1
|
Favakeh A, Mokhtare A, Asadi MJ, Hwang JCM, Abbaspourrad A. Label-free differentiation of living versus dead single yeast cells using broadband electrical impedance spectroscopy. LAB ON A CHIP 2025; 25:1744-1754. [PMID: 40018908 DOI: 10.1039/d5lc00043b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The use of the intrinsic electrical properties of a single cell by broadband electrical impedance spectroscopy (EIS) as a label-free and non-invasive method to monitor cellular and intracellular features is an emerging field. Here, we present a novel EIS-based sheathless microfluidic platform with an integrated coplanar waveguide to probe the interior of a single cell. This platform allows for precise single-cell trapping by dielectrophoresis, hydrodynamic focusing, and sensing the electrical properties of the trapped single cell. We measured the impedance characteristics of a single Schizosaccharomyces pombe (fission) yeast cell by a single frequency sweep (30 kHz to 6GHz) in a stagnant sucrose solution using two-port scattering (S) parameters. The measurements revealed a clear distinction between the cytoplasm impedance of live versus dead cells at 3 GHz. This platform could provide real-time monitoring of cellular electrical responses to chemical and physical antagonists for diagnostic purposes.
Collapse
Affiliation(s)
- Amirhossein Favakeh
- Food Science Department, College of Agriculture and Life Sciences (CALS), Cornell University, Ithaca 14853, New York, USA.
| | - Amir Mokhtare
- Food Science Department, College of Agriculture and Life Sciences (CALS), Cornell University, Ithaca 14853, New York, USA.
| | - Mohammad Javad Asadi
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - James C M Hwang
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Alireza Abbaspourrad
- Food Science Department, College of Agriculture and Life Sciences (CALS), Cornell University, Ithaca 14853, New York, USA.
| |
Collapse
|
2
|
Yang X, Liang Z, Luo Y, Yuan X, Cai Y, Yu D, Xing X. Single-cell impedance cytometry of anticancer drug-treated tumor cells exhibiting mitotic arrest state to apoptosis using low-cost silver-PDMS microelectrodes. LAB ON A CHIP 2023; 23:4848-4859. [PMID: 37860975 DOI: 10.1039/d3lc00459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Chemotherapeutic drugs such as paclitaxel and vinblastine interact with microtubules and thus induce complex cell states of mitosis arrest at the G2/M phase followed by apoptosis dependent on drug exposure time and concentration. Microfluidic impedance cytometry (MIC), as a label-free and high-throughput technology for single-cell analysis, has been applied for viability assay of cancer cells post drug exposure at fixed time and dosage, yet verification of this technique for varied tumor cell states after anticancer drug treatment remains a challenge. Here we present a novel MIC device and for the first time perform impedance cytometry on carcinoma cells exhibiting progressive states of G2/M arrest followed by apoptosis related to drug concentration and exposure time, after treatments with paclitaxel and vinblastine, respectively. Our results from impedance cytometry reveal increased amplitude and negative phase shift at low frequency as well as higher opacity for HeLa cells under G2/M mitotic arrest compared to untreated cells. The cells under apoptosis, on the other hand, exhibit opposite changes in these electrical parameters. Therefore, the impedance features differentiate the HeLa cells under progressive states post anticancer drug treatment. We also demonstrate that vinblastine poses a more potent drug effect than paclitaxel especially at low concentrations. Our device is fabricated using a unique sacrificial layer-free soft lithography process as compared to the existing MIC device, which gives rise to readily aligned parallel microelectrodes made of silver-PDMS embedded in PDMS channel sidewalls with one molding step. Our results uncover the potential of the MIC device, with a fairly simple and low-cost fabrication process, for cellular state screening in anticancer drug therapy.
