1
|
Applications of Cryostructures in the Chromatographic Separation of Biomacromolecules. J Chromatogr A 2022; 1683:463546. [DOI: 10.1016/j.chroma.2022.463546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/20/2022]
|
2
|
Synthesis of porous polymers by means of Michael addition reaction of multifunctional acetoacetate and poly(ethylene glycol) diacrylate. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Neequaye T, El Rassi Z. Poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith with bonded octadecyl ligands for use in reversed-phase capillary electrochromatography. Electrophoresis 2021; 42:2656-2663. [PMID: 34324209 DOI: 10.1002/elps.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/05/2021] [Accepted: 07/24/2021] [Indexed: 11/06/2022]
Abstract
A carboxy precursor monolithic column, namely poly(carboxy ethyl acrylate-co-ethylene glycol dimethacrylate) was first produced in a 100 μm i.d. fused-silica capillary and subsequently surface bonded with n-octadecyl (C18 ) ligands by a post-polymerization functionalization process with octadecylamine in the presence of N,N´-dicyclohexylcarbodiimide. The bonding of octadecyl ligands was achieved via an amide linkage between the carboxy functions of the precursor monolith and the amino group of the octadecylamine compound. The resulting C18 monolith exhibited a very low electroosmotic flow (EOF), a fact that required the incorporation of small amounts of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) in the polymerization solution to produce a precursor monolith with fixed negative charges of sulfonate groups. This may indicate that the conjugation of the carboxy functions with octadecylamine occurred to a large extent so that the amount of residual carboxy functions was sparsely dispersed and not enough to produce a desirable EOF. The EOF velocity of the C18 column having fixed negative charges provided by the incorporated AMPS increased with increasing ACN content of the mobile phase signaling an increased binding of mobile phase ions to the polar amide linkages near the monolithic surface, and a decreased viscosity of the mobile phase, both of which would result in increased EOF velocity. The C18 monolithic column constituted a novel nonpolar sorbent for reversed-phase capillary electrochromatography for nonpolar solutes, e.g., alkylbenzenes, alkylphenyl ketones, and polyaromatic hydrocarbons, and slightly polar compounds including phenol and chlorophenols. The C18 monolithic column exhibited relatively high selectivity toward chlorophenols differing by one chloro substituent.
Collapse
Affiliation(s)
- Theophilus Neequaye
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Naga N, Ito M, Mezaki A, Tang HC, Chang TFM, Sone M, Nageh H, Nakano T. Morphology Control and Metallization of Porous Polymers Synthesized by Michael Addition Reactions of a Multi-Functional Acrylamide with a Diamine. MATERIALS (BASEL, SWITZERLAND) 2021; 14:800. [PMID: 33572043 PMCID: PMC7915525 DOI: 10.3390/ma14040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/02/2022]
Abstract
Porous polymers have been synthesized by an aza-Michael addition reaction of a multi-functional acrylamide, N,N',N″,N‴-tetraacryloyltriethylenetetramine (AM4), and hexamethylene diamine (HDA) in H2O without catalyst. Reaction conditions, such as monomer concentration and reaction temperature, affected the morphology of the resulting porous structures. Connected spheres, co-continuous monolithic structures and/or isolated holes were observed on the surface of the porous polymers. These structures were formed by polymerization-induced phase separation via spinodal decomposition or highly internal phase separation. The obtained porous polymers were soft and flexible and not breakable by compression. The porous polymers adsorbed various solvents. An AM4-HDA porous polymer could be plated by Ni using an electroless plating process via catalyzation by palladium (II) acetylacetonate following reduction of Ni ions in a plating solution. The intermediate Pd-catalyzed porous polymer promoted the Suzuki-Miyaura cross coupling reaction of 4-bromoanisole and phenylboronic acid.
Collapse
Affiliation(s)
- Naofumi Naga
- Department of Applied Chemistry, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Minako Ito
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Aya Mezaki
- Department of Applied Chemistry, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Hao-Chun Tang
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Hassan Nageh
- Institute for Catalysis and Graduate, School of Chemical Sciences and Engineering, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan; (H.N.); (T.N.)
| | - Tamaki Nakano
- Institute for Catalysis and Graduate, School of Chemical Sciences and Engineering, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan; (H.N.); (T.N.)
