1
|
Shen D, Yan Y, Hu X, Zhong Y, Li Z, Guo Y, Xie L, Yuan D. Deep-Eutectic-Solvent-Based Mesoporous Molecularly Imprinted Polymers for Purification of Gallic Acid from Camellia spp. Fruit Shells. Int J Mol Sci 2022; 23:ijms232113089. [PMID: 36361874 PMCID: PMC9658731 DOI: 10.3390/ijms232113089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
To produce antioxidant substances from agricultural waste Camellia spp. fruit shells before their further utilization, gallic acid from five kinds of Camellia spp. fruit shells was separated on specific recognition by deep eutectic solvent molecularly imprinted polymers (DES@MIPs), which were prepared by bulk polymerization using gallic acid as the template and deep eutectic solvents (α-methylacrylic acid and choline chloride) as functional monomers. The optimized DES@MIPs were characterized by scanning electron microscopy, particle size analysis, nitrogen sorption porosimetry, elemental analysis, Fourier transform infrared spectroscopy, and thermal gravimetric analysis. The adsorptive behavior of gallic acid on DES@MIPs was also investigated. The results indicated that DES@MIPs were successfully prepared as mesoporous materials with average pore diameter of 9.65 nm and total pore volume of 0.315 cm3 g−1, and the adsorption behavior was multilayer adsorption and pseudo-second-order kinetics with the saturation adsorptive capacity of gallic acid reaching 0.7110 mmol g−1. Although the content of gallic acid in five fruit shells was quite different, the purification recovery of gallic acid was high, ranging from 87.85–96.75% with a purity over 80%. Thus, the purification of gallic acid from Camellia spp. fruit shells could be realized feasibly using DES@MIPs with favorable economic and environmental benefits.
Collapse
Affiliation(s)
- Dianling Shen
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yu Yan
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaopeng Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yujun Zhong
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiyang Li
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (L.X.); (D.Y.); Tel.: +86-731-85623819 (L.X.); +86-731-85623450 (D.Y.)
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (L.X.); (D.Y.); Tel.: +86-731-85623819 (L.X.); +86-731-85623450 (D.Y.)
| |
Collapse
|
2
|
Li H, Xie W, Zeng L, Li W, Shi B, Lei F. Development and evaluation of a hydrogenated rosin (β-acryloxyl ethyl) ester-bonded silica stationary phase for high-performance liquid chromatography separation of paclitaxel from yew bark. J Chromatogr A 2022; 1665:462815. [PMID: 35038614 DOI: 10.1016/j.chroma.2022.462815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Paclitaxel (PTX) is a complex diterpenoid anticancer drug whose separation from yew biomass poses a significant challenge. In this study, a new stationary phase comprising hydrogenated rosin (β-acryloxyl ethyl) ester (HRE)-bonded silica (HRE@SiO2) is developed to separate and purify PTX from crude yew-bark extract using high-performance liquid chromatography. In HRE@SiO2, HRE molecules, which are functional ligands, are bonded to the surface of a silica gel matrix using a coupling agent, (3-mercaptopropyl)trimethoxysilane. The proposed HRE@SiO2 stationary phase was characterized by Fourier-transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, scanning electron microscopy, laser diffraction granulometry, and nitrogen gas adsorption. The HRE@SiO2 column exhibited excellent chromatographic performance, satisfactory performance reproducibility, and typical reversed-phase chromatographic behavior. An HRE@SiO2 column was used to separate PTX and its analogs, achieving resolutions exceeding 7.43 for consecutively eluted species. Stoichiometric displacement theory for retention (SDT-R), the van Deemter equation, and van 't Hoff plots were used to analyze the separation mechanism and properties of the HRE@SiO2 column. The results showed that hydrophobic interactions determine the analyte retention and the separation of PTX and its analogs on an HRE@SiO2 column is an exothermic process driven by enthalpy. Furthermore, an HRE@SiO2 column was employed to separate and purify PTX from crude yew-bark extract, increasing PTX purity from 6% to 82%. The findings of this study provide insights for developing rosin-based stationary phases for the separation of natural products.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Wenbo Xie
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Lei Zeng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Wen Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Boan Shi
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
3
|
Sun Y, Gu Y, Jiang Y. Adsorption behavior of a tri-functionalized imprinted resin with high selectivity for 5-sulfosalicylic acid: Batch experiments and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125271. [PMID: 33548783 DOI: 10.1016/j.jhazmat.2021.125271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The presence of aromatic compounds with multiple functional groups such as 5-sulfosalicylic acid (SSA) in water bodies is a threat to aquatic organisms and human health. Phenol (PH) with the -OH group, benzoic acid with -COOH and benzenesulfonic acid (BSA) with -SO3H can be considered as SSA structural unit. In this study, three functional monomers, namely, N-methylallylamine, diallylamine, and triallylamine, with strong affinity for PH, BA, and BSA, respectively, were selected from 16 monomers by using density functional theory (DFT). Molecularly imprinted resin (MIP-4) with tri-functional groups and excellent selectivity for SSA was synthesized using a macroporous polystyrene resin (NDA-1800) as the carrier. In binary systems, MIP-4 exhibited excellent imprinting effect and adsorption selectivity for SSA. X-ray spectroscopy data and DFT calculations illustrated that the adsorption of SSA on MIP-4 was mainly dependent on the strong electrostatic interaction between the protonated amine group on the resin and -SO3- of SSA, as well as, the hydrogen bond between the neutral amine group and -OH and -COOH of SSA; the order of the three functional groups in identification was -OH > -COOH > -SO3H. In addition, the adsorption performance of MIP-4 was retained after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yu Jiang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