Collapse
Affiliation(s)
- Xinlong Yang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Ziheng Liang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueyuan Yuan
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Yao Cai
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| |
Collapse
|
3
|
Zhu S, Zhang X, Chen M, Tang D, Han Y, Xiang N, Ni Z. An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing. Anal Chim Acta 2021; 1175:338759. [PMID: 34330437 DOI: 10.1016/j.aca.2021.338759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
We report here an easy-fabricated and disposable polymer-film microfluidic impedance cytometer (PMIC) integrated with inertial focusing and parallel facing electrodes for cell sensing. The cells are first focused in an asymmetric serpentine channel, and then their impedance signals are measured when passing through the electrode region. The proposed PMIC device is the first impedance cytometer that is fabricated into a flexible sheet (with a thickness of 0.45 mm) by using the materials of commonly-available ITO-coated polymer films and double-sided adhesive tapes, the whole fabrication process is shortened from traditional 3-4 days to less than 5 min by using UV laser cutting. To verify the feasibility of our device for cell sensing, we explore the focusing behaviors of three differently sized particles and two types of tumor cells, and analyze their impedance signals. The results show that our device is capable of obtaining impedance information on numbers, diameters, and longitudinal positions of cells. We envision that our PMIC device is promising in label-free cell sensing owning to the advantages of low cost, small footprint, and simple fabrication.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Mu Chen
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Dezhi Tang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Honrado C, Adair SJ, Moore JH, Salahi A, Bauer TW, Swami NS. Apoptotic Bodies in the Pancreatic Tumor Cell Culture Media Enable Label-Free Drug Sensitivity Assessment by Impedance Cytometry. Adv Biol (Weinh) 2021; 5:e2100438. [PMID: 34015194 DOI: 10.1002/adbi.202100438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/25/2021] [Indexed: 12/15/2022]
Abstract
The ability to rapidly and sensitively predict drug response and toxicity using in vitro models of patient-derived tumors is essential for assessing chemotherapy efficacy. Currently, drug sensitivity assessment for solid tumors relies on imaging adherent cells or by flow cytometry of cells lifted from drug-treated cultures after fluorescent staining for apoptotic markers. Subcellular apoptotic bodies (ABs), including microvesicles that are secreted into the culture media under drug treatment can potentially serve as markers for drug sensitivity, without the need to lift cells under culture. However, their stratification to quantify cell disassembly is challenging due to their compositional diversity, with tailored labeling strategies currently needed for the recognition and cytometry of each AB type. It is shown that the high frequency impedance phase versus size distribution of ABs determined by high-throughput single-particle impedance cytometry of supernatants in the media of gemcitabine-treated pancreatic tumor cultures exhibits phenotypic resemblance to lifted apoptotic cells and enables shape-based stratification within distinct size ranges, which is not possible by flow cytometry. It is envisioned that this tool can be applied in conjunction with the appropriate pancreatic tumor microenvironment model to assess drug sensitivity and toxicity of patient-derived tumors, without the need to lift cells from cultures.
