1
|
Kajtazi A, Russo G, Wicht K, Eghbali H, Lynen F. Facilitating structural elucidation of small environmental solutes in RPLC-HRMS by retention index prediction. CHEMOSPHERE 2023; 337:139361. [PMID: 37392796 DOI: 10.1016/j.chemosphere.2023.139361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Implementing effective environmental management strategies requires a comprehensive understanding of the chemical composition of environmental pollutants, particularly in complex mixtures. Utilizing innovative analytical techniques, such as high-resolution mass spectrometry and predictive retention index models, can provide valuable insights into the molecular structures of environmental contaminants. Liquid Chromatography-High-Resolution Mass Spectrometry is a powerful tool for the identification of isomeric structures in complex samples. However, there are some limitations that can prevent accurate isomeric structure identification, particularly in cases where the isomers have similar mass and fragmentation patterns. Liquid chromatographic retention, determined by the size, shape, and polarity of the analyte and its interactions with the stationary phase, contains valuable 3D structural information that is vastly underutilized. Therefore, a predictive retention index model is developed which is transferrable to LC-HRMS systems and can assist in the structural elucidation of unknowns. The approach is currently restricted to carbon, hydrogen, and oxygen-based molecules <500 g mol-1. The methodology facilitates the acceptance of accurate structural formulas and the exclusion of erroneous hypothetical structural representations by leveraging retention time estimations, thereby providing a permissible tolerance range for a given elemental composition and experimental retention time. This approach serves as a proof of concept for the development of a Quantitative Structure-Retention Relationship model using a generic gradient LC approach. The use of a widely used reversed-phase (U)HPLC column and a relatively large set of training (101) and test compounds (14) demonstrates the feasibility and potential applicability of this approach for predicting the retention behaviour of compounds in complex mixtures. By providing a standard operating procedure, this approach can be easily replicated and applied to various analytical challenges, further supporting its potential for broader implementation.
Collapse
Affiliation(s)
- Ardiana Kajtazi
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Giacomo Russo
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN, Edinburgh, United Kingdom
| | - Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Hamed Eghbali
- Packaging and Specialty Plastics R&D, Dow Benelux B.V., Terneuzen, 4530 AA, the Netherlands
| | - Frédéric Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium.
| |
Collapse
|
2
|
Ruggieri F, Biancolillo A, D’Archivio AA, Di Donato F, Foschi M, Maggi MA, Quattrociocchi C. Quantitative Structure–Retention Relationship Analysis of Polycyclic Aromatic Compounds in Ultra-High Performance Chromatography. Molecules 2023; 28:molecules28073218. [PMID: 37049982 PMCID: PMC10096086 DOI: 10.3390/molecules28073218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
A comparative quantitative structure–retention relationship (QSRR) study was carried out to predict the retention time of polycyclic aromatic hydrocarbons (PAHs) using molecular descriptors. The molecular descriptors were generated by the software Dragon and employed to build QSRR models. The effect of chromatographic parameters, such as flow rate, temperature, and gradient time, was also considered. An artificial neural network (ANN) and Partial Least Squares Regression (PLS-R) were used to investigate the correlation between the retention time, taken as the response, and the predictors. Six descriptors were selected by the genetic algorithm for the development of the ANN model: the molecular weight (MW); ring descriptor types nCIR and nR10; radial distribution functions RDF090u and RDF030m; and the 3D-MoRSE descriptor Mor07u. The most significant descriptors in the PLS-R model were MW, RDF110u, Mor20u, Mor26u, and Mor30u; edge adjacency indice SM09_AEA (dm); 3D matrix-based descriptor SpPosA_RG; and the GETAWAY descriptor H7u. The built models were used to predict the retention of three analytes not included in the calibration set. Taking into account the statistical parameter RMSE for the prediction set (0.433 and 0.077 for the PLS-R and ANN models, respectively), the study confirmed that QSRR models, associated with chromatographic parameters, are better described by nonlinear methods.
