1
|
Wu J, Wang R, Tan Y, Liu L, Chen Z, Zhang S, Lou X, Yun J. Hybrid machine learning model based predictions for properties of poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose. J Chromatogr A 2024; 1727:464996. [PMID: 38763087 DOI: 10.1016/j.chroma.2024.464996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Supermacroporous composite cryogels with enhanced adjustable functionality have received extensive interest in bioseparation, tissue engineering, and drug delivery. However, the variations in their components significantly impactfinal properties. This study presents a two-step hybrid machine learning approach for predicting the properties of innovative poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose (pHEMA-PVA-BC) based on their compositions. By considering the ratios of HEMA (1.0-22.0 wt%), PVA (0.2-4.0 wt%), poly(ethylene glycol) diacrylate (1.0-4.5 wt%), BC (0.1-1.5 wt%), and water (68.0-96.0 wt%) as investigational variables, overlay sampling uniform design (OSUD) was employed to construct a high-quality dataset for model development. The random forest (RF) model was used to classify the preparation conditions. Then four models of artificial neural network, RF, gradient boosted regression trees (GBRT), and XGBoost were developed to predict the basic properties of the composite cryogels. The results showed that the RF model achieved an accurate three-class classification of preparation conditions. Among the four models, the GBRT model exhibited the best predictive performance of the basic properties, with the mean absolute percentage error of 16.04 %, 0.85 %, and 2.44 % for permeability, effective porosity, and height of theoretical plate (1.0 cm/min), respectively. Characterization results of the representative pHEMA-PVA-BC composite cryogel showed an effective porosity of 81.01 %, a permeability of 1.20 × 10-12 m2, and a range of height of theoretical plate between 0.40-0.49 cm at flow velocities of 0.5-3.0 cm/min. These indicate that the pHEMA-PVA-BC cryogel was an excellent material with supermacropores, low flow resistance and high mass transfer efficiency. Furthermore, the model output demonstrates that the alteration of the proportions of PVA (0.2-3.5 wt%) and BC (0.1-1.5 wt%) components in composite cryogels resulted in significant changes in the material basic properties. This work represents an attempt to efficiently design and prepare target composite cryogels using machine learning and providing valuable insights for the efficient development of polymers.
Collapse
Affiliation(s)
- Jiawei Wu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Ruobing Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Yan Tan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Lulu Liu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Zhihong Chen
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Songhong Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China
| | - Xiaoling Lou
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China.
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310032, PR China.
| |
Collapse
|
2
|
Machnicki CE, DuBois EM, Fay M, Shrestha S, Saleeba ZSSL, Hruska AM, Ahmed Z, Srivastava V, Chen PY, Wong IY. Graphene oxide nanosheets augment silk fibroin aerogels for enhanced water stability and oil adsorption. NANOSCALE ADVANCES 2023; 5:6078-6092. [PMID: 37941955 PMCID: PMC10628998 DOI: 10.1039/d3na00350g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Nanocomposite aerogels exhibit high porosity and large interfacial surface areas, enabling enhanced chemical transport and reactivity. Such mesoporous architectures can be prepared by freeze-casting naturally-derived biopolymers such as silk fibroin, but often form mechanically weak structures that degrade in water, which limits their performance under ambient conditions. Adding 2D material fillers such as graphene oxide (GO) or transition metal carbides (e.g. MXene) could potentially reinforce these aerogels via stronger intermolecular interactions with the polymeric binder. Here, we show that freeze-casting of GO nanosheets with silk fibroin results in a highly water-stable, mechanically robust aerogel, with considerably enhanced properties relative to silk-only or silk-MXene aerogels. These silk-GO aerogels exhibit high contact angles with water and are highly water stable. Moreover, aerogels can adsorb up 25-35 times their mass in oil, and can be used robustly for selective oil separation from water. This increased stability may occur due to strengthened intermolecular interactions such as hydrogen bonding, despite the random coil and α-helix conformation of silk fibroin, which is typically more soluble in water. Finally, we show these aerogels can be prepared at scale by freeze-casting on a copper mesh. Ultimately, we envision that these multicomponent aerogels could be widely utilized for molecular separations and environmental sensing, as well as for thermal insulation and electrical conductivity.