- Integrated Research Consortium on Chemical Sciences, Institute for Catalysis, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
5
|
Incorporation of silver stearate nanoparticles in methacrylate polymeric monoliths for hemeprotein isolation. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA unique method was used to synthesize extremely stable silver stearate nanoparticles
(AgStNPs) incorporated in an organic-based monolith. The facile strategy was then
used to selectively isolate hemeproteins, myoglobin (Myo) and hemoglobin (Hb). Ethyl
alcohol, silver nitrate, and stearic acid were, respectively, utilized as reducing
agents, silver precursors, and capping agents. The color changed to cloudy from
transparent, indicating that AgStNPs had been formed. AgStNP nanostructures were then
distinctly integrated into the natural polymeric scaffold. To characterize the
AgStNP–methacrylate polymeric monolith and the silver nanoparticles,
energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and
Fourier-transform infrared (FT-IR) spectroscopy were used. The results of the SEM
analysis indicated that the AgStNP–methacrylate polymeric monolith’s
texture was so rough in comparison with that of the methacrylate polymeric monolith,
indicating that the extraction process of the monolith materials would be more
efficient because of the extended surface area of the absorbent. The comparison
between the FT-IR spectra of AgStNPs, the bare organic monolith, and
AgStNP–methacrylate polymeric monolith confirms that the AgStNPs were
immobilized on the surface of the organic monolith. The EDX profile of the built
materials indicated an advanced peak of the Ag sequence which represented an Ag atom
of 3.27%. The results therefore established that the AgStNPs had been successfully
integrated into the monolithic materials. Extraction efficiencies of 92% and 97% were
used to, respectively, recover preconcentrated Myo and Hb. An uncomplicated method is
a unique approach of both fabrication and utilization of the nanosorbent to
selectively isolate hemeproteins. The process can further be implemented by using
other noble metals.
Collapse
|
6
|
Yang J, He S, Liu A, Chen J, Dong Y. Preparation of a poly(1, 6-hexylene dimethacrylate) conventional size high performance liquid chromatographic monolithic column for separation of small molecules. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Guo F, Wang Y, Chen X, Chen M, He W, Chen Z. Supermacroporous polydivinylbenzene cryogels with high surface area: Synthesis by solvothermal postcrosslinking and their adsorption behaviors for carbon dioxide and aniline. J Appl Polym Sci 2019. [DOI: 10.1002/app.47716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fenghao Guo
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Yinping Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Xilu Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Mingqian Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Wei He
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| |
Collapse
|
8
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
9
|
Ganewatta N, El Rassi Z. Organic polymer-based monolithic stationary phases with incorporated nanostructured materials for HPLC and CEC. Electrophoresis 2017; 39:53-66. [PMID: 28926678 DOI: 10.1002/elps.201700312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
This review article is concerned with the recent advances made in the field of organic polymer-based monoliths with incorporated nanostructured materials (NSMs) for use in liquid chromatography and capillary electrochromatography. It covers the pertinent literature published over the last 7-8 years with a total of 56 references. The present article has two distinct parts: one major part encompassing "traditional" organic polymer-based monoliths modified with NSMs and a minor part on cryogels modified with NSMs.