Collapse
Affiliation(s)
- Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Sara J Adair
- Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22904, USA
| | - John H Moore
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Armita Salahi
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Todd W Bauer
- Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22904, USA
| | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.,Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
5
|
Zhong J, Yang D, Zhou Y, Liang M, Ai Y. Multi-frequency single cell electrical impedance measurement for label-free cell viability analysis. Analyst 2021; 146:1848-1858. [PMID: 33619511 DOI: 10.1039/d0an02476g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell viability is a physiological status connected to cell membrane integrity and cytoplasmic topography, which is profoundly important for fundamental biological research and practical biomedical applications. A conventional method for assessing cell viability is through cell staining analysis. However, cell staining involves laborious and complicated processing procedures and is normally cytotoxic. Intrinsic cellular phenotypes thus provide new avenues for measuring cell viability in a stain-free and non-toxic manner. In this work, we present a label-free non-destructive impedance-based approach for cell viability assessment by simultaneously characterizing multiple electrical cellular phenotypes in a high-throughput manner (>1000 cells per min). A novel concept called the complex opacity spectrum is introduced for improving the discrimination of live and dead cells. The analysis of the complex opacity spectrum leads to the discovery of two frequency ranges that are optimized for characterizing membranous and cytoplasmic electrical phenotypes. The present impedance-based approach has successfully discriminated between living and dead cells in two different experimental scenarios, including mixed living and dead cells in both homogenous and heterogeneous cell samples. This impedance-based single cell phenotyping technique provides highly accurate and consistent cell viability analysis, which has been validated by commercial fluorescence-based flow cytometry (∼1% difference) using heterogeneous cell samples. This label-free high-throughput cell viability analysis strategy will have broad applications in the field of biology and medicine.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | | | | | | | | |
Collapse
|
6
|
High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip. Biosens Bioelectron 2019; 150:111887. [PMID: 31780405 DOI: 10.1016/j.bios.2019.111887] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The study and the characterization of cell death mechanisms are fundamental in cell biology research. Traditional death/viability assays usually involve laborious sample preparation and expensive equipment or reagents. In this work, we use electrical impedance spectroscopy as a label-free methodology to characterize viable, necrotic and apoptotic human lymphoma U937 cells. A simple three-electrode coplanar layout is used in a differential measurement scheme and thousands of cells are measured at high-throughput (≈200 cell/s). Tailored signal processing enables accurate and robust cell characterization without the need for cell focusing systems. The results suggest that, at low frequency (0.5 MHz), signal magnitude enables the discrimination between viable/necrotic cells and cell fragments, whereas phase information allows discriminating between viable cells and necrotic cells. At higher frequency (10 MHz) two subpopulations of cell fragments are distinguished. This work substantiates the prominent role of electrical impedance spectroscopy for the development of next-generation cell viability assays.
Collapse
|
7
|
On-chip label-free determination of cell survival rate. Biosens Bioelectron 2019; 148:111820. [PMID: 31706174 DOI: 10.1016/j.bios.2019.111820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Cell survival rate (CSR) is a very important parameter in biological and medical fields. Today, the routine method to determine this parameter is time-consuming; it also makes the labeled cells no longer useable for subsequent experiments. Here, we developed an on-chip label-free method for determining the CSR. For the method, a hypertonic stimulus was designed to create volume differences between living and dead cells, and then, the differences were characterized with measurements of impedance as the cells flowed through two electrodes. Based on the method, a microfluidic hypertonic stimulus-based impedance flow cytometry chip (HSIFC) was designed, and the localized function of the HSIFC was verified. Finally, the performance of the HSIFC was confirmed by measuring the different CSRs for the different types of cells. The results show that the HSIFC can accurately determine the CSR, and the accuracy is comparable to that of flow cytometry. This work paves the way for the label-free evaluation of CSR after various cell manipulations and treatments on the chip and promotes the versatility of lab-on-a-chip devices.
Collapse
|
8
|
Xie X, Zhang Z, Ge X, Zhao X, Hao L, Cheng Z, Zhou W, Du Y, Wang L, Tian F, Xu X. Particle Self-Aligning, Focusing, and Electric Impedance Microcytometer Device for Label-Free Single Cell Morphology Discrimination and Yeast Budding Analysis. Anal Chem 2019; 91:13398-13406. [PMID: 31596074 DOI: 10.1021/acs.analchem.9b01509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microfluidic electric impedance flow cytometry (IFC) devices have been applied in single cell analysis, such as cell counting, volume discrimination, cell viability, etc. A cell's shape provides specific information about cellular physiological and pathological conditions, especially in microorganisms such as yeast. In this study, the particle orientation focusing was theoretically analyzed and realized by hydrodynamics. The pulse width (passing time for the particles) of the conductance signal was used to discriminate particle shapes. Spherical and rod-shaped particles with similar volumes/lengths were differentiated by the IFC device, using the impedance pulse parameters of the events. Then, typical late-budding, early budding, and unbudded yeast cells were distinguished by the width, amplitude, and ratio of width to amplitude (R) of the impedance pulse. The pulse amplitude and the R combination gate for identifying the late-budding yeast was estimated through the statistic results. Using the gate, the late-budding rates under different conditions were calculated. Late-budding rates obtained using our method showed a high correlation (R2 = 0.83) with the manual cell counting result and represented the budding status of yeast cells under different conditions proficiently. Thus, the late-budding rate calculated using the above method can be used as a qualitative parameter to assess the reproductive performance of yeast and whether a yeast culturing environment is optimal. This IFC device and cell shape discrimination method is very simple and could be applied in the fermentation industry and other microorganisms' discrimination as a rapid analysis technique in the future.
