1
|
He X, Jeleń HH. Comprehensive two dimensional gas chromatography - time of flight mass spectrometry (GC×GC-TOFMS) for the investigation of botanical origin of raw spirits. Food Chem 2025; 465:142004. [PMID: 39561592 DOI: 10.1016/j.foodchem.2024.142004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024]
Abstract
Comprehensive two dimensional gas chromatography - time of flight mass spectrometry (GC × GC-TOFMS) with sample introduction using headspace solid phase microextraction (HS-SPME) was used for the botanical classification of raw spirits obtained from C3 (corn and sorghum) and C4 (rye, wheat and potato) plants. 45 spirit samples representing these raw materials (10 spirits produced from rye, corn, wheat and potato, and 5 from sorghum) were analyzed. Volatile compounds profiles were compared by PCA, and after removal of outliers samples were subjected to the classification model. OPLS-DA model was built (R2Y = 0.924 Q2Y = 0.895) that enabled clear separation of all tested spirits of different botanical origin. The model was validated with training and testing sets and 100 % correct assignment was achieved. GC × GC-TOFMS proved to be a method that not only can be used as a tool for botanic origin of raw spirits, but also provides detailed information of volatile fermentation by-products, characteristic for particular spirit.
Collapse
Affiliation(s)
- Xi He
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland; Natural Resources Institute, University of Greenwich, Kent, UK
| | - Henryk H Jeleń
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
2
|
Zang W, Huang X, Sharma R, Fan X. 1D-Guided Differential Rescaling of a Contour Plot in Comprehensive 2D Gas Chromatography. Anal Chem 2024; 96:3960-3969. [PMID: 38386846 PMCID: PMC10919281 DOI: 10.1021/acs.analchem.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
A 1D-guided differential rescaling algorithm for a contour plot is developed based on our recently proposed comprehensive two-dimensional gas chromatography (GC × GC) system with a first-dimensional (1D) detector added. Chromatograms obtained from 1D and second-dimensional (2D) detectors are both incorporated during the data processing. As compared to the conventional contour plot methods using only 2D data, our algorithm can significantly improve precision and consistency of GC × GC results in terms of retention times, peak widths, and peak areas or volumes, regardless of modulation time selection, modulation phase shift fluctuations, and modulation duty cycle. The peak identification, quantification, and capacity can therefore be enhanced. Furthermore, the 1D-guided differential rescaling method is shown to better handle the coelution and missing peak issues often encountered in the conventional methods. Finally, the new method exhibits high versatility in 1D and 2D detector selection, which greatly broadens GC × GC utility. Our method can easily be adapted to other two-dimensional chromatography systems that have direct access to 1D chromatograms.
Collapse
Affiliation(s)
- Wenzhe Zang
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Center
for Wireless Integrated MicroSensing and Systems (WIMS), University of Michigan, Ann Arbor, Michigan 48109, United States
- Max
Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaheng Huang
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Center
for Wireless Integrated MicroSensing and Systems (WIMS), University of Michigan, Ann Arbor, Michigan 48109, United States
- Max
Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ruchi Sharma
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Center
for Wireless Integrated MicroSensing and Systems (WIMS), University of Michigan, Ann Arbor, Michigan 48109, United States
- Max
Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xudong Fan
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Center
for Wireless Integrated MicroSensing and Systems (WIMS), University of Michigan, Ann Arbor, Michigan 48109, United States
- Max
Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Romanczyk M. Chemical compositional analysis of jet fuels: Contributions of mass spectrometry in the 21st century. MASS SPECTROMETRY REVIEWS 2024; 43:345-368. [PMID: 36458483 DOI: 10.1002/mas.21825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Jet fuels are complex mixtures composed of many individual compounds that influence crucial chemical and physical properties. Approximately over the last 20 years, mass spectrometry studies provided important and extensive qualitative and quantitative information of the compounds that make up jet fuels. This review presents these main findings, evaluates the analytical methods utilized, and summarizes the hydrocarbons, nitrogen-, oxygen- and sulfur-containing compounds characterized in the jet fuels. Potential areas where mass spectrometry may play important roles in the future will also be discussed.
Collapse
Affiliation(s)
- Mark Romanczyk
- Chemical Sensing and Fuel Technology Division, US Naval Research Laboratory, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Hantao LW. Revisiting the Fundamentals of Untargeted Data Analysis with Comprehensive Two-Dimensional Gas Chromatography (GC×GC): With Great Peak Capacity, There Must Also Come Great Responsibility. LCGC NORTH AMERICA 2023. [DOI: 10.56530/lcgc.na.yz7686f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This article provides a general overview of untargeted analysis using comprehensive two-dimensional gas chromatography (GC×GC), while revisiting some fundamental aspects of method development. The original definition of chemometrics is also revised according to the latest developments of the field. We discuss how GC×GC has become an important backbone for new strategies in separation science, especially in multivariate data analysis. The concept of pixel is also revisited, as an important pixel-based data processing method, namely the Fisher ratio proposed by Synovec and coworkers, has been successfully implemented in important software for GC×GC.
