1
|
Medina DAV, Cardoso AT, Borsatto JVB, Lanças FM. Open tubular liquid chromatography: Recent advances and future trends. J Sep Sci 2023; 46:e2300373. [PMID: 37582640 DOI: 10.1002/jssc.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Nano-liquid chromatography (nanoLC) is gaining significant attention as a primary analytical technique across various scientific domains. Unlike conventional high-performance LC, nanoLC utilizes columns with inner diameters (i.ds.) usually ranging from 10 to 150 μm and operates at mobile phase flow rates between 10 and 1000 nl/min, offering improved chromatographic performance and detectability. Currently, most exploration of nanoLC has focused on particle-packed columns. Although open tubular LC (OTLC) can provide superior performance, optimized OTLC columns require very narrow i.ds. (< 10 μm) and demand challenging instrumentation. At the moment, these challenges have limited the success of OTLC. Nevertheless, remarkable progress has been made in developing and utilizing OTLC systems featuring narrow columns (< 2 μm). Additionally, significant efforts have been made to explore larger columns (10-75 μm i.d), demonstrating practical applicability in many situations. Due to their perceived advantages, interest in OTLC has resurged in the last two decades. This review provides an updated outlook on the latest developments in OTLC, focusing on instrumental challenges, achievements, and advancements in column technology. Moreover, it outlines selected applications that illustrate the potential of OTLC for performing targeted and untargeted studies.
Collapse
Affiliation(s)
- Deyber Arley Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Alessandra Timoteo Cardoso
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - João Victor Basolli Borsatto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
2
|
Ahmed MA, Ghiasvand A, Quirino JP. Dynamic in situ growth of bonded-phase silica nanospheres on silica capillary inner walls for open-tubular liquid chromatography. Anal Bioanal Chem 2023; 415:4923-4934. [PMID: 37351669 PMCID: PMC10386930 DOI: 10.1007/s00216-023-04798-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Silica nanospheres (SNS) were grown on the inner walls of silica capillaries through a dynamic in situ nucleation process to prepare a highly porous and large accessible surface area substrate. The SNS were then functionalized with octadecyl (C18), 3-aminopropyltriethoxysilane (APTES), beta-cyclodextrin (β-CD), and amino groups to develop robust and efficient chromatographic stationary phases. The modified silica capillaries were exploited for open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) applications. The prepared stationary phases were compared to conventional capillaries in terms of separation performance. The synthesis process was optimized, and the bonded-phase stationary phases were characterized by the electron microscopy technique. The effects of different solvents, additives, and functional groups on the geometry and chromatographic resolving power of the SNS were envisaged. The capillaries modified with octadecyl groups were evaluated for the separation of non-steroidal anti-inflammatory drugs, phenones, alkenylbenzenes, and enantiomers of chlorophenoxy herbicides. As an application instance, an SNS-C18-coated capillary was utilized for the separation of alkenylbenzenes from clove extract and protein digest medium, through OT-LC and OT-CEC techniques, respectively. The β-CD functionalized capillary was applied for the OT-CEC separation of a dichlorprop racemic mixture.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.
- Department of Analytical Chemistry, Lorestan University, Khoramabad, Iran.
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.
| |
Collapse
|
3
|
Santos NGP, Medina DAV, Lanças FM. Development of Wall-Coated Open Tubular Columns and Their Application to Nano Liquid Chromatography Coupled to Tandem Mass Spectrometry. Molecules 2023; 28:5103. [PMID: 37446765 DOI: 10.3390/molecules28135103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This work presents a study on the application of wall open tubular column (WCOT) in liquid chromatography coupled with tandem mass spectrometry. Each process step reports the column preparation method in detail, subdivided into column pretreatment, silanization, stationary phase coating, and immobilization. Then, an evaluation of the parameters that can affect the efficiency of these columns was made. Atrazine, clomazone, and metolachlor were used as probes during this step. Factors such as stationary phase composition, length, internal diameter, stationary phase mass employed, and injection volume were investigated. In addition, with the help of Knox and Poppe graphs, the columns' performance was evaluated to determine the optimal flow rate and the speed-efficiency relationship, respectively. Based on the results, the best configurations for the WCOT column application to the LC system were defined: length-8 m; inner diameter-25 μm; mass of OV-210-2.5% m/v; and, injection volume-100 nL. Finally, the optimized WCOT column developed in this work was coupled with a commercially-packed trapping column in the nano liquid chromatography system (nanoLC). In this configuration, more significant results were obtained regarding separation resolution, with Rs = 5.9 achieved for the most retained pair of analytes (clomazone and metolachlor).