Collapse
Affiliation(s)
- Fabrizio Ruggieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | - Alessandra Biancolillo
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | - Angelo Antonio D’Archivio
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | - Francesca Di Donato
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | - Martina Foschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | | | - Claudia Quattrociocchi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| |
Collapse
|
3
|
Fesenko I, Azarkina R, Kirov I, Kniazev A, Filippova A, Grafskaia E, Lazarev V, Zgoda V, Butenko I, Bukato O, Lyapina I, Nazarenko D, Elansky S, Mamaeva A, Ivanov V, Govorun V. Phytohormone treatment induces generation of cryptic peptides with antimicrobial activity in the Moss Physcomitrella patens. BMC PLANT BIOLOGY 2019; 19:9. [PMID: 30616513 PMCID: PMC6322304 DOI: 10.1186/s12870-018-1611-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/20/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Regina Azarkina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kirov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei Kniazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Ivan Butenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina Lyapina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Nazarenko
- Department of Analytical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Elansky
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Mamaeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
4
|
D'Archivio AA, Di Donato F, Foschi M, Maggi MA, Ruggieri F. UHPLC Analysis of Saffron ( Crocus sativus L.): Optimization of Separation Using Chemometrics and Detection of Minor Crocetin Esters. Molecules 2018; 23:molecules23081851. [PMID: 30044436 PMCID: PMC6222919 DOI: 10.3390/molecules23081851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023] Open
Abstract
Ultra-high performance liquid chromatography (UHPLC) coupled with diode array detection (DAD) was applied to improve separation and detection of mono- and bis-glucosyl esters of crocetin (crocins), the main red-colored constituents of saffron (Crocus sativus L.), and other polar components. Response surface methodology (RSM) was used to optimise the chromatographic resolution on the Kinetex C18 (Phenomenex) column taking into account of the combined effect of the column temperature, the eluent flow rate and the slope of a linear eluent concentration gradient. A three-level full-factorial design of experiments was adopted to identify suitable combinations of the above factors. The influence of the separation conditions on the resolutions of 22 adjacent peaks was simultaneously modelled by a multi-layer artificial neural network (ANN) in which a bit string representation was used to identify the target analytes. The chromatogram collected under the optimal separation conditions revealed a higher number of crocetin esters than those already characterised by means of mass-spectrometry data and usually detected by HPLC. Ultra-high performance liquid chromatography analyses carried out on the novel Luna Omega Polar C18 (Phenomenex) column confirmed the large number of crocetin derivatives. Further work is in progress to acquire mass-spectrometry data and to clarify the chemical structure to the newly found saffron components.
Collapse
Affiliation(s)
- Angelo Antonio D'Archivio
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Francesca Di Donato
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Martina Foschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | | | - Fabrizio Ruggieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| |
Collapse
|
5
|
Zisi C, Sampsonidis I, Fasoula S, Papachristos K, Witting M, Gika HG, Nikitas P, Pappa-Louisi A. QSRR Modeling for Metabolite Standards Analyzed by Two Different Chromatographic Columns Using Multiple Linear Regression. Metabolites 2017; 7:metabo7010007. [PMID: 28208794 PMCID: PMC5372210 DOI: 10.3390/metabo7010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/05/2017] [Indexed: 01/07/2023] Open
Abstract
Modified quantitative structure retention relationships (QSRRs) are proposed and applied to describe two retention data sets: A set of 94 metabolites studied by a hydrophilic interaction chromatography system under organic content gradient conditions and a set of tryptophan and its major metabolites analyzed by a reversed-phase chromatographic system under isocratic as well as pH and/or simultaneous pH and organic content gradient conditions. According to the proposed modification, an additional descriptor is added to a conventional QSRR expression, which is the analyte retention time, tR(R), measured under the same elution conditions, but in a second chromatographic column considered as a reference one. The 94 metabolites were studied on an Amide column using a Bare Silica column as a reference. For the second dataset, a Kinetex EVO C18 and a Gemini-NX column were used, where each of them was served as a reference column of the other. We found in all cases a significant improvement of the performance of the QSRR models when the descriptor tR(R) was considered.
Collapse
Affiliation(s)
- Chrysostomi Zisi
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (K.P.); (P.N.); (A.P.-L.)
- Correspondence: ; Tel.: +30-231-099-7765
| | - Ioannis Sampsonidis
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK;
| | - Stella Fasoula
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (K.P.); (P.N.); (A.P.-L.)
| | - Konstantinos Papachristos
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (K.P.); (P.N.); (A.P.-L.)
| | - Michael Witting
- Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany;
| | - Helen G. Gika
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panagiotis Nikitas
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (K.P.); (P.N.); (A.P.-L.)
| | - Adriani Pappa-Louisi
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (K.P.); (P.N.); (A.P.-L.)