Collapse
Affiliation(s)
- Xinwu Xie
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,National Bio-Protection Engineering Center , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| | - Zhiwei Zhang
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,School of Electronic Information and Automation , Tianjin University of Science and Technology , No.1038 Dagunan Road , Hexi District, Tianjin 300222 , China
| | - Xiang Ge
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,School of Electronic Information and Automation , Tianjin University of Science and Technology , No.1038 Dagunan Road , Hexi District, Tianjin 300222 , China
| | - Xiaohao Zhao
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,School of Electronic Information and Automation , Tianjin University of Science and Technology , No.1038 Dagunan Road , Hexi District, Tianjin 300222 , China
| | - Limei Hao
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,National Bio-Protection Engineering Center , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| | - Zhen Cheng
- Beijing CapitalBio Technology Co. Ltd. , No. 88 block, Kechuang Sixth Rd., Beijing Economic and Technological Development Zone , Beijing 101111 , China
| | - Weibin Zhou
- School of Electronic Information and Automation , Tianjin University of Science and Technology , No.1038 Dagunan Road , Hexi District, Tianjin 300222 , China
| | - Yaohua Du
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China.,National Bio-Protection Engineering Center , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| | - Lei Wang
- CapitalBio Corporation , National Engineering Research Center for Beijing Biochip Technology , 18 Life Science Parkway , Changping District, Beijing 102206 , China
| | - Feng Tian
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| | - Xinxi Xu
- Institute of Medical Support Technology , Academy of Military Science , No.106 Wandong Road , Hedong District, Tianjin 300161 , China
| |
Collapse
|
9
|
|
10
|
Denzi A, Merla C, Casciola M, Hwang JCM, Cheng X, Apollonio F, Liberti M. Microchambers for cell exposure: from the design to applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:4232-4235. [PMID: 28269216 DOI: 10.1109/embc.2016.7591661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decades, the advances in the micro and nano fabrication techniques have led to the development of microdevices that improved the possibility of analysis at cell level. These devices can be used in different applications (e.g., cell detection and identification, manipulation, cell treatments). The requisites, that are necessary to achieve, are different for various applications and represent the starting point of the project. The numerical multiphysics models can be very advantageous to analyze the performances of such devices and to predict their operation. Aim of this work is to give a look of the design rules of microchamber devices in particular for their application in electric field exposure. Two different applications for cell discrimination and characterization are reported considering time and frequency domain measurements.
Collapse
|
11
|
Electrical Impedance Spectroscopy for Detection of Cells in Suspensions Using Microfluidic Device with Integrated Microneedles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7020170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ju HX, Zhuang QK, Long YT. The Preface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Marcali M, Elbuken C. Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets. LAB ON A CHIP 2016; 16:2494-2503. [PMID: 27270895 DOI: 10.1039/c6lc00623j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Droplet-based microfluidic systems offer tremendous benefits for high throughput biochemical assays. Despite the wide use of electrical detection for microfluidic systems, application of impedimetric sensing for droplet systems is very limited. This is mainly due to the insulating oil-based continuous phase used for most aqueous samples of interest. We present modelling and experimental verification of impedimetric detection of hemagglutination in microdroplets. We have detected agglutinated red blood cells in microdroplets and screened whole blood samples for multiple antibody sera using conventional microelectrodes. We were able to form antibody and whole blood microdroplets in PDMS microchannels without any tedious chemical surface treatment. Following the injection of a blood sample into antibody droplets, we have detected the agglutination-positive and negative droplets in an automated manner. In order to understand the characteristics of impedimetric detection inside microdroplets, we have developed the lumped electrical circuit equivalent of an impedimetric droplet content detection system. The empirical lumped element values are in accordance with similar models developed for single phase electrical impedance spectroscopy systems. The presented approach is of interest for label-free, quantitative analysis of droplets. In addition, the standard electronic equipment used for detection allows miniaturized detection circuitries that can be integrated with a fluidic system for a quantitative microdroplet-based hemagglutination assay that is conventionally performed in well plates.