Collapse
Affiliation(s)
- Natalia G P Santos
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13566-590, Brazil
| | - Deyber A V Medina
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13566-590, Brazil
| | - Fernando M Lanças
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13566-590, Brazil
| |
Collapse
|
4
|
Liang Y, Zhang L, Zhang Y. Chromatographic separation of peptides and proteins for characterization of proteomes. Chem Commun (Camb) 2023; 59:270-281. [PMID: 36504223 DOI: 10.1039/d2cc05568f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Characterization of proteomes aims to comprehensively characterize proteins in cells or tissues via two main strategies: (1) bottom-up strategy based on the separation and identification of enzymatic peptides; (2) top-down strategy based on the separation and identification of intact proteins. However, it is challenged by the high complexity of proteomes. Consequently, the improvements in peptide and protein separation technologies for simplifying the sample should be critical. In this feature article, separation columns for peptide and protein separation were introduced, and peptide separation technologies for bottom-up proteomic analysis as well as protein separation technologies for top-down proteomic analysis were summarized. The achievement, recent development, limitation and future trends are discussed. Besides, the outlook on challenges and future directions of chromatographic separation in the field of proteomics was also presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
5
|
Lu Y, Yan Z, Sun G. Fast liquid chromatography method for separation of peptides using a sub-2 μm ground silica monolith packed column. J Sep Sci 2021; 44:4123-4131. [PMID: 34535951 DOI: 10.1002/jssc.202100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/08/2022]
Abstract
A stationary phase based on sub-2 μm ground silica monolith particles was fabricated by in situ polymerization and applied in micro-column for separation of peptides. The sub-2 μm silica particles were obtained from monolith using sol-gel process followed by grinding and sedimentation to remove the fines. Initially, the silica monolith particles were pretreated with 3-trimethoxysilyl propyl methacrylate to attach double-bonded ligands onto the surface, then a network structure was formed onto the surface of the particle using styrene, N-isopropylacrylamide, and ethylene glycoldimethacrylate. The effect of the flow rate of the mobile phase on the separation performance was investigated. The stationary phase was characterized by field emission scanning electron microscopy, thermogravimetry, particle size distribution, and element analysis. The resultant phase was packed in glass-lined stainless steel micro-columns (2.1 mm × 50 mm) and evaluated for fast separation. An average number of theoretical plates as high as 9800 plates/column (5.10 μm plate height) was achieved for five synthetic peptides under the optimized flow rate of 0.15 mL/min. The repeatabilities of column-to-column, intraday, and interday through relative standard deviation were found better than 4%, exhibiting satisfactory repeatability of the developed micro-column for fast separation of peptides.
