquid chromatography-tandem mass spectrometry method for simultaneous determination of five isoquinoline alkaloids from Chelidonium majus L. in rat plasma and its application to a pharmacokinetic study. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:111-118. [PMID: 23303754 DOI: 10.1002/jms.3133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
Chelidonium majus L. is one of the most important medicinal plants of the family Papaveraceae. Its pharmacological effects have been primarily attributed to the presence of a number of alkaloids. In the present study, a sensitive and selective liquid chromatography-tandem mass spectrometry method for simultaneous determination of five isoquinoline alkaloids from Chelidonium majus L. was developed and validated. The analytes (protopine, chelidonine, coptisine, sanguinarine and chelerythrine), together with the internal standard (palmatine), were extracted from acidified rat plasma with ethyl acetate-dichloromethane (4:1, v/v). Chromatographic separation was carried out on a Diamonsil C(18) column with an isocratic mobile phase consisting of acetonitrile and water (adjusted to pH 2.3 with formic acid) (30:70, v/v) at a flow rate of 0.4 ml/min. Mass spectrometric detection was performed by selected reaction monitoring mode via electrospray ionization source operating in positive ionization mode. The assay exhibited good linearity (r ≥ 0.9933) for all the analytes. The lower limits of quantification were 0.197-1.27 ng/ml using only 50 µl of plasma sample. The intra- and inter-day precisions were less than 11.9%, and the accuracy was between -6.3% and 9.3%. The method was successfully applied to the pharmacokinetic study of the five alkaloids in rats after intragastric administration of Chelidonium majus L. extract.
Collapse
Affiliation(s)
- Qiuhong Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | | | | | | |
Collapse
|
29
|
Microwave-assisted extraction in combination with capillary electrophoresis for rapid determination of isoquinoline alkaloids in Chelidonium majus L. Talanta 2012; 99:932-8. [PMID: 22967645 DOI: 10.1016/j.talanta.2012.07.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/17/2012] [Accepted: 07/25/2012] [Indexed: 11/20/2022]
Abstract
A simple and rapid method based on microwave-assisted extraction (MAE) followed by capillary electrophoresis (CE) was developed for the quantification of eight isoquinoline alkaloids in Chelidonium majus L. (Ch. majus). The key parameters affecting CE separation and MAE extraction were investigated and optimized. Complete separation of eight alkaloids was achieved within only 9 min using a 500 mM Tris-H(3)PO(4) buffer (pH 2.5) containing 50% (v/v) methanol and 2mM HP-β-cyclodextrin. The optimal MAE extraction was performed at 60 °C for 5 min with methanol-water-HCl (90:10:0.5, v/v/v) as the extracting solvent, which gave much higher extraction efficiency in significantly shorter time than conventional heat reflux extraction (HRE) and ultrasonic extraction (USE) methods. Good linearities were obtained for all the alkaloids investigated with correlation coefficients above 0.9994. The repeatability and intermediate precision were less than 4.11% and the recoveries ranged from 98.0% to 103.9%. The developed method was successfully applied to 14 Ch. majus samples obtained from different regions of China. Compared with previously reported methods, the present method offers a dramatic savings in overall analysis time and considerable reduction in solvent consumption.
Collapse
|
30
|
Rodat-Boutonnet A, Naccache P, Morin A, Fabre J, Feurer B, Couderc F. A comparative study of LED-induced fluorescence and laser-induced fluorescence in SDS-CGE: Application to the analysis of antibodies. Electrophoresis 2012; 33:1709-14. [DOI: 10.1002/elps.201200132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | | | | | | | | | - François Couderc
- Laboratoire des IMRCP,; Université Paul Sabatier; Université de Toulouse; Toulouse; France
| |
Collapse
|