Collapse
Affiliation(s)
- Catherine E Machnicki
- School of Engineering, Brown University 184 Hope St, Box D. Providence RI 02912 USA
- Department of Chemistry, Brown University 324 Brook St, Box H. Providence RI 02912 USA
| | - Eric M DuBois
- School of Engineering, Brown University 184 Hope St, Box D. Providence RI 02912 USA
| | - Meg Fay
- School of Engineering, Brown University 184 Hope St, Box D. Providence RI 02912 USA
- Department of Chemistry, Brown University 324 Brook St, Box H. Providence RI 02912 USA
| | - Snehi Shrestha
- Department of Chemical and Biomolecular Engineering, University of Maryland 4418 Stadium Dr College Park MD 20742 USA
| | | | - Alex M Hruska
- School of Engineering, Brown University 184 Hope St, Box D. Providence RI 02912 USA
| | - Zahra Ahmed
- School of Engineering, Brown University 184 Hope St, Box D. Providence RI 02912 USA
| | - Vikas Srivastava
- School of Engineering, Brown University 184 Hope St, Box D. Providence RI 02912 USA
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland 4418 Stadium Dr College Park MD 20742 USA
| | - Ian Y Wong
- School of Engineering, Brown University 184 Hope St, Box D. Providence RI 02912 USA
| |
Collapse
|
3
|
Deng CF, Su YY, Yang SH, Jiang QR, Xie R, Ju XJ, Liu Z, Pan DW, Wang W, Chu LY. Designable microfluidic ladder networks from backstepping microflow analysis for mass production of monodisperse microdroplets. LAB ON A CHIP 2022; 22:4962-4973. [PMID: 36420612 DOI: 10.1039/d2lc00771a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controllable mass production of monodisperse droplets plays a key role in numerous fields ranging from scientific research to industrial application. Microfluidic ladder networks show great potential in mass production of monodisperse droplets, but their design with uniform microflow distribution remains challenging due to the lack of a rational design strategy. Here an effective design strategy based on backstepping microflow analysis (BMA) is proposed for the rational development of microfluidic ladder networks for mass production of controllable monodisperse microdroplets. The performance of our BMA rule for rational microfluidic ladder network design is demonstrated by using an existing analogism-derived rule that is widely used for the design of microfluidic ladder networks as the control group. The microfluidic ladder network designed by the BMA rule shows a more uniform flow distribution in each branch microchannel than that designed by the existing rule, as confirmed by single-phase flow simulation. Meanwhile, the microfluidic ladder network designed by the BMA rule allows mass production of droplets with higher size monodispersity in a wider window of flow rates and mass production of polymeric microspheres from such highly monodisperse droplet templates. The proposed BMA rule provides new insights into the microflow distribution behaviors in microfluidic ladder networks based on backstepping microflow analysis and provides a rational guideline for the efficient development of microfluidic ladder networks with uniform flow distribution for mass production of highly monodisperse droplets. Moreover, the BMA method provides a general analysis strategy for microfluidic networks with parallel multiple microchannels for rational scale-up.
Collapse
Affiliation(s)
- Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qing-Rong Jiang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
4
|
Applications of Cryostructures in the Chromatographic Separation of Biomacromolecules. J Chromatogr A 2022; 1683:463546. [DOI: 10.1016/j.chroma.2022.463546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/20/2022]
|
5
|
Zhang W, Zhao F, Li Y, Lou X, Dai C, Lv W, Qu X, Zheng S, Chen B, Galaev IY, Yun J. Suspension and transformation performance of poly(2-hydroxyethyl methacrylate)-based anion exchange cryogel beads with immobilized Lactobacillus paracasei cells as biocatalysts towards biosynthesis of phenyllactic acid in stirred tank bioreactors. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Preparation and characterization of semi-hydrophobic cryogels for culture of Lactobacillus strains and bioconversion towards phenyllactic acid bioproduction. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Hydrophobic cryogels prepared via cryo-polymerization as oil carriers for biosynthesis of sophorolipids. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Kartal F, Denizli A. Molecularly imprinted cryogel beads for cholesterol removal from milk samples. Colloids Surf B Biointerfaces 2020; 190:110860. [DOI: 10.1016/j.colsurfb.2020.110860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 01/06/2023]
|
9
|
Liquid–liquid flow patterns and slug characteristics in cross-shaped square microchannel for cryogel beads preparation. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Okten NS, Canakci CC, Orakdogen N. Hertzian elasticity and triggered swelling kinetics of poly(amino ester)-based gel beads with controlled hydrophilicity and functionality: A mild and convenient synthesis via dropwise freezing into cryogenic liquid. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
|
12
|