Collapse
Affiliation(s)
- Leandro Wang Hantao
- University of Campinas and the National Institute of Science and Technology in Bioanalytics
| |
Collapse
|
5
|
Md Ghazi MGB, Lee LC, Samsudin ASB, Sino H. Evaluation of ensemble data preprocessing strategy on forensic gasoline classification using untargeted GC–MS data and classification and regression tree (CART) algorithm. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Christmann J, Rohn S, Weller P. Finding features - variable extraction strategies for dimensionality reduction and marker compounds identification in GC-IMS data. Food Res Int 2022; 161:111779. [DOI: 10.1016/j.foodres.2022.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
|
7
|
Moreira de Oliveira A, Teixeira CA, Hantao LW. Advanced tuning of the ion management parameters in GC × GC-HRMS using a Fourier transform Orbitrap mass analyzer for pixel-based data handling and multivariate analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1646-1654. [PMID: 35383813 DOI: 10.1039/d2ay00314g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
GC × GC investigations are well known to generate a substantial amount of information-rich and structurally complex data, requiring advanced data processing strategies like chemometrics. Many workflows are available for data handling and processing, such as the peak-table and pixel-based approaches. The goal of this work is to present a solution based on method development to solve the missing pixel problem that may be encountered in experiments performed with GC and GC × GC coupled to the Fourier transform orbital ion trap (FT-Orbitrap) mass analyzer. Data input is vital for pixel-based chemometric analyses, as some post-processing solutions may lead to significant loss of chemical information in the data set. Hence, a key requisite is that the chemical information is consistently indexed in the data arrays for proper pixel-based data handling and analysis. In this study, we carefully evaluated the ion management parameters to preserve the intrinsic structure and information of the data arrays of the GC × GC-FT-Orbitrap for future pixel-oriented chemometric analysis. The most acceptable conditions yielded acquisition rates up to 42.6 spectra per s, while a routine setting of 24.7 Hz was successfully employed in analyses of different petroleum fractions, producing both consistent tensor sizes and acceptable peak reconstructions. A data acquisition rate of 24.7 spectra per s and a mass resolving power of 15 000 allowed the resolution of a mass split of only 0.004 Da - which is an interesting configuration for challenging applications in petroleomics. Using such advanced settings, the missing pixel problem was reduced from up to 30% to much less than 0.04% of the data array dimension. Thus, the proposed configuration can be employed in studies that require pixel-oriented multivariate data analysis.
Collapse
Affiliation(s)
| | - Carlos Alberto Teixeira
- Institute of Chemistry, University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil.
| | - Leandro Wang Hantao
- Institute of Chemistry, University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
8
|
Zaid A, Khan MS, Yan D, Marriott PJ, Wong YF. Comprehensive two-dimensional gas chromatography with mass spectrometry: an advanced bioanalytical technique for clinical metabolomics studies. Analyst 2022; 147:3974-3992. [DOI: 10.1039/d2an00584k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the current state of knowledge in the development of GC × GC-MS for the analysis of clinical metabolites. Selected applications are described as well as our perspectives on current challenges and potential future directions.
Collapse
Affiliation(s)
- Atiqah Zaid
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohammad Sharif Khan
- Cargill Research and Development Center, Cargill, 14800 28th Ave N, Plymouth, MN 55447, USA
| | - Dandan Yan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yong Foo Wong
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
9
|
Buvé C, Saeys W, Rasmussen MA, Neckebroeck B, Hendrickx M, Grauwet T, Van Loey A. Application of multivariate data analysis for food quality investigations: An example-based review. Food Res Int 2022; 151:110878. [PMID: 34980408 DOI: 10.1016/j.foodres.2021.110878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/15/2022]
Abstract
These days, large multivariate data sets are common in the food research area. This is not surprising as food quality, which is important for consumers, and its changes are the result of a complex interplay of multiple compounds and reactions. In order to comprehensively extract information from these data sets, proper data analysis tools should be applied. The application of multivariate data analysis (MVDA) is therefore highly recommended. However, at present the use of MVDA for food quality investigations is not yet fully explored. This paper focusses on a number of MVDA methods (PCA (Principal Component Analysis), PLS (Partial Least Squares Regression), PARAFAC (Parallel Factor Analysis) and ASCA (ANOVA Simultaneous Component Analysis)) useful for food quality investigations. The terminology, main steps and the theoretical basis of each method will be explained. As this is an example-based review, each method was applied on the same experimental data set to give the reader an idea about each selected MVDA method and to make a comparison between the outcomes. Numerous MVDA methods are available in literature. Which method to select depends on the data set and objective. PCA should be the first choice for data exploration of two-dimensional data. For predictive purposes, PLS is the most appropriate method. Given an underlying experimental design, ASCA takes into account both the relation between the different variables and the design factors. In case of a multi-way data set, PARAFAC can be used for data exploration. While these methods have already proven their value in research, there is a need to further explore their potential to investigate the complex interplay of compounds and reactions contributing to food quality. With this work we would like to encourage food scientists with no or limited knowledge of MVDA to get some first insights into the selected methods.