4
|
Daniels CR, Waguespack BL, Hodges SA, Bushey MM. Temperature effects on retention and efficiency of butyl and lauryl acrylate porous polymer monoliths in capillary electrochromatography. J Sep Sci 2019; 42:3703-3711. [DOI: 10.1002/jssc.201900837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
|
5
|
Sun Y, Li P, Wang T, Qin L, Cheng G, Shen L, Yao X, Wei S, Jiang J, Lei F. Alkaloid purification using rosin-based polymer-bonded silica stationary phase in HPLC. J Sep Sci 2019; 42:3646-3652. [PMID: 31613051 DOI: 10.1002/jssc.201900835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/21/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Alkaloids are important natural products that exhibit a wide spectrum of pharmacological activities. To efficiently separate and purify them, a rosin-based polymer-bonded silica stationary phase in high-performance liquid chromatography was synthesized via the surface radical polymerization of ethylene glycol maleic rosinate acrylate and methacrylic acid onto functionalized silica. The stationary phases, columns, optimization of chromatographic conditions for alkaloids, and thermodynamic behavior of the analytes on the column were fully studied. Under the optimized conditions, the prepared column efficiently purified natural camptothecine, caffeine, and evodiamine with the corresponding purities of 92, 96, and 97%. With this work, we have developed an efficient approach to isolate alkaloids and promoted the research on rosin-based materials in biomedicine and analytical chemistry.
Collapse
Affiliation(s)
- Yao Sun
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| | - Pengfei Li
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| | - Liting Qin
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| | - Gege Cheng
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| | - Liqun Shen
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| | - Xingdong Yao
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| | - Shaoping Wei
- Guangxi Research Institute of Chemical Industry Co. Ltd., Nanning, P. R. China
| | - Jianxin Jiang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| | - Fuhou Lei
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forests Products, Nanning, P. R. China
| |
Collapse
|
6
|
Thermodynamic Insights into the Separation of Carotenoids in Reversed-Phase Liquid Chromatography. Int J Anal Chem 2019; 2019:7535813. [PMID: 30719042 PMCID: PMC6335859 DOI: 10.1155/2019/7535813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
The retention mechanism of four major carotenoids, two xanthophylls (i.e., lutein and zeaxanthin) and two carotenes (i.e., lycopene and β-carotene), was investigated in reversed-phase liquid chromatography with the aim of thermodynamic analysis. The experimental variables considered in this study were the composition of mobile phase (MP) and the temperature. Chromatographic elutions were undertaken under linear, isocratic conditions by using a C18 stationary phase, four different MP compositions (by varying the ratio methanol/acetonitrile from 66.5/28.5 to 47.5/47.5 v/v), and column temperatures in the range 283–313 K. Traditional Van't Hoff analysis has been used to estimate changes of standard enthalpy (ΔH°) and Gibbs free energy (ΔG°) associated with the solute transfer from the mobile to the stationary phase at each mobile phase composition. The thermodynamic quantities have been correlated to the structure of investigated carotenoids and their interaction with the octadecyl silica stationary phase.
Collapse
|
7
|
Yadrova AA, Shafigulin RV, Bulanova AV, Golov AA, Belousova ZP. Studying the Sorption of Certain Benzimidazoles on Octadecyl Silica Gel from Water–Acetonitrile Solutions via Liquid Chromatography. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418080307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Bodoki AE, Iacob BC, Gliga LE, Oprean SL, Spivak DA, Gariano NA, Bodoki E. Improved Enantioselectivity for Atenolol Employing Pivot Based Molecular Imprinting. Molecules 2018; 23:E1875. [PMID: 30060464 PMCID: PMC6222315 DOI: 10.3390/molecules23081875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 01/18/2023] Open
Abstract
In the last few decades, molecular imprinting technology went through a spectacular evolution becoming a well-established tool for the synthesis of highly selective biomimetic molecular recognition platforms. Nevertheless, there is still room for advancement in the molecular imprinting of highly polar chiral compounds. The aim of the present work was to investigate the favorable kosmotropic effect of a ternary complex involving a polar chiral template (eutomer of atenolol) and a functional monomer, bridged by a central metal ion through well-defined, spatially directional coordinate bonds. The efficiency of the chiral molecular recognition was systematically assessed on polymers obtained both by non-covalent and metal-mediated molecular imprinting. The influence on the chromatographic retention and enantioselectivity of different experimental variables (functional monomers, cross-linkers, chaotropic agents, metal ions, porogenic systems, etc.) were studied on both slurry packed and monolithic HPLC columns. Deliberate changes in the imprinting and rebinding (chromatographic) processes, along with additional thermodynamic studies shed light on the particularities of the molecular recognition mechanism. The best performing polymer in terms of enantioselectivity (α = 1.60) was achieved using 4-vinyl pyridine as functional monomer and secondary ligand for the Co(II)-mediated imprinting of S-atenolol in the presence of EDMA as cross-linker in a porogenic mixture of [BMIM][BF₄]:DMF:DMSO = 10:1:5, v/v/v.