Collapse
Affiliation(s)
- Yao Lu
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhihong Yan
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Genlin Sun
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
6
|
Ali A, Sun G, Kim JS, Kim YS, An HJ, Cheong WJ. Preparation and Evaluation of 2 m Long Open Tubular Capillary Columns of 50 μm Internal Diameter for Separation of Peptides in Liquid Chromatography. Chromatographia 2021. [DOI: 10.1007/s10337-020-04003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Vargas Medina DA, Pereira Dos Santos NG, da Silva Burato JS, Borsatto JVB, Lanças FM. An overview of open tubular liquid chromatography with a focus on the coupling with mass spectrometry for the analysis of small molecules. J Chromatogr A 2021; 1641:461989. [PMID: 33611115 DOI: 10.1016/j.chroma.2021.461989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Open tubular liquid chromatography (OT-LC) can provide superior chromatographic performance and more favorable mass spectrometry (MS) detection conditions. These features could provide enhanced sensitivity when coupled with electrospray ionization sources (ESI-) and lead to unprecedented detection capabilities if interfaced with a highly structural informative electron ionization (EI) source. In the past, the exploitation of OT columns in liquid chromatography evolved slowly. However, the recent instrumental developments in capillary/nanoLC-MS created new opportunities in developing and applying OT-LC-MS. Currently, the analytical advantages of OT-LC-MS are mainly exploited in the fields of proteomics and biosciences analysis. Nevertheless, under the right conditions, OT-LC-MS can also offer superior chromatographic performance and enhanced sensitivity in analyzing small molecules. This review will provide an overview of the latest developments in OT-LC-MS, focusing on the wide variety of employed separation mechanisms, innovative stationary phases, emerging column fabrication technologies, and new OT formats. In the same way, the OT-LC's opportunities and shortcomings coupled to both ESI and EI will be discussed, highlighting the complementary character of those two ionization modes to expand the LC's detection boundaries in the performance of targeted and untargeted studies.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Sun G, Lu Y. A novel one-pot strategy of preparation of N-phenylacrylamide-styrene co-polymer open tubular capillary column for peptides separation. J Sep Sci 2020; 43:4461-4468. [PMID: 33107702 DOI: 10.1002/jssc.202000862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An open tubular capillary column (100 μm internal diameter and 120 cm length) was first fabricated with N-phenylacrylamide and styrene copolymer layer on the inner surface by in situ one-pot strategy, while ethylene dimethacrylate was used as the cross-linker. The pretreated silica-fused capillary was reacted with 3-trimethoxysilyl propyl methacrylate to attach a double-bond ligand onto the inner surface of the capillary. Further, a thick and stabile copolymer layer was generated on the inner surface of the capillary by the novel method in situ one-pot reaction of styrene-N-phenylacrylamide. The effects of reaction temperature and composition of the polymerization mixture on the morphology and permeability of the copolymer were investigated. The separation performance of the fabricated polymer columns were validated by separation of five synthetic peptides. The excellent efficiency (188 500 plates/m) of 100 μm internal diameter open tubular column with the separation media prepared by mixed one-pot copolymerization has not been achieved via the isocratic elution mode. The column to column, intraday, and interday repeatabilities evaluated from the relative standard deviation were found better than 4%, exhibiting considerable repeatability of the column.
Collapse
Affiliation(s)
- Genlin Sun
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Yao Lu
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| |
Collapse
|
9
|
Futagami S, Hara T, Ottevaere H, Terryn H, Baron GV, Desmet G, De Malsche W. Chromatographic study of the structural properties of mesoporous silica layers deposited on radially elongated pillars. J Chromatogr A 2019; 1595:58-65. [DOI: 10.1016/j.chroma.2019.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/16/2023]
|
10
|
Futagami S, Hara T, Ottevaere H, Terryn H, Baron GV, Desmet G, De Malsche W. Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC system. Analyst 2019; 144:1809-1817. [DOI: 10.1039/c8an01937a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of a porous-layered radially elongated pillar (PLREP) array column in a commercial nano-LC system was examined by performing separation of alkylphenones and peptides.
Collapse
Affiliation(s)
- Shunta Futagami
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
- Department of Applied Physics and Photonics
| | - Takeshi Hara
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
- Division of Metabolomics
| | - Heidi Ottevaere
- Department of Applied Physics and Photonics
- Brussels Photonics (B-PHOT)
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| | - Herman Terryn
- Department of Materials and Chemistry
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| | - Gino V. Baron
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| | - Gert Desmet
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| | - Wim De Malsche
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 Brussels
- Belgium
| |
Collapse
|
11
|
Lam SC, Sanz Rodriguez E, Haddad PR, Paull B. Recent advances in open tubular capillary liquid chromatography. Analyst 2019; 144:3464-3482. [DOI: 10.1039/c9an00329k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers advances and applications of open tubular capillary liquid chromatography (OT-LC) over the period 2007–2018.