Collapse
Affiliation(s)
- Carolien Buvé
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Wouter Saeys
- KU Leuven Department of Biosystems, MeBioS division, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Morten Arendt Rasmussen
- University of Copenhagen, Department of Food Science, Faculty of Science, Rolighedsvej 26, 1958 Frederiksberg, Denmark; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Bram Neckebroeck
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Marc Hendrickx
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Ann Van Loey
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
10
|
Lelevic A, Souchon V, Geantet C, Lorentz C, Moreaud M. Advanced data preprocessing for comprehensive two-dimensional gas chromatography with vacuum ultraviolet spectroscopy detection. J Sep Sci 2021; 44:4141-4150. [PMID: 34510756 DOI: 10.1002/jssc.202100528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/08/2022]
Abstract
Comprehensive two-dimensional gas chromatography with vacuum ultraviolet detection results in sizable data for which noise and baseline drift ought to be corrected. As the data is acquired from multiple channels, preprocessing steps have to be applied to the data from all channels while being robust and rather fast with respect to the significant size of the data. In this study, we have described advanced data preprocessing techniques for such data which were not available in the existing commercial software solutions and which were dedicated primarily to noise and baseline correction. Noise reduction was performed on both the spectral and the time dimension. For the baseline correction, a morphological approach based on iterated convolutions and rectifier operations was proposed. On the spectral dimension, much less noisy and reliable spectra were obtained. From a quantitative point of view, mentioned preprocessing steps significantly improved the signal-to-noise ratio for the analyte detection (circa six times in this study). These preprocessing methods were integrated into the plugim! platform (https://www.plugim.fr/).
Collapse
Affiliation(s)
- Aleksandra Lelevic
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, Solaize, 69360, France.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Vincent Souchon
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, Solaize, 69360, France
| | - Christophe Geantet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Chantal Lorentz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Maxime Moreaud
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, Solaize, 69360, France
| |
Collapse
|
11
|
Stefanuto PH, Smolinska A, Focant JF. Advanced chemometric and data handling tools for GC×GC-TOF-MS. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Adutwum LA, Kwao JK, Harynuk JJ. Unique ion filter-A data reduction tool for chemometric analysis of raw comprehensive two-dimensional gas chromatography-mass spectrometry data. J Sep Sci 2021; 44:2773-2784. [PMID: 33932270 DOI: 10.1002/jssc.202001127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 11/07/2022]
Abstract
Comprehensive gas chromatography with time of flight mass spectrometry is a powerful tool in the analysis of complex samples. Chemometric analysis of raw chromatographic data is more useful in one- and two-dimensional separations relative to peak tables. The data volume from such experiments generally necessitates the use of data reduction tools. Such tools often sacrifice some of the multivariate information in the mass to charge ratio dimension. The unique ion filter reduces the over-redundancy in two-dimensional gas chromatography-mass spectrometry data by limiting the data to a few unique/pseudo-unique ions, sub-peaks/slices in the first dimension, and spectra in the second dimension. We explore the performance of this algorithm through careful inspection of two-dimensional gas chromatography-mass spectrometry data before and after application of the filter. A reduction (99%) in the number of variables in a two-dimensional gas chromatography-mass spectrometry chromatogram passed on to subsequent analysis was observed. Feature selection times for model optimization reduced from 229 (±13) to 6.8 (±0.5) min when the filter was applied. An estimate of two unique/pseudo-unique ions, one sub-peak in the first dimension and five spectra in the second dimension were considered to provide a true representation of each chromatogram and provided enough information to achieve 100% model prediction accuracy.
Collapse
Affiliation(s)
- Lawrence A Adutwum
- Department of Pharmaceutical Chemistry, University of Ghana, Accra, Ghana.,Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joanna Koryo Kwao
- Department of Pharmaceutical Chemistry, University of Ghana, Accra, Ghana
| | - James J Harynuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Feizi N, Hashemi-Nasab FS, Golpelichi F, Saburouh N, Parastar H. Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Non-targeted discovery of class-distinguishing metabolites in Argentinian pacu fish by comprehensive two-dimensional gas chromatography with principal component analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Pérez-Cova M, Jaumot J, Tauler R. Untangling comprehensive two-dimensional liquid chromatography data sets using regions of interest and multivariate curve resolution approaches. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
|
17
|
Sudol PE, Ochoa GS, Synovec RE. Investigation of the limit of discovery using tile-based Fisher ratio analysis with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A 2021; 1644:462092. [PMID: 33823385 DOI: 10.1016/j.chroma.2021.462092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) is followed by tile-based Fisher ratio (F-ratio) analysis to investigate the "limit of discovery" for low concentration levels of sulfur-containing compounds in JP8 jet fuel. A mixture of 14 sulfur-containing compounds was spiked at 30 ppm, 15 ppm, 3 ppm and 1.5 ppm into the neat fuel prior to GC×GC-TOFMS analysis with a "reversed" column format (aka polar first dimension (1D) and non-polar second dimension (2D) column). Prior standard implementation of tile-based F-ratio analysis utilized an average F-ratio requiring a minimum of 3 mass channels (m/z) with the highest F-ratios. Herein, we explore the notion that use of the top F-ratio m/z for hitlist ranking is superior to the standard implementation for analytes near their limit-of-quantitation (LOQ), defined as an analyte concentration that produces a signal equal to ten times the standard deviation of the baseline noise (10σn). Hitlist ranking comparisons revealed that using only the top F-ratio m/z resulted in impressive improvements in discoverability for the low concentration comparisons. Specifically, for the 3 ppm versus neat hitlist, 1,4-oxathiane (LOQ = 2.5 ppm) improved from hit 114 via standard F-ratio analysis, to hit 25. For the 1.5 ppm versus neat hitlist, 2-propylthiophene (LOQ = 0.64 ppm) improved from hit 59 to 17, benzo[b]thiophene (LOQ = 1.1 ppm) from hit 98 to 28, and 2,5-dimethylthiophene (LOQ = 1.3 ppm) from hit 262 to 39. Additional hitlist ranking comparisons revealed the importance of proper tile size selection, as analyte discoverability deteriorated upon using either an inappropriately too small or too large of a tile.