Collapse
Affiliation(s)
- Andreea Elena Bodoki
- Department of Inorganic Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 Ion Creangă St., Cluj-Napoca 400010, Romania.
| | - Bogdan-Cezar Iacob
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur St., Cluj-Napoca 400349, Romania.
| | - Laura Elena Gliga
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur St., Cluj-Napoca 400349, Romania.
| | - Simona Luminita Oprean
- Department of Inorganic Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 Ion Creangă St., Cluj-Napoca 400010, Romania.
| | - David A Spivak
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Nicholas A Gariano
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Ede Bodoki
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur St., Cluj-Napoca 400349, Romania.
| |
Collapse
|
9
|
Shafigulin RV, Bulanova AV. Thermodynamics of the Sorption of Benzimidazoles on Octadecyl Silica Gel from Water–Methanol Eluents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s003602441802019x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Li Y, Liu J, Zhang Y, Gu M, Wang D, Dang YY, Ye BC, Li Y. A robust electrochemical sensing platform using carbon paste electrode modified with molecularly imprinted microsphere and its application on methyl parathion detection. Biosens Bioelectron 2018; 106:71-77. [PMID: 29414092 DOI: 10.1016/j.bios.2018.01.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 11/26/2022]
Abstract
A highly sensitive electrochemical sensor using a carbon paste electrode (CPE) modified with surface molecularly imprinted polymeric microspheres (SMIPMs) was developed for methyl parathion (MP) detection. Molecular imprinting technique based on distillation precipitation polymerization was applied to prepare SMIPMs and non-surface imprinted microspheres (MIPMs). The polymer properties including morphology, size distribution, BET specific surface area and adsorption performance were investigated and compared carefully. Both MIPMs and SMIPMs were adopted to prepare CPE sensors and their electrochemical behaviors were characterized via cyclic voltammetry and electrochemical impedance spectroscopy. Compared with MIPMs packed sensor, SMIPMs/CPE exhibits a higher sensing response towards MP with linear detection range of 1 × 10-12-8 × 10-9 mol L-1 and detection limit of 3.4 × 10-13 mol L-1 (S/N = 3). Moreover, SMIPMs/CPE exhibits good selectivity and stability in multiple-cycle usage and after long-time storage. Finally, the developed sensor was used to determine MP in real samples including soil and vegetables and only simple pretreatment is needed. The detection results were consistent with those obtained from liquid chromatography. Collectively, this newly developed sensor system shows significant potential for use in a variety of fields like food safety, drug residue determination and environmental monitoring.
Collapse
Affiliation(s)
- Yangguang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jiang Liu
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dongyang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yan-Yan Dang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| | - Bang-Ce Ye
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingchun Li
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Comparison of multi-recognition molecularly imprinted polymers for recognition of melamine, cyromazine, triamterene, and trimethoprim. Anal Bioanal Chem 2015. [DOI: 10.1007/s00216-015-8878-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Xie X, Wei F, Chen L, Wang S. Preparation of molecularly imprinted polymers based on magnetic nanoparticles for the selective extraction of protocatechuic acid from plant extracts. J Sep Sci 2015; 38:1046-52. [DOI: 10.1002/jssc.201401142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoyu Xie
- School of Pharmacy; Health Science Center; Xi'an Jiaotong University; Xi'an China
| | - Fen Wei
- School of Pharmacy; Health Science Center; Xi'an Jiaotong University; Xi'an China
| | - Liang Chen
- School of Pharmacy; Health Science Center; Xi'an Jiaotong University; Xi'an China
| | - Sicen Wang
- School of Pharmacy; Health Science Center; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
13
|
Denderz N, Lehotay J. Using of molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography. J Chromatogr A 2014; 1372C:72-80. [DOI: 10.1016/j.chroma.2014.10.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/15/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023]
|
14
|
Affiliation(s)
- Romana Schirhagl
- Physics
Department, ETH-Zurich, Schafmattstrasse
16, 8046 Zurich
| |
Collapse
|