Collapse
Affiliation(s)
- Merve Marcali
- UNAM, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey.
| | | |
Collapse
|
14
|
Spencer D, Caselli F, Bisegna P, Morgan H. High accuracy particle analysis using sheathless microfluidic impedance cytometry. LAB ON A CHIP 2016; 16:2467-73. [PMID: 27241585 DOI: 10.1039/c6lc00339g] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This paper describes a new design of microfluidic impedance cytometer enabling accurate characterization of particles without the need for focusing. The approach uses multiple pairs of electrodes to measure the transit time of particles through the device in two simultaneous different current measurements, a transverse (top to bottom) current and an oblique current. This gives a new metric that can be used to estimate the vertical position of the particle trajectory through the microchannel. This parameter effectively compensates for the non-uniform electric field in the channel that is an unavoidable consequence of the use of planar parallel facing electrodes. The new technique is explained and validated using numerical modelling. Impedance data for 5, 6 and 7 μm particles are collected and compared with simulations. The method gives excellent coefficient of variation in (electrical) radius of particles of 1% for a sheathless configuration.
Collapse
Affiliation(s)
- Daniel Spencer
- School of Electronics and Computing Science, and Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | | | | | |
Collapse
|
15
|
Caselli F, Bisegna P. A Simple and Robust Event-Detection Algorithm for Single-Cell Impedance Cytometry. IEEE Trans Biomed Eng 2015; 63:415-22. [PMID: 26241968 DOI: 10.1109/tbme.2015.2462292] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microfluidic impedance cytometry is emerging as a powerful label-free technique for the characterization of single biological cells. In order to increase the sensitivity and the specificity of the technique, suited digital signal processing methods are required to extract meaningful information from measured impedance data. In this study, a simple and robust event-detection algorithm for impedance cytometry is presented. Since a differential measuring scheme is generally adopted, the signal recorded when a cell passes through the sensing region of the device exhibits a typical odd-symmetric pattern. This feature is exploited twice by the proposed algorithm: first, a preliminary segmentation, based on the correlation of the data stream with the simplest odd-symmetric template, is performed; then, the quality of detected events is established by evaluating their E2O index, that is, a measure of the ratio between their even and odd parts. A thorough performance analysis is reported, showing the robustness of the algorithm with respect to parameter choice and noise level. In terms of sensitivity and positive predictive value, an overall performance of 94.9% and 98.5%, respectively, was achieved on two datasets relevant to microfluidic chips with very different characteristics, considering three noise levels. The present algorithm can foster the role of impedance cytometry in single-cell analysis, which is the new frontier in "Omics."
Collapse
|
16
|
Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. Int J Mol Sci 2015; 16:9804-30. [PMID: 25938973 PMCID: PMC4463619 DOI: 10.3390/ijms16059804] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.