Collapse
Affiliation(s)
- Paige E Sudol
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA
| | - Grant S Ochoa
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA
| | - Robert E Synovec
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Stilo F, Bicchi C, Reichenbach SE, Cordero C. Comprehensive two‐dimensional gas chromatography as a boosting technology in food‐omic investigations. J Sep Sci 2021; 44:1592-1611. [DOI: 10.1002/jssc.202100017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Federico Stilo
- Dipartimento di Scienza e Tecnologia del Farmaco Università degli Studi di Torino Torino Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco Università degli Studi di Torino Torino Italy
| | - Stephen E. Reichenbach
- Computer Science and Engineering Department University of Nebraska–Lincoln Lincoln Nebraska USA
- GC Image Lincoln Nebraska USA
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco Università degli Studi di Torino Torino Italy
| |
Collapse
|
19
|
Stilo F, Bicchi C, Robbat A, Reichenbach SE, Cordero C. Untargeted approaches in food-omics: The potential of comprehensive two-dimensional gas chromatography/mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Rasheed DM, Serag A, Abdel Shakour ZT, Farag M. Novel trends and applications of multidimensional chromatography in the analysis of food, cosmetics and medicine bearing essential oils. Talanta 2021; 223:121710. [DOI: 10.1016/j.talanta.2020.121710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
|
21
|
Stilo F, Bicchi C, Jimenez-Carvelo AM, Cuadros-Rodriguez L, Reichenbach SE, Cordero C. Chromatographic fingerprinting by comprehensive two-dimensional chromatography: Fundamentals and tools. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Lee LC, Ishak AA, Abdul Hamid N, Ravi Y, Ahmad MA, Ali N. A comparison between univariate and multivariate statistical techniques to determine source of pen inks using ultra-performance liquid chromatography (UPLC) chromatograms. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1858867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Loong Chuen Lee
- Forensic Science Program, Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Unviersiti Kebangsaan Malaysia, Bangi, Malaysia
- Institute of IR4.0 (IIR4.0), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ab Aziz Ishak
- Forensic Science Program, Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Unviersiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nadirah Abdul Hamid
- Forensic Science Program, Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Unviersiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Yaishnavee Ravi
- Forensic Science Program, Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Unviersiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Muhamad Adib Ahmad
- Forensic Science Program, Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Unviersiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Norazwani Ali
- Forensic Science Program, Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Unviersiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
23
|
A unique data analysis framework and open source benchmark data set for the analysis of comprehensive two-dimensional gas chromatography software. J Chromatogr A 2020; 1635:461721. [PMID: 33246680 DOI: 10.1016/j.chroma.2020.461721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
Comprehensive two-dimensional gas chromatography (GC × GC) is amongst the most powerful separation technologies currently existing. Since its advent in early 1990, it has become an established method which is readily available. However, one of its most challenging aspects, especially in hyphenation with mass spectrometry is the high amount of chemical information it provides for each measurement. The GC × GC community agrees that there, the highest demand for action is found. In response, the number of software packages allowing for in-depth data processing of GC × GC data has risen over the last couple of years. These packages provide sophisticated tools and algorithms allowing for more streamlined data evaluation. However, these tools/algorithms and their respective specific functionalities differ drastically within the available software packages and might result in various levels of findings if not appropriately implemented by the end users. This study focuses on two main objectives. First, to propose a data analysis framework and second to propose an open-source dataset for benchmarking software options and their specificities. Thus, allowing for an unanimous and comprehensive evaluation of GC × GC software. Thereby, the benchmark data includes a set of standard compound measurements and a set of chocolate aroma profiles. On this foundation, eight readily available GC × GC software packages were anonymously investigated for fundamental and advanced functionalities such as retention and detection device derived parameters, revealing differences in the determination of e.g. retention times and mass spectra.