Collapse
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK
| |
Collapse
|
10
|
Khodabandeh A, Arrua RD, Mansour FR, Thickett SC, Hilder EF. PEO-based brush-type amphiphilic macro-RAFT agents and their assembled polyHIPE monolithic structures for applications in separation science. Sci Rep 2017; 7:7847. [PMID: 28798377 PMCID: PMC5552774 DOI: 10.1038/s41598-017-08423-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022] Open
Abstract
Polymerized High Internal Phase Emulsions (PolyHIPEs) were prepared using emulsion-templating, stabilized by an amphiphilic diblock copolymer prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer consisted of a hydrophilic poly(ethylene glycol) methyl ether acrylate (PEO MA, average Mn 480) segment and a hydrophobic styrene segment, with a trithiocarbonate end-group. These diblock copolymers were the sole emulsifiers used in stabilizing "inverse" (oil-in-water) high internal phase emulsion templates, which upon polymerization resulted in a polyHIPE exhibiting a highly interconnected monolithic structure. The polyHIPEs were characterized by FTIR spectroscopy, BET surface area measurements, SEM, SEM-EDX, and TGA. These materials were subsequently investigated as stationary phase for high-performance liquid chromatography (HPLC) via in situ polymerization in a capillary format as a 'column housing'. Initial separation assessments in reversed-phase (RP) and hydrophilic interaction liquid chromatographic (HILIC) modes have shown that these polyHIPEs are decorated with different microenvironments amongst the voids or domains of the monolithic structure. Chromatographic results suggested the existence of RP/HILIC mixed mode with promising performance for the separation of small molecules.
Collapse
Affiliation(s)
- Aminreza Khodabandeh
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Fotouh R Mansour
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- Department of Pharmaceutical Analytical Chemistry, Tanta University, Tanta, Egypt
| | - Stuart C Thickett
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
11
|
Baran NY, Acet Ö, Odabaşı M. Efficient adsorption of hemoglobin from aqueous solutions by hybrid monolithic cryogel column. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:15-20. [DOI: 10.1016/j.msec.2016.12.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
12
|
Eeltink S, Wouters S, Dores-Sousa JL, Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. J Chromatogr A 2017; 1498:8-21. [PMID: 28069168 DOI: 10.1016/j.chroma.2017.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 01/02/2017] [Indexed: 11/27/2022]
Abstract
This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown.
Collapse
Affiliation(s)
- Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Sam Wouters
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - José Luís Dores-Sousa
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
13
|
Li Y, Qi L, Li N, Ma H. Emulsion-cryogelation technique for fabricating a versatile toolbox of hierarchical polymeric monolith and its application in chromatography. Talanta 2016; 152:244-50. [DOI: 10.1016/j.talanta.2016.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
|
14
|
Urban J. Current trends in the development of porous polymer monoliths for the separation of small molecules. J Sep Sci 2015; 39:51-68. [DOI: 10.1002/jssc.201501011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
15
|
Zhu Y, Morisato K, Hasegawa G, Moitra N, Kiyomura T, Kurata H, Kanamori K, Nakanishi K. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles. J Sep Sci 2015; 38:2841-7. [PMID: 26097062 DOI: 10.1002/jssc.201500444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| | | | - George Hasegawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| | - Nirmalya Moitra
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| | | | - Hiroki Kurata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| | - Kazuki Nakanishi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
16
|
Dario Arrua R, Hilder EF. Highly ordered monolithic structures by directional freezing and UV-initiated cryopolymerisation. Evaluation as stationary phases in high performance liquid chromatography. RSC Adv 2015. [DOI: 10.1039/c5ra15114g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rigid aligned polymers were prepared by directional freezing and photo-initiated cryopolymerisation and tested as stationary phases in liquid chromatography.