Collapse
Affiliation(s)
- Shing Chung Lam
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Estrella Sanz Rodriguez
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Paul R. Haddad
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| | - Brett Paull
- ASTech
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech)
- and Australian Centre for Research on Separation Science (ACROSS)
- School of Natural Sciences
- University of Tasmania
| |
Collapse
|
12
|
Ying LL, Wang DY, Yang HP, Deng XY, Peng C, Zheng C, Xu B, Dong LY, Wang X, Xu L, Zhang YW, Wang XH. Synthesis of boronate-decorated polyethyleneimine-grafted porous layer open tubular capillaries for enrichment of polyphenols in fruit juices. J Chromatogr A 2018; 1544:23-32. [DOI: 10.1016/j.chroma.2018.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/11/2018] [Accepted: 02/21/2018] [Indexed: 10/18/2022]
|
13
|
LI RN, WANG YN, PENG MH, WANG XY, GUO GS. Preparation and Application of Porous Layer Open Tubular Capillary Columns with Narrow Bore in Liquid Chromatography. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61057-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Hara T, Futagami S, De Malsche W, Eeltink S, Terryn H, Baron GV, Desmet G. Chromatographic Properties of Minimal Aspect Ratio Monolithic Silica Columns. Anal Chem 2017; 89:10948-10956. [DOI: 10.1021/acs.analchem.7b02764] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Takeshi Hara
- Vrije Universiteit Brussel, Department of Chemical
Engineering, Pleinlaan
2, B-1050 Brussels, Belgium
- Division
of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1
Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shunta Futagami
- Vrije Universiteit Brussel, Department of Chemical
Engineering, Pleinlaan
2, B-1050 Brussels, Belgium
| | - Wim De Malsche
- Vrije Universiteit Brussel, Department of Chemical
Engineering, Pleinlaan
2, B-1050 Brussels, Belgium
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department of Chemical
Engineering, Pleinlaan
2, B-1050 Brussels, Belgium
| | - Herman Terryn
- Vrije Universiteit Brussel, Department of Materials
and Chemistry, Pleinlaan
2, B-1050 Brussels, Belgium
| | - Gino V. Baron
- Vrije Universiteit Brussel, Department of Chemical
Engineering, Pleinlaan
2, B-1050 Brussels, Belgium
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical
Engineering, Pleinlaan
2, B-1050 Brussels, Belgium
| |
Collapse
|
15
|
Blue LE, Franklin EG, Godinho JM, Grinias JP, Grinias KM, Lunn DB, Moore SM. Recent advances in capillary ultrahigh pressure liquid chromatography. J Chromatogr A 2017; 1523:17-39. [PMID: 28599863 DOI: 10.1016/j.chroma.2017.05.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed.
Collapse
Affiliation(s)
- Laura E Blue
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Edward G Franklin
- HPLC Research & Development, Restek Corp., Bellefonte, PA 16823, USA
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Kaitlin M Grinias
- Department of Product Development & Supply, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Daniel B Lunn
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
16
|
Li R, Shao Y, Yu Y, Wang X, Guo G. Pico-HPLC system integrating an equal inner diameter femtopipette into a 900 nm I.D. porous layer open tubular column. Chem Commun (Camb) 2017; 53:4104-4107. [DOI: 10.1039/c7cc00799j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pico-HPLC method was developed using a bifunctional chromatographic column enabling femtoliter volume sampling and separation.