Collapse
|
24
|
Prebihalo SE, Ochoa GS, Berrier KL, Skogerboe KJ, Cameron KL, Trump JR, Svoboda SJ, Wickiser JK, Synovec RE. Control-Normalized Fisher Ratio Analysis of Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry Data for Enhanced Biomarker Discovery in a Metabolomic Study of Orthopedic Knee-Ligament Injury. Anal Chem 2020; 92:15526-15533. [PMID: 33171046 DOI: 10.1021/acs.analchem.0c03456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah E. Prebihalo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Grant S. Ochoa
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Kelsey L. Berrier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Kristen J. Skogerboe
- Department of Chemistry, Seattle University, Seattle, Washington 98122, United States
| | - Kenneth L. Cameron
- Keller Army Community Hospital, West Point, New York 10996, United States
| | - Jesse R. Trump
- Keller Army Community Hospital, West Point, New York 10996, United States
| | - Steven J. Svoboda
- Keller Army Community Hospital, West Point, New York 10996, United States
| | | | - Robert E. Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
25
|
Zanella D, Henket M, Schleich F, Dejong T, Louis R, Focant JF, Stefanuto PH. Comparison of the effect of chemically and biologically induced inflammation on the volatile metabolite production of lung epithelial cells by GC×GC-TOFMS. Analyst 2020; 145:5148-5157. [PMID: 32633741 DOI: 10.1039/d0an00720j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exhaled breath analysis has a high potential for early non-invasive diagnosis of lung inflammatory diseases, such as asthma. The characterization and understanding of the inflammatory metabolic pathways involved into volatile organic compounds (VOCs) production could bring exhaled breath analysis into clinical practice and thus open new therapeutic routes for inflammatory diseases. In this study, lung inflammation was simulated in vitro using A549 epithelial cells. We compared the VOC production from A549 epithelial cells after a chemically induced oxidative stress in vitro, exposing the cells to H2O2, and a biological stress, exposing the cells to an inflammatory pool of sputum supernatants. Special attention was devoted to define proper negative and positive controls (8 different types) for our in vitro models, including healthy sputum co-culture. Sputum from 25 asthmatic and 8 healthy patients were collected to create each pool of supernatants. Each sample type was analyzed in 4 replicates using solid-phase microextraction (SPME) comprehensive two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC×GC-TOFMS). This approach offers high resolving power for complex VOC mixtures. According to the type of inflammation induced, significantly different VOCs were produced by the epithelial cells compared to all controls. For both chemical and biological challenges, an increase of carbonyl compounds (54%) and hydrocarbons (31%) was observed. Interestingly, only the biological inflammation model showed a significant cell proliferation together with an increased VOC production linked to asthma airway inflammation. This study presents a complete GC×GC-TOFMS workflow for in vitro VOC analysis, and its potential to characterize complex lung inflammatory mechanisms.
Collapse
Affiliation(s)
- Delphine Zanella
- University of Liege, Molecular System, Organic & Biological Analytical Chemistry Group, 11 Allee du Six Aout, 4000 Liege, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Quiroz-Moreno C, Furlan MF, Belinato JR, Augusto F, Alexandrino GL, Mogollón NGS. RGCxGC toolbox: An R-package for data processing in comprehensive two-dimensional gas chromatography-mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Sedentariness and Urinary Metabolite Profile in Type 2 Diabetic Patients, a Cross-Sectional Study. Metabolites 2020; 10:metabo10050205. [PMID: 32443532 PMCID: PMC7281751 DOI: 10.3390/metabo10050205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022] Open
Abstract
Recent findings indicate a significant association between sedentary (SED)-time and type 2 diabetes mellitus (T2DM). The aim of this study was to investigate whether different levels of SED-time could impact on biochemical and physiological processes occurring in sedentary and physically inactive T2DM patients. In particular, patients from the “Italian Diabetes and Exercise Study (IDES)_2 trial belonging to the first and fourth quartile of SED-time were compared. Urine samples were analyzed by comprehensive two-dimensional gas chromatography (GC × GC) with parallel detection by mass spectrometry and flame ionization detection (GC × 2GC-MS/FID). This platform enables accurate profiling and fingerprinting of urinary metabolites while maximizing the overall information capacity, quantitation reliability, and response linearity. Moreover, using advanced pattern recognition, the fingerprinting process was extended to untargeted and targeted features, revealing diagnostic urinary fingerprints between groups. Quantitative metabolomics was then applied to analytes of relevance for robust comparisons. Increased levels of glycine, L-valine, L-threonine, L-phenylalanine, L-leucine, L-alanine, succinic acid, 2-ketoglutaric acid, xylitol, and ribitol were revealed in samples from less sedentary women. In conclusion, SED-time is associated with changes in urine metabolome signatures. These preliminary results suggest that reducing SED-time could be a strategy to improve the health status of a large proportion of diabetic patients.