| |
Collapse
|
6
|
Golubović J, Protić A, Otašević B, Zečević M. Quantitative structure–retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans. Talanta 2016; 150:190-7. [DOI: 10.1016/j.talanta.2015.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
|
7
|
Colombo G, Clerici M, Garavaglia ME, Giustarini D, Rossi R, Milzani A, Dalle-Donne I. A step-by-step protocol for assaying protein carbonylation in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:178-90. [DOI: 10.1016/j.jchromb.2015.11.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 01/05/2023]
|
8
|
D’Archivio AA, Maggi MA, Marinelli C, Ruggieri F, Stecca F. Optimisation of temperature-programmed gas chromatographic separation of organochloride pesticides by response surface methodology. J Chromatogr A 2015; 1423:149-57. [DOI: 10.1016/j.chroma.2015.10.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
|
9
|
Shafigulin RV, Safonova IA, Bulanova AV. Effect of the physicochemical parameters of benzimidazole molecules on their retention by a nonpolar sorbent from an aqueous acetonitrile solution. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415090289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ukić Š, Novak M, Krilić A, Avdalović N, Liu Y, Buszewski B, Bolanča T. Development of Gradient Retention Model in Ion Chromatography. Part III: Fuzzy Logic QSRR Approach. Chromatographia 2015. [DOI: 10.1007/s10337-015-2845-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Oliveira TB, Gobbo-Neto L, Schmidt TJ, Da Costa FB. Study of Chromatographic Retention of Natural Terpenoids by Chemoinformatic Tools. J Chem Inf Model 2014; 55:26-38. [DOI: 10.1021/ci500581q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tiago B. Oliveira
- AsterBioChem
Research Team, Laboratory of Pharmacognosy, Department of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
- Institute
of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Correnstr. 48, 48159 Münster, Germany
| | - Leonardo Gobbo-Neto
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Thomas J. Schmidt
- Institute
of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Correnstr. 48, 48159 Münster, Germany
| | - Fernando B. Da Costa
- AsterBioChem
Research Team, Laboratory of Pharmacognosy, Department of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n, 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
12
|
Wells J, Ham JE. A new agent for derivatizing carbonyl species used to investigate limonene ozonolysis. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2014; 99:519-526. [PMID: 30100808 PMCID: PMC6084802 DOI: 10.1016/j.atmosenv.2014.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new method for derivatizing carbonyl compounds is presented. The conversion of a series of dicarbonyls to oximes in aqueous solution and from gas-phase sampling was achieved using O-tert-butyl-hydroxylamine hydrochloride (TBOX). Some advantages of using this derivatization agent include: aqueous reactions, lower molecular weight oximes, and shortened oxime-formation reaction time. Additionally, the TBOX derivatization technique was used to investigate the carbonyl reaction products from limonene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: 7-hydroxy-6-oxo-3-(prop-1-en-2-yl)heptanal; 3-Isopropenyl-6-oxoheptanal (IPOH), 3-acetyl-6-oxoheptanal (3A6O) and one carbonyl of unknown structure. Using cyclohexane as a hydroxyl (OH•) radical scavenger, the relative yields (peak area) of the unknown carbonyl, IPOH, and 3A6O were reduced indicating the influence secondary OH radicals have on limonene ozonolysis products. The relative yield of the hydroxy-dicarbonyl based on the chromatogram was unchanged suggesting it is only made by the limonene + O3 reaction. The detection of 3A6O using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.
Collapse
Affiliation(s)
- J.R. Wells
- Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Jason E. Ham
- Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| |
Collapse
|
13
|
Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters. Anal Bioanal Chem 2014; 407:1181-90. [DOI: 10.1007/s00216-014-8317-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/26/2022]
|
14
|
Development of Gradient Retention Model in Ion Chromatography. Part I: Conventional QSRR Approach. Chromatographia 2014. [DOI: 10.1007/s10337-014-2653-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Gutiérrez Acosta OB, Hardt N, Schink B. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus. Appl Environ Microbiol 2013; 79:6228-35. [PMID: 23913429 PMCID: PMC3811201 DOI: 10.1128/aem.02116-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/29/2013] [Indexed: 01/23/2023] Open
Abstract
Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Olga B. Gutiérrez Acosta
- Department of Biology
- Konstanz Research School of Chemical Biology, Universität Konstanz, Constance, Germany
| | - Norman Hardt
- Department of Chemistry
- Konstanz Research School of Chemical Biology, Universität Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology
- Konstanz Research School of Chemical Biology, Universität Konstanz, Constance, Germany
| |
Collapse
|