Guven I, Gezici O, Bayrakci M, Morbidelli M. Calixarene-immobilized monolithic cryogels for preparative protein chromatography. J Chromatogr A 2018; 1558:59-68. [DOI: 10.1016/j.chroma.2018.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/06/2018] [Accepted: 05/12/2018] [Indexed: 11/16/2022]
|
13
|
Zhang W, Yang Y, Guan T, Guan J, Zheng S, Chen B, Yun J. Formation Dynamics of Cell-Loading Alginate Droplets in the Microtube Dripping and Cryo-Cross-Linking Process for Cell-Entrapped Cryogel Beads as the Biocatalysts toward Phenyllactic Acid Biosynthesis. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Wei Zhang
- Institute of Process Equipment and Control Engineering, College of Mechanical Engineering,Zhejiang University of Technology, Hangzhou 310032, China
| | - Yujun Yang
- Institute of Process Equipment and Control Engineering, College of Mechanical Engineering,Zhejiang University of Technology, Hangzhou 310032, China
| | - Tingting Guan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jintao Guan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sanlong Zheng
- Institute of Process Equipment and Control Engineering, College of Mechanical Engineering,Zhejiang University of Technology, Hangzhou 310032, China
| | - Bingbing Chen
- Institute of Process Equipment and Control Engineering, College of Mechanical Engineering,Zhejiang University of Technology, Hangzhou 310032, China
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
14
|
Atta AM, Al-Lohedan HA, Tawfeek AM, Ahmed MA. In situ
preparation of magnetic Fe3
O4
.Cu2
O.Fe3
O4
/cryogel nanocomposite powder via a reduction-coprecipitation method as adsorbent for methylene blue water pollutant. POLYM INT 2018. [DOI: 10.1002/pi.5582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ayman M Atta
- Surfactants research chair, Chemistry Department; College of Science, King Saud University; Riyadh Saudi Arabia
| | - Hamad A Al-Lohedan
- Surfactants research chair, Chemistry Department; College of Science, King Saud University; Riyadh Saudi Arabia
| | - Ahmed M Tawfeek
- College of science; King Saud University; Riyadh Saudi Arabia
| | - Mona A Ahmed
- Petroleum Application Department; Egyptian Petroleum Research Institute; Cairo Egypt
| |
Collapse
|
15
|
Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 2017; 62:29-41. [PMID: 28851666 DOI: 10.1016/j.actbio.2017.08.033] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023]
Abstract
The extracellular matrix is fundamental in providing an appropriate environment for cell interaction and signaling to occur. Replicating such a matrix is advantageous in the support of tissue ingrowth and regeneration through the field of tissue engineering. While scaffolds can be fabricated in many ways, cryogels have recently become a popular approach due to their macroporous structure and durability. Produced through the crosslinking of gel precursors followed by a subsequent controlled freeze/thaw cycle, the resulting cryogel provides a unique, sponge-like structure. Therefore, cryogels have proven advantageous for many tissue engineering applications including roles in bioreactor systems, cell separation, and scaffolding. Specifically, the matrix has been demonstrated to encourage the production of various molecules, such as antibodies, and has also been used for cryopreservation. Cryogels can pose as a bioreactor for the expansion of cell lines, as well as a vehicle for cell separation. Lastly, this matrix has shown excellent potential as a tissue engineered scaffold, encouraging regrowth at numerous damaged tissue sites in vivo. This review will briefly discuss the fabrication of cryogels, with an emphasis placed on their application in various facets of tissue engineering to provide an overview of this unique scaffold's past and future roles. STATEMENT OF SIGNIFICANCE Cryogels are unique scaffolds produced through the controlled freezing and thawing of a polymer solution. There is an ever-growing body of literature that demonstrates their applicability in the realm of tissue engineering as extracellular matrix analogue scaffolds; with extensive information having been provided regarding the fabrication, porosity, and mechanical integrity of the scaffolds. Additionally, cryogels have been reviewed with respect to their role in bioseparation and as cellular incubators. This all-inclusive view of the roles that cryogels can play is critical to advancing the technology and expanding its niche within biomaterials and tissue engineering research. To the best of the authors' knowledge, this is the first comprehensive review of cryogel applications in tissue engineering that includes specific looks at their growing roles as extracellular matrix analogues, incubators, and in bioseparation processes.
Collapse
|
16
|
Kim DY, Jin SH, Lee CS. Spontaneous generation of emulsion droplets by autonomous fluid-pumping using the gas permeability of poly(dimethylsiloxane) (PDMS). J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2016.1154862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dong-Yeong Kim
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Si Hyung Jin
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Wang B, Prinsen P, Wang H, Bai Z, Wang H, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chem Soc Rev 2017; 46:855-914. [DOI: 10.1039/c5cs00065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields.