Collapse
|
28
|
Bos TS, Knol WC, Molenaar SR, Niezen LE, Schoenmakers PJ, Somsen GW, Pirok BW. Recent applications of chemometrics in one- and two-dimensional chromatography. J Sep Sci 2020; 43:1678-1727. [PMID: 32096604 PMCID: PMC7317490 DOI: 10.1002/jssc.202000011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
The proliferation of increasingly more sophisticated analytical separation systems, often incorporating increasingly more powerful detection techniques, such as high-resolution mass spectrometry, causes an urgent need for highly efficient data-analysis and optimization strategies. This is especially true for comprehensive two-dimensional chromatography applied to the separation of very complex samples. In this contribution, the requirement for chemometric tools is explained and the latest developments in approaches for (pre-)processing and analyzing data arising from one- and two-dimensional chromatography systems are reviewed. The final part of this review focuses on the application of chemometrics for method development and optimization.
Collapse
Affiliation(s)
- Tijmen S. Bos
- Division of Bioanalytical ChemistryAmsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Wouter C. Knol
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Stef R.A. Molenaar
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Leon E. Niezen
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Peter J. Schoenmakers
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical ChemistryAmsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Bob W.J. Pirok
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| |
Collapse
|
29
|
Gough DV, Schӧneich S, Synovec RE. Chemometric decomposition of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry data employing partial modulation in the negative pulse mode. Talanta 2020; 210:120670. [DOI: 10.1016/j.talanta.2019.120670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/07/2023]
|
30
|
Mommers J, van der Wal S. Column Selection and Optimization for Comprehensive Two-Dimensional Gas Chromatography: A Review. Crit Rev Anal Chem 2020; 51:183-202. [DOI: 10.1080/10408347.2019.1707643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- John Mommers
- DSM Material Science Center, Geleen, The Netherlands
| | - Sjoerd van der Wal
- Polymer-Analysis Group, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
|
32
|
Sudol PE, Gough DV, Prebihalo SE, Synovec RE. Impact of data bin size on the classification of diesel fuels using comprehensive two-dimensional gas chromatography with principal component analysis. Talanta 2020; 206:120239. [DOI: 10.1016/j.talanta.2019.120239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
33
|
Lelevic A, Souchon V, Moreaud M, Lorentz C, Geantet C. Gas chromatography vacuum ultraviolet spectroscopy: A review. J Sep Sci 2019; 43:150-173. [PMID: 31750981 DOI: 10.1002/jssc.201900770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 11/12/2022]
Abstract
Accelerated technological progress and increased complexity of interrogated matrices imposes a demand for fast, powerful, and resolutive analysis techniques. Gas chromatography has been for a long time a 'go-to' technique for the analysis of mixtures of volatile and semi-volatile compounds. Coupling of the several dimensions of gas chromatography separation has allowed to access a realm of improved separations in the terms of increased separation power and detection sensitivity. Especially comprehensive separations offer an insight into detailed sample composition for complex samples. Combining these advanced separation techniques with an informative detection system such as vacuum ultraviolet spectroscopy is therefore of great interest. Almost all molecules absorb the vacuum ultraviolet radiation and have distinct spectral features with compound classes exhibiting spectral signature similarities. Spectral information can be 'filtered' to extract the response in the most informative spectral ranges. Developed algorithms allow spectral mixture estimation of coeluting species. Vacuum ultraviolet detector follows Beer-Lambert law, with the possibility of calibrationless quantitation. The purpose of this article is to provide an overview of the features and specificities of gas chromatography-vacuum ultraviolet spectroscopy coupling which has gained interest since the recent introduction of a commercial vacuum ultraviolet detector. Potentials and limitations, relevant theoretical considerations, recent advances and applications are explored.
Collapse
Affiliation(s)
- Aleksandra Lelevic
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, 69360, Solaize, France.,IRCELYON, UMR5256 CNRS-UCB Lyon 1, Villeurbanne Cedex, France
| | - Vincent Souchon
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, 69360, Solaize, France
| | - Maxime Moreaud
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, 69360, Solaize, France.,MINESParisTech, PSL-ResearchUniversity, CMM, Fontainebleau, France
| | - Chantal Lorentz
- IRCELYON, UMR5256 CNRS-UCB Lyon 1, Villeurbanne Cedex, France
| | | |
Collapse
|
34
|
|
35
|
Analytical chemistry assisted by multi-way calibration: A contribution to green chemistry. Talanta 2019; 204:700-712. [DOI: 10.1016/j.talanta.2019.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022]
|
36
|
Comparison of Pre-Processing and Variable Selection Strategies in Group-Based GC×GC-TOFMS Analysis. SEPARATIONS 2019. [DOI: 10.3390/separations6030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemometric analysis of comprehensive two-dimensional chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) data has been reported with various workflows, yet little effort has been devoted to evaluating the impacts of workflow variation on study conclusions. The report presented herein aims to investigate the effects of different pre-processing and variable selection strategies on the scores’ plot outputs from GC×GC-TOFMS data acquired from lavender and tea tree essential oils. Our results suggest that pre-processing, such as applying log transformation to the data set, can result in significant differentiation of sample clustering when compared to only mean centering. Additionally, exploring differences between analysis of variance, Fisher-ratio, and partial least squares-discriminant analysis feature selection resulted in little variation in scores plots. This work highlights the effects different chemometric workflows can have on results to help facilitate harmonization efforts.