Collapse
|
17
|
Reactance and resistance: main properties to follow the cell differentiation process in Bacillus thuringiensis by dielectric spectroscopy in real time. Appl Microbiol Biotechnol 2015; 99:5439-50. [PMID: 25862207 DOI: 10.1007/s00253-015-6562-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
During growth, Bacillus thuringiensis presents three phases: exponential phase (EP), transition state (TS), and sporulation phase (SP). In order to form a dormant spore and to synthesize delta-endotoxins during SP, bacteria must undergo a cellular differentiation process initiated during the TS. Dielectric spectroscopy is a technique that can be utilized for continuous and in situ monitoring of the cellular state. In order to study on-line cell behavior in B. thuringiensis cultures, we conducted a number of batch cultures under different conditions, by scanning 200 frequencies from 42 Hz to 5 MHz and applying fixed current and voltage of 20 mA and 5 V DC, respectively. The resulting signals included Impedance (Z), Angle phase (Deg), Voltage (V), Current (I), Conductance (G), Reactance (X), and Resistance (R). Individual raw data relating to observed dielectric property profiles were correlated with the different growth phases established using data from cellular growth, cry1Ac gene expression, and free spores obtained with conventional techniques and fermentation parameters. Based on these correlations, frequencies of 0.1, 0.5, and 1.225 MHz were selected for the purpose of measuring dielectric properties in independent batch cultures, at a fixed frequency. X and R manifest more propitious behavior in relation to EP, TS, SP, and spore release, due to particular changes in their signals. Interestingly, these profiles underwent pronounced changes during EP and TS that were not noticed when using conventional methods, but were indicative of the beginning of the B. thuringiensis cell differentiation process.
Collapse
|
18
|
Sun D, Lu J, Chen Z. Microfluidic contactless conductivity cytometer for electrical cell sensing and counting. RSC Adv 2015. [DOI: 10.1039/c5ra08371k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An integrated and cost-effective microfluidic contactless conductivity cytometer for cell sensing and counting.
Collapse
Affiliation(s)
- Duanping Sun
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Jing Lu
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| |
Collapse
|
19
|
Zhou J, Giridhar PV, Kasper S, Papautsky I. Modulation of rotation-induced lift force for cell filtration in a low aspect ratio microchannel. BIOMICROFLUIDICS 2014; 8:044112. [PMID: 25379097 PMCID: PMC4189218 DOI: 10.1063/1.4891599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/18/2014] [Indexed: 05/11/2023]
Abstract
Cell filtration is a critical step in sample preparation in many bioapplications. Herein, we report on a simple, filter-free, microfluidic platform based on hydrodynamic inertial migration. Our approach builds on the concept of two-stage inertial migration which permits precise prediction of microparticle position within the microchannel. Our design manipulates equilibrium positions of larger microparticles by modulating rotation-induced lift force in a low aspect ratio microchannel. Here, we demonstrate filtration of microparticles with extreme efficiency (>99%). Using multiple prostate cell lines (LNCaP and human prostate epithelial tumor cells), we show filtration from spiked blood, with 3-fold concentration and >83% viability. Results of a proliferation assay show normal cell division and suggest no negative effects on intrinsic properties. Considering the planar low-aspect-ratio structure and predictable focusing, we envision promising applications and easy integration with existing lab-on-a-chip systems.