Collapse
Affiliation(s)
- R. Dario Arrua
- Australian Centre for Research on Separation Science (ACROSS)
- School of Physical Sciences
- University of Tasmania
- Hobart 7001
- Australia
| | - Emily F. Hilder
- Australian Centre for Research on Separation Science (ACROSS)
- School of Physical Sciences
- University of Tasmania
- Hobart 7001
- Australia
| |
Collapse
|
17
|
Liu K, Aggarwal P, Tolley HD, Lawson JS, Lee ML. Fabrication of highly cross-linked reversed-phase monolithic columns via living radical polymerization. J Chromatogr A 2014; 1367:90-8. [DOI: 10.1016/j.chroma.2014.09.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
|
18
|
Mayadunne E, El Rassi Z. Facile preparation of octadecyl monoliths with incorporated carbon nanotubes and neutral monoliths with coated carbon nanotubes stationary phases for HPLC of small and large molecules by hydrophobic and π-π interactions. Talanta 2014; 129:565-74. [PMID: 25127634 PMCID: PMC4134917 DOI: 10.1016/j.talanta.2014.06.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
Abstract
Two approaches for incorporating carbon nanotubes into monolithic columns for HPLC are described in this report. They pertain to the investigation of carbon nanotubes either (i) as entities to modulate solute retention on monolithic columns bearing well defined retentive ligands or (ii) as entities that constitute the stationary phase responsible for solute retention and separation. Approach (i) involved the incorporation of carbon nanotubes into octadecyl monolithic columns while approach (ii) concerns the preparation and evaluation of an ideal monolithic support and coating it with carbon nanotubes to yield a real "carbon nanotube stationary phase" for the HPLC separation of a wide range of solutes. First, an octadecyl monolithic column based on the in situ polymerization of octadecyl acrylate and trimethylolpropane trimethacrylate was optimized for use in HPLC separations of small and large solutes (e.g., proteins). To further modulate the retention and separation of proteins, small amounts of carbon nanotubes were incorporated into the octadecyl monolith column. In approach (ii), an inert, relatively polar monolith based on the in situ polymerization of glyceryl monomethacrylate (GMM) and ethylene glycol dimethacrylate (EDMA) proved to be the most suitable support for the preparation of "carbon nanotube stationary phase". This carbon nanotube "coated" monolith proved useful in the HPLC separation of a wide range of small solutes including enantiomers. In approach (ii), a more homogeneous incorporation of carbon nanotubes into the diol monolithic columns (i.e., GMM/EDMA) was achieved when hydroxyl functionalized carbon nanotubes were incorporated into the GMM/EDMA monolithic support. In addition, high power sonication for a short time enhanced further the homogeneity of the monolith incorporated with nanotubes. In all cases, nonpolar and π interactions were responsible for solute retention on the monolith incorporated carbon nanotubes.
Collapse
Affiliation(s)
- Erandi Mayadunne
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States.
| |
Collapse
|
19
|
Mitulović G. New HPLC Techniques for Proteomics Analysis: A Short Overview of Latest Developments. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.941266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Goran Mitulović
- a Clinical Institute of Laboratory Medicine and Proteomics Core Facility , Medical University of Vienna , Wien , Austria
| |
Collapse
|
20
|
Tang S, Guo Y, Xiong C, Liu S, Liu X, Jiang S. Nanoparticle-based monoliths for chromatographic separations. Analyst 2014; 139:4103-17. [DOI: 10.1039/c4an00593g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Arrua RD, Hitchcock AP, Hon WB, West M, Hilder EF. Characterization of Polymer Monoliths Containing Embedded Nanoparticles by Scanning Transmission X-ray Microscopy (STXM). Anal Chem 2014; 86:2876-81. [DOI: 10.1021/ac403166u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Dario Arrua
- Australian Centre
for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Private Bag
75, Hobart 7001, Australia
| | - Adam P. Hitchcock
- Department
of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Wei Boon Hon
- Australian Centre
for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Private Bag
75, Hobart 7001, Australia
| | - Marcia West
- Faculty of
Health
Sciences Electron Microscopy Facility, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Emily F. Hilder
- Australian Centre
for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Private Bag
75, Hobart 7001, Australia
| |
Collapse
|
22
|
Highly crosslinked polymeric monoliths with various C6 functional groups for reversed-phase capillary liquid chromatography of small molecules. J Chromatogr A 2013; 1321:80-7. [DOI: 10.1016/j.chroma.2013.10.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023]
|
23
|
Arrua RD, Haddad PR, Hilder EF. Monolithic cryopolymers with embedded nanoparticles. II. Capillary liquid chromatography of proteins using charged embedded nanoparticles. J Chromatogr A 2013; 1311:121-6. [DOI: 10.1016/j.chroma.2013.08.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 01/01/2023]
|
24
|
Metal organic framework–organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography. Anal Chim Acta 2013; 779:96-103. [DOI: 10.1016/j.aca.2013.03.071] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 11/18/2022]
|
25
|
Affiliation(s)
- Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium
| |
Collapse
|