Collapse
|
37
|
Alcaraz MR, Monago-Maraña O, Goicoechea HC, Muñoz de la Peña A. Four- and five-way excitation-emission luminescence-based data acquisition and modeling for analytical applications. A review. Anal Chim Acta 2019; 1083:41-57. [PMID: 31493809 DOI: 10.1016/j.aca.2019.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/23/2023]
Abstract
The latest advances in both theory and experimental procedures on third-order/four-way and fourth-order/five-way calibration methods are discussed. This report is focused on excitation-emission (fluorescence and phosphorescence) matrices generation, employing different variables as the third data mode (time retention in chromatography, pH gradient, fluorescence/phosphorescence lifetime, kinetics, or other chemical treatments). Fully capitalizing on the second-order advantage, it has been possible to develop appealing analytical applications in spite of the complexity of the data. Extraction of the significant chemical information about the system under study as well as the individual abundance of the contributing constituents after proper higher-order data decomposition has allowed to analytical researchers performing quantitative analysis of complex samples. The experimental works reported up to the present are introduced and discussed in order to illustrate concepts. Throughout this work, the analytical benefits achieved by modeling third- and fourth-order data are exposed, attempting to contribute to the ongoing debate in the chemometric community regarding the existence and the true nature of the third-order advantage.
Collapse
Affiliation(s)
- Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, S3000ZAA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CABA, C1425FQB, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Olga Monago-Maraña
- Department of Analytical Chemistry, University of Extremadura, Badajoz, 06006, Spain; Research Institute on Water, Climate Change and Sustainability (IACYS), Badajoz, 06006, Spain
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, S3000ZAA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CABA, C1425FQB, Argentina
| | - Arsenio Muñoz de la Peña
- Department of Analytical Chemistry, University of Extremadura, Badajoz, 06006, Spain; Research Institute on Water, Climate Change and Sustainability (IACYS), Badajoz, 06006, Spain.
| |
Collapse
|
38
|
Hedgespeth ML, Nichols EG. Expanding phytoremediation to the realms of known and unknown organic chemicals of concern. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1385-1396. [PMID: 31257906 DOI: 10.1080/15226514.2019.1633265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advancements in analytical chemistry and data analyses via high-resolution mass spectrometry (HRMS) are evolving scientific understanding of the potential totality of organic chemical exposure and pollutant risk. This review addresses the importance of HRMS approaches, namely suspect screening and nontarget chemical analyses, to the realm of phytoremediation. These analytical approaches are not without caveats and constraints, but they provide an opportunity to understand in greater totality how plant-based technologies contribute, mitigate, and reduce organic chemical exposure across scales of experimental and system-level studies. These analytical tools can enlighten the complexity and efficacy of plant-contaminant system design and expand our understanding of biogenic and anthropogenic chemicals at work in phytoremediation systems. Advances in data analytics from biological sciences, such as metabolomics, are crucial to HRMS analysis. This review provides an overview of targeted, suspect screening, and nontarget HRMS approaches, summarizes the expanding knowledge of regulated and unregulated organic chemicals in the environment, addresses requisite HRMS instrumentation, analysis cost, uncertainty, and data processing techniques, and offers potential bridges of HRMS analyses to phytoremediation research and application.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forest and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
39
|
Brandão PF, Duarte AC, Duarte RM. Comprehensive multidimensional liquid chromatography for advancing environmental and natural products research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Zushi Y, Yamatori Y, Nagata J, Nabi D. Comprehensive two-dimensional gas-chromatography-based property estimation to assess the fate and behavior of complex mixtures: A case study of vehicle engine oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:739-745. [PMID: 30893629 DOI: 10.1016/j.scitotenv.2019.03.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
A method was developed to estimate the properties and assess the potential environmental risk of analytes in a complex mixture by comprehensive two-dimensional gas chromatography (GC × GC). A GC × GC-based estimation model was calibrated for 12 physicochemical properties that were relevant to the environment or to biological organisms, including human beings. Vehicle engine oil that had been contaminated by numerous compounds during its use was investigated as a case study to which the GC × GC model could be applied. Engine-oil samples were collected from a vehicle at intervals over a distance of 11407 km. The carbon and nitrogen contents in the oil remained unchanged at 83%-84% and 2%-5%, respectively, during the run; however, in excess of 100 compounds were present in the oil upon completion of the run. Post analyses of the studied mixture samples were performed with the developed GC × GC model, which links mass spectral information for structural identification. The GC × GC model allows us to classify the detected analytes in complex mixtures in terms of their properties, such as their aquatic bioaccumulation potential. The application of the model showed that the analyzed engine oil contained in excess of 100 compounds that could accumulate in aquatic biota and reach the arctic via long-range transport, which suggests that the components in the complex mixture of engine oil could pose a risk. The newly developed model that was derived in this study shows great potential for use in the mixture assessment.