Collapse
Affiliation(s)
- Jian Zhou
- BioMicroSystems Lab, Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, USA
| | - Premkumar Vummidi Giridhar
- Department of Environmental Health, College of Medicine, University of Cincinnati , Cincinnati, Ohio 45221, USA
| | - Susan Kasper
- Department of Environmental Health, College of Medicine, University of Cincinnati , Cincinnati, Ohio 45221, USA
| | - Ian Papautsky
- BioMicroSystems Lab, Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, USA
| |
Collapse
|
20
|
Azadirachta indica Modulates Electrical Properties and Type of Cell Death in NDEA-Induced Hepatic Tumors. Cell Biochem Biophys 2014; 70:383-90. [DOI: 10.1007/s12013-014-9923-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Song H, Wang Y, Rosano JM, Prabhakarpandian B, Garson C, Pant K, Lai E. A microfluidic impedance flow cytometer for identification of differentiation state of stem cells. LAB ON A CHIP 2013; 13:2300-10. [PMID: 23636706 DOI: 10.1039/c3lc41321g] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This paper presents a microfluidic electrical impedance flow cytometer (FC) for identifying the differentiation state of single stem cells. This device is comprised of a novel dual micropore design, which not only enhances the processing throughput, but also allows the associated electrodes to be used as a reference for one another. A signal processing algorithm, based on the support vector machine (SVM) theory, and a data classification method were developed to automate the identification of sample types and cell differentiation state based on measured impedance values. The device itself was fabricated using a combination of standard and soft lithography techniques to generate a PDMS-gold electrode construct. Experimental testing with non-biological particles and mouse embryonic carcinoma cells (P19, undifferentiated and differentiated) was carried out using a range of excitation frequencies. The effects of the frequency and the interrogation parameters on sample identification performance were investigated. It was found that the real and imaginary part of the detected impedance signal were adequate for distinguishing the undifferentiated P19 cells from non-biological polystyrene beads at all tested frequencies. A higher frequency and an opacity index were required to resolve the undifferentiated and differentiated P19 cells by capturing capacitive changes in electrophysiological properties arising from differentiation. The experimental results demonstrated salient accuracy of the device and algorithm, and established its feasibility for non-invasive, label-free identification of the differentiation state of the stem cells.
Collapse
Affiliation(s)
- Hongjun Song
- CFD Research Corporation, 215 Wynn Drive, Huntsville, AL 35805, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Mannello F, Ligi D, Magnani M. Deciphering the single-cell omic: innovative application for translational medicine. Expert Rev Proteomics 2013; 9:635-48. [PMID: 23256674 DOI: 10.1586/epr.12.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Traditional technologies to investigate system biology are limited by the detection of parameters resulting from the averages of large populations of cells, missing cells produced in small numbers, and attempting to uniform the heterogeneity. The advent of proteomics and genomics at a single-cell level has set the basis for an outstanding improvement in analytical technology and data acquisition. It has been well demonstrated that cellular heterogeneity is closely related to numerous stochastic transcriptional events leading to variations in patterns of expression among single genetically identical cells. The new-generation technology of single-cell analysis is able to better characterize a cell's population, identifying and differentiating outlier cells, in order to provide both a single-cell experiment and a corresponding bulk measurement, through the identification, quantification and characterization of all system biology aspects (genomics, transcriptomics, proteomics, metabolomics, degradomics and fluxomics). The movement of omics into single-cell analysis represents a significant and outstanding shift.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology, University Carlo Bo, Via O Ubaldini 7, 61029 Urbino (PU), Italy.
| | | | | |
Collapse
|
23
|
Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices. SENSORS 2012. [PMID: 23202240 PMCID: PMC3522993 DOI: 10.3390/s121115947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.
Collapse
|
24
|
Sabuncu AC, Zhuang J, Kolb JF, Beskok A. Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology. BIOMICROFLUIDICS 2012; 6:34103. [PMID: 23853680 PMCID: PMC3407121 DOI: 10.1063/1.4737121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/29/2012] [Indexed: 05/12/2023]
Abstract
A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm in radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to derive quantities for sub-cellular units. Clausius-Mossotti factor of Jurkat cells is extracted from the impedance spectrum. Effects of cellular heterogeneity are discussed and parameterized. Jurkat cells are also tested with a time domain reflectometry system for verification of the microfluidic device. Results indicate good agreement of values obtained with both techniques. The device can be used as a unique cell diagnostic tool to yield information on sub-cellular units.
Collapse
Affiliation(s)
- Ahmet C Sabuncu
- Institute of Micro & Nanotechnology, Old Dominion University, Norfolk, Virginia 23529, USA
| | | | | | | |
Collapse
|
25
|
De Jonge C. Semen analysis: looking for an upgrade in class. Fertil Steril 2012; 97:260-6. [DOI: 10.1016/j.fertnstert.2011.12.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 12/20/2022]
|