1
|
Pham DN, Linova MY, Smith WK, Brown H, Elhanafi D, Fan J, Lavoie J, Woodley JM, Carbonell RG. Novel multimodal cation-exchange membrane for the purification of a single-chain variable fragment from Pichia pastoris supernatant. J Chromatogr A 2024; 1718:464682. [PMID: 38341900 DOI: 10.1016/j.chroma.2024.464682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83 %. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 min, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20 % loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83 % to approximately 92-95 %.
Collapse
Affiliation(s)
- Dan N Pham
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marina Y Linova
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - William K Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Hunter Brown
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Joseph Lavoie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
2
|
Thi Nguyen NT, Yun S, Lim DW, Lee EK. Shielding effect of a PEG molecule of a mono-PEGylated peptide varies with PEG chain length. Prep Biochem Biotechnol 2018; 48:522-527. [DOI: 10.1080/10826068.2018.1466157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ngoc-Thanh Thi Nguyen
- Department of Bionanotechnology, Graduate School, Hanyang University ERICA, Ansan, Korea
| | - Soi Yun
- Department of Bionanotechnology, Graduate School, Hanyang University ERICA, Ansan, Korea
| | - Dong Woo Lim
- Department of Bionanotechnology, Graduate School, Hanyang University ERICA, Ansan, Korea
| | - E. K. Lee
- Department of Bionanotechnology, Graduate School, Hanyang University ERICA, Ansan, Korea
| |
Collapse
|
3
|
Gašperšič J, Podgornik A, Kramberger P, Jarc M, Jančar J, Žorž M, Krajnc NL. Separation of pegylated recombinant proteins and isoforms on CIM ion exchangers. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:91-96. [DOI: 10.1016/j.jchromb.2016.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 07/10/2016] [Indexed: 12/11/2022]
|
4
|
Lindner R, Moosmann A, Dietrich A, Böttinger H, Kontermann R, Siemann-Herzberg M. Process development of periplasmatically produced single chain fragment variable against epidermal growth factor receptor in Escherichia coli. J Biotechnol 2015; 192 Pt A:136-45. [PMID: 25450642 DOI: 10.1016/j.jbiotec.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/25/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022]
Abstract
Prokaryotic production systems have been widely used to manufacture recombinant therapeutic proteins. Economically, the prokaryotic production – especially of small therapeutic molecules – is advantageous compared to eukaryotic production strategies. However, due to the potential endotoxin and host cell protein contamination, the requirements for the purification process are disproportionately higher and therefore more expensive and elaborate to circumvent. For this reason, the goal of this work was to develop and establish a rapid, simple, inexpensive and ‘up-scalable’ production and purification process, using the therapeutic relevant protein anti-EGFR scFv hu225 as model molecule. Configuring high cell density cultivation of Escherichia coli – using the rha-BAD expression system as production platform – a specific product concentration up to 20 mgscFv/gCDW was obtained. By combining freeze-and-thaw, osmotic shock and pH induced host cell protein precipitation, almost 70% of the product was extracted from the biomass. In a novel approach a mixed mode chromatography was implemented as a capturing and desalting step, which allowed the direct application of further ion exchange chromatography steps for purification up to pharmaceutical grade. Thereby, 50% of the produced scFv could be purified within 10 h while maintaining the biological activity.
Collapse
|
5
|
Pfister D, Morbidelli M. Process for protein PEGylation. J Control Release 2014; 180:134-49. [DOI: 10.1016/j.jconrel.2014.02.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
|
6
|
Moosmann A, Müller E, Böttinger H. Purification of PEGylated proteins, with the example of PEGylated lysozyme and PEGylated scFv. Methods Mol Biol 2014; 1129:527-538. [PMID: 24648098 DOI: 10.1007/978-1-62703-977-2_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PEGylation is a common and highly accepted possibility for half-life prolongation of proteins by increasing the hydrodynamic size. The chromatographic purification of PEGylated protein, using PEG (poly-ethylene glycol) of different PEG chain lengths, with the example of lysozyme and a scFv, is described in detail here, and helpful suggestions for the purification of other PEGylated proteins are listed. The relevant characterization methods for PEGylated proteins, important for the successful purification, are also described. The purification starts with a CEX (cation exchange) chromatography leading to about 95 % purity for polishing HIC (hydrophobic interaction chromatography) is described.
Collapse
Affiliation(s)
- Anna Moosmann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, 70569, Germany,
| | | | | |
Collapse
|