Collapse
Affiliation(s)
- Yasuyuki Zushi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Yuki Yamatori
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Jun Nagata
- Global Application Development Center, Shimadzu Corporation, 380-1, Horiyamashita, Hadano, Kanagawa 259-1304, Japan
| | - Deedar Nabi
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, H-12 Islamabad, Pakistan
| |
Collapse
|
41
|
Gough DV, Song DH, Schöneich S, Prebihalo SE, Synovec RE. Development of Ultrafast Separations Using Negative Pulse Partial Modulation To Enable New Directions in Gas Chromatography. Anal Chem 2019; 91:7328-7335. [DOI: 10.1021/acs.analchem.9b01085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Derrick V. Gough
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Dong H. Song
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Sonia Schöneich
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Sarah E. Prebihalo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Robert E. Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
42
|
Escandar GM, Olivieri AC. Multi-way chromatographic calibration—A review. J Chromatogr A 2019; 1587:2-13. [DOI: 10.1016/j.chroma.2019.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/30/2022]
|
43
|
Fetter LF, Filoda PF, Tischer B, de Cassia de Souza Schneider R, Teichmann A, Santos RO, Helfer GA, da Costa AB. At‐line monitoring of industrial frying processes using ATR‐FTIR‐PLS method. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lucas Flores Fetter
- Programa de Pós‐Graduação em Sistemas e Processos IndustriaisUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
| | - Paula Freitas Filoda
- Programa de Pós‐Graduação em Sistemas e Processos IndustriaisUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
| | - Bruna Tischer
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Rosana de Cassia de Souza Schneider
- Programa de Pós‐Graduação em Sistemas e Processos IndustriaisUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
- Programa de Pós‐Graduação em Tecnologia AmbientalUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
| | - Aline Teichmann
- Programa de Pós‐Graduação em Sistemas e Processos IndustriaisUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
| | - Roberta Oliveira Santos
- Programa de Pós‐Graduação em Sistemas e Processos IndustriaisUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
| | - Gilson Augusto Helfer
- Departamento de ComputaçãoUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
| | - Adilson Ben da Costa
- Programa de Pós‐Graduação em Sistemas e Processos IndustriaisUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
- Programa de Pós‐Graduação em Tecnologia AmbientalUniversidade de Santa Cruz do Sul Santa Cruz do Sul Rio Grande do Sul Brazil
| |
Collapse
|
44
|
Bahaghighat HD, Freye CE, Gough DV, Sudol PE, Synovec RE. Ultrafast separations via pulse flow valve modulation to enable high peak capacity multidimensional gas chromatography. J Chromatogr A 2018; 1573:115-124. [DOI: 10.1016/j.chroma.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/10/2023]
|
45
|
Pollo BJ, Alexandrino GL, Augusto F, Hantao LW. The impact of comprehensive two-dimensional gas chromatography on oil & gas analysis: Recent advances and applications in petroleum industry. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Navarro-Reig M, Bedia C, Tauler R, Jaumot J. Chemometric Strategies for Peak Detection and Profiling from Multidimensional Chromatography. Proteomics 2018; 18:e1700327. [DOI: 10.1002/pmic.201700327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Meritxell Navarro-Reig
- Department of Environmental Chemistry; Institute of Environmental Assessment and Water Research (IDAEA) - Spanish National Research Council (CSIC); Jordi Girona 18-34, E08034 Barcelona Spain
| | - Carmen Bedia
- Department of Environmental Chemistry; Institute of Environmental Assessment and Water Research (IDAEA) - Spanish National Research Council (CSIC); Jordi Girona 18-34, E08034 Barcelona Spain
| | - Romà Tauler
- Department of Environmental Chemistry; Institute of Environmental Assessment and Water Research (IDAEA) - Spanish National Research Council (CSIC); Jordi Girona 18-34, E08034 Barcelona Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry; Institute of Environmental Assessment and Water Research (IDAEA) - Spanish National Research Council (CSIC); Jordi Girona 18-34, E08034 Barcelona Spain
| |
Collapse
|
47
|
Parastar H, Garreta-Lara E, Campos B, Barata C, Lacorte S, Tauler R. Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna
metabolic profiles exposed to salinity. J Sep Sci 2018; 41:2368-2379. [DOI: 10.1002/jssc.201701336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Hadi Parastar
- Department of Chemistry; Sharif University of Technology; Tehran Iran
| | | | - Bruno Campos
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Carlos Barata
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Roma Tauler
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| |
Collapse
|
48
|
Zushi Y, Hashimoto S. Direct Classification of GC × GC-Analyzed Complex Mixtures Using Non-Negative Matrix Factorization-Based Feature Extraction. Anal Chem 2018; 90:3819-3825. [DOI: 10.1021/acs.analchem.7b04313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yasuyuki Zushi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shunji Hashimoto
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
49
|
Simultaneous and interference-free determination of eleven non-steroidal anti-inflammatory drugs illegally added into Chinese patent drugs using chemometrics-assisted HPLC-DAD strategy. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9210-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Freye CE, Moore NR, Synovec RE. Enhancing the chemical selectivity in discovery-based analysis with tandem ionization time-of-flight mass spectrometry detection for comprehensive two-dimensional gas chromatography. J Chromatogr A 2018; 1537:99-108. [DOI: 10.1016/j.chroma.2018.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/07/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
|