Collapse
Affiliation(s)
- Bingjie Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pepijn Prinsen
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Huizhi Wang
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Zhishan Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hualin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Jin Xuan
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| |
Collapse
|
18
|
Separation of lactoperoxidase from bovine whey milk by cation exchange composite cryogel embedded macroporous cellulose beads. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Takimoto K, Takano E, Kitayama Y, Takeuchi T. Synthesis of Monodispersed Submillimeter-Sized Molecularly Imprinted Particles Selective for Human Serum Albumin Using Inverse Suspension Polymerization in Water-in-Oil Emulsion Prepared Using Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4981-4987. [PMID: 25855367 DOI: 10.1021/acs.langmuir.5b00769] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We synthesized monodispersed submillimeter-sized (100 μm-1 mm) microgels by inverse suspension polymerization of water-soluble monomer species with a photoinitiator in water-in-oil (W/O) droplets formed by the microchannel. After fundamental investigations of the selection of suitable surfactants, surfactant concentration, and flow rate, we successfully prepared monodispersed submillimeter-sized W/O droplets. Because radical polymerization based on thermal initiation was not appropriated based on colloidal stability, we selected photoinitiation, which resulted in the successful synthesis of monodispersed submillimeter-sized microgels with sufficient colloidal stability. The microgel size was controlled by the flow rate of the oil phase, which maintained the monodispersity. In addition, the submillimeter-sized microgels exhibit high affinity and selective binding toward HSA utilizing molecular imprinting. We believe the monodispersed submillimeter-sized molecularly imprinted microgels can be used as affinity column packing materials without any biomolecules, such as antibodies, for sample pretreatment to remove unwanted proteins without a pump system.
Collapse
Affiliation(s)
- Kyohei Takimoto
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Eri Takano
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yukiya Kitayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
20
|
Zhao W, Zhang S, Lu M, Shen S, Yun J, Yao K, Xu L, Lin DQ, Guan YX, Yao SJ. Immiscible liquid–liquid slug flow characteristics in the generation of aqueous drops within a rectangular microchannel for preparation of poly(2-hydroxyethylmethacrylate) cryogel beads. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Jeong HH, Noh YM, Jang SC, Lee CS. Droplet-based Microfluidic Device for High-throughput Screening. KOREAN CHEMICAL ENGINEERING RESEARCH 2014. [DOI: 10.9713/kcer.2014.52.2.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Okay O, Lozinsky VI. Synthesis and Structure–Property Relationships of Cryogels. POLYMERIC CRYOGELS 2014. [DOI: 10.1007/978-3-319-05846-7_3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Ye J, Yun J, Lin DQ, Xu L, Kirsebom H, Shen S, Yang G, Yao K, Guan YX, Yao SJ. Poly(hydroxyethyl methacrylate)-based composite cryogel with embedded macroporous cellulose beads for the separation of human serum immunoglobulin and albumin. J Sep Sci 2013; 36:3813-20. [DOI: 10.1002/jssc.201300911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jialei Ye
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Junxian Yun
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Dong-Qiang Lin
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Linhong Xu
- Faculty of Mechanical and Electronic Information; China University of Geosciences (Wuhan); Wuhan China
| | | | - Shaochuan Shen
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Gensheng Yang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Kejian Yao
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology; College of Chemical Engineering and Materials Science; Zhejiang University of Technology; Hangzhou China
| | - Yi-Xin Guan
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Shan-Jing Yao
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| |
Collapse
|
24
|
Yu X, Zhao P, Zhang L, Zhang Y. Screening of phage-displayed human liver cDNA library against doxorubicin with drug-immobilized monolithic polyacrylamide cryogel. Biomed Chromatogr 2013; 27:1574-9. [DOI: 10.1002/bmc.2962] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | - Peng Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; 116023; China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; 116023; China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; 116023; China
| |
Collapse
|
25
|
Zhan XY, Lu DP, Lin DQ, Yao SJ. Preparation and characterization of supermacroporous polyacrylamide cryogel beads for biotechnological application. J Appl Polym Sci 2013. [DOI: 10.1002/app.39545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao-Yong Zhan
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou; 310027; People's Republic of China
| | - Dan-Ping Lu
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou; 310027; People's Republic of China
| | - Dong-Qiang Lin
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou; 310027; People's Republic of China
| | - Shan-Jing Yao
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou; 310027; People's Republic of China
| |
Collapse
|
26
|
Rapid freezing cryo-polymerization and microchannel liquid-flow focusing for cryogel beads: Adsorbent preparation and characterization of supermacroporous bead-packed bed. J Chromatogr A 2013; 1284:148-54. [DOI: 10.1016/j.chroma.2013.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/28/2013] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
|
27
|
Gun'ko VM, Savina IN, Mikhalovsky SV. Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interface Sci 2013; 187-188:1-46. [PMID: 23218507 DOI: 10.1016/j.cis.2012.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022]
Abstract
Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4<d<2 nm), middle (2<d<50 nm) and broad (50<d<100 nm) nanopores, micropores (100 nm<d<100 μm) and macropores (d>100 μm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG<0.5-0.8 kJ/mol) and strongly bound (-ΔG>0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.
Collapse
Affiliation(s)
- Vladimir M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kiev 03164, Ukraine.
| | | | | |
Collapse
|