Collapse
Affiliation(s)
- Ruonan Li
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Yunlong Shao
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Yanmin Yu
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Guangsheng Guo
- Beijing Key Laboratory for Green Catalysis and Separation
- Department of Chemistry and Chemistry Engineering
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
17
|
Hara T, Futagami S, Eeltink S, De Malsche W, Baron GV, Desmet G. Very High Efficiency Porous Silica Layer Open-Tubular Capillary Columns Produced via in-Column Sol-Gel Processing. Anal Chem 2016; 88:10158-10166. [PMID: 27642813 DOI: 10.1021/acs.analchem.6b02713] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is demonstrated that 5 μm i.d. capillaries can be coated with mesoporous silica layers up to 550 nm thickness. All the columns produced using in-column sol-gel synthesis with tetramethoxysilane provide plate height curves that closely follow the Golay-Aris theory. In 60 cm long columns, efficiencies as high as N = 150 000 and N = 120 000 were obtained, respectively, for a 300 and 550 nm thick porous layer. An excellent retention and plate height reproducibility was obtained when the recipes were subsequently applied to produce very long (1.9 and 2.5 m) capillaries. These columns produced efficiencies up to N = 600 000 plates for a retained and around N = 1 000 000 plates for an unretained component. Given the good reproducibility on the long capillaries, and considering that mesoporous silica is still the preferred support for LC, it is believed the present study could spur a renewed interest in open-tubular LC.
Collapse
Affiliation(s)
- Takeshi Hara
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Shunta Futagami
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Wim De Malsche
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussels , Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
18
|
Peng L, Zhu M, Zhang L, Liu H, Zhang W. Preparation and evaluation of 3 m open tubular capillary columns with a zwitterionic polymeric porous layer for liquid chromatography. J Sep Sci 2016; 39:3736-3744. [DOI: 10.1002/jssc.201600535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Li Peng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Manman Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai P. R. China
| |
Collapse
|
19
|
Preparation and characterization of micro-cell membrane chromatographic column with silica-based porous layer open tubular capillary as cellular membrane carrier. Anal Bioanal Chem 2016; 408:2441-8. [DOI: 10.1007/s00216-016-9339-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
20
|
Tanaka N, McCalley DV. Core–Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography. Anal Chem 2015; 88:279-98. [DOI: 10.1021/acs.analchem.5b04093] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - David V. McCalley
- Centre for Research in Biosciences, University of the West of England, Frenchay, Bristol BS16 1QY, U.K
| |
Collapse
|
21
|
Nazario CED, Silva MR, Franco MS, Lanças FM. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview. J Chromatogr A 2015; 1421:18-37. [PMID: 26381569 DOI: 10.1016/j.chroma.2015.08.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/01/2023]
Abstract
The purpose of this article is to underline the miniaturized LC instrumental system and describe the evolution of commercially available systems by discussing their advantages and drawbacks. Nowadays, there are already many miniaturized LC systems available with a great variety of pump design, interface and detectors as well as efficient columns technologies and reduced connections devices. The solvent delivery systems are able to drive the mobile phase without flow splitters and promote gradient elution using either dual piston reciprocating or syringe-type pumps. The mass spectrometry as detection system is the most widely used detection system; among many alternative ionization sources direct-EI LC-MS is a promising alternative to APCI. In addition, capillary columns are now available showing many possibilities of stationary phases, inner diameters and hardware materials. This review provides a discussion about miniaturized LC demonstrating fundamentals and instrumentals' aspects of the commercially available miniaturized LC instrumental system mainly nano and micro LC formats. This review also covers the recent developments and trends in instrumentation, capillary and nano columns, and several applications of this very important and promising field.
Collapse
Affiliation(s)
| | - Meire R Silva
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Maraíssa S Franco
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Fernando M Lanças
- Institute of Chemistry of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil.
| |
Collapse
|
22
|
Preparation and kinetic performance assessment of thick film 10–20μm open tubular silica capillaries in normal phase high pressure liquid chromatography. J Chromatogr A 2013; 1315:127-34. [DOI: 10.1016/j.chroma.2013.09.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022]
|
23
|
Rogeberg M, Vehus T, Grutle L, Greibrokk T, Wilson SR, Lundanes E. Separation optimization of long porous-layer open-tubular columns for nano-LC-MS of limited proteomic samples. J Sep Sci 2013; 36:2838-47. [DOI: 10.1002/jssc.201300499] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Magnus Rogeberg
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Tore Vehus
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Lene Grutle
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Tyge Greibrokk
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | | | - Elsa Lundanes
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| |
Collapse
|