1
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Costa J, Ferreira EC, Santos C. COVID-19, Chikungunya, Dengue and Zika Diseases: An Analytical Platform Based on MALDI-TOF MS, IR Spectroscopy and RT-qPCR for Accurate Diagnosis and Accelerate Epidemics Control. Microorganisms 2021; 9:microorganisms9040708. [PMID: 33808104 PMCID: PMC8066533 DOI: 10.3390/microorganisms9040708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 and arboviruses (ARBOD) epidemics co-occurrence is a great concern. In tropical and subtropical regions, ARBOD diseases such as chikungunya, dengue, and Zika are frequent. In both COVID-19 and ARBOD cases, an accurate diagnosis of infected patients is crucial to promote adequate treatment and isolation measures in COVID-19 cases. Overlap of clinical symptoms and laboratory parameters between COVID-19 and ARBOD present themselves as an extra challenge during diagnosis. COVID-19 diagnosis is mainly performed by quantitative reverse polymerase chain reaction (RT-qPCR), while ARBOD diagnosis is performed by serology, detection of antigen or antibody, and molecular diagnosis. In this review, the epidemiologic profile of arboviruses and SARS-CoV-2 is analyzed, and potential risks of symptom overlap is addressed. The implementation of an analytical platform based on infrared (IR) spectroscopy, MALDI-TOF mass spectrometry, and RT-qPCR is discussed as an efficient strategy for a fast, robust, reliable, and cost-effective diagnosis system even during the co-occurrence of virus outbreaks. The spectral data of IR spectroscopy and MALDI-TOF MS obtained from COVID-19 infected and recovered patients can be used to build up an integrated spectral database. This approach can enable us to determine quickly the groups that have been exposed and have recovered from COVID-19 or ARBOD, avoiding misdiagnoses.
Collapse
Affiliation(s)
- Jéssica Costa
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811-230, Chile;
| | - Eugénio C. Ferreira
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
- Correspondence: ; Tel.: +56-45-259-6726
| |
Collapse
|
3
|
MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:27-43. [DOI: 10.1007/978-3-030-15950-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Chen WH, Chou FP, Wang YK, Huang SC, Cheng CH, Wu TK. Characterization and epitope mapping of Dengue virus type 1 specific monoclonal antibodies. Virol J 2017; 14:189. [PMID: 28969658 PMCID: PMC5625772 DOI: 10.1186/s12985-017-0856-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/22/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dengue virus (DV) infection causes a spectrum of clinical diseases ranging from dengue fever to a life-threatening dengue hemorrhagic fever. Four distinct serotypes (DV1-4), which have similar genome sequences and envelope protein (E protein) antigenic properties, were divided. Among these 4 serotypes, DV1 usually causes predominant infections and fast diagnosis and effective treatments are urgently required to prevent further hospitalization and casualties. METHODS To develop antibodies specifically targeting and neutralizing DV1, we immunized mice with UV-inactivated DV1 viral particles and recombinant DV1 E protein from residue 1 to 395 (E395), and then generated 12 anti-E monoclonal antibodies (mAbs) as the candidates for a series of characterized assays such as ELISA, dot blot, immunofluorescence assay, western blot, and foci forming analyses. RESULTS Among the mAbs, 10 out of 12 showed cross-reactivity to four DV serotypes as well as Japanese encephalitis virus (JEV) in different cross-reactivity patterns. Two particular mAbs, DV1-E1 and DV1-E2, exhibited strong binding specificity and neutralizing activity against DV1 and showed no cross-reactivity to DV2, DV3, DV4 or JEV-infected cells as characterized by ELISA, dot blot, immunofluorescence assay, western blot, and foci forming analyses. Using peptide coated indirect ELISA, we localized the neutralizing determinants of the strongly inhibitory mAbs to a sequence-unique epitope on the later-ridge of domain III of the DV1 E protein, centered near residues T346 and D360 (346TQNGRLITANPIVTD360). Interestingly, the amino acid sequence of the epitope region is highly conserved among different genotypes of DV1 but diverse from DV2, DV3, DV4 serotypes and other flaviviruses. CONCLUSIONS Our results showed two selected mAbs DV1-E1 and DV1-E2 can specifically target and significantly neutralize DV1. With further research these two mAbs might be applied in the development of DV1 specific serologic diagnosis and used as a feasible treatment option for DV1 infection. The identification of DV1 mAbs epitope with key residues can also provide vital information for vaccine design.
Collapse
Affiliation(s)
- Wen-Hung Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 30068 Taiwan, Republic of China
| | - Feng-Pai Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 30068 Taiwan, Republic of China
| | - Yu-Kuo Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 30068 Taiwan, Republic of China
| | - Sheng-Cih Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 30068 Taiwan, Republic of China
| | - Chuan-Hung Cheng
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 30068 Taiwan, Republic of China
| | - Tung-Kung Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, 30068 Taiwan, Republic of China
| |
Collapse
|
5
|
Parkash O, Shueb RH. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques. Viruses 2015; 7:5410-27. [PMID: 26492265 PMCID: PMC4632385 DOI: 10.3390/v7102877] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/01/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022] Open
Abstract
Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.
Collapse
Affiliation(s)
- Om Parkash
- Department of Medical Microbiology and Parasitology, School of Medical Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
6
|
Carinelli S, Martí M, Alegret S, Pividori MI. Biomarker detection of global infectious diseases based on magnetic particles. N Biotechnol 2015; 32:521-32. [PMID: 25917978 DOI: 10.1016/j.nbt.2015.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Infectious diseases affect the daily lives of millions of people all around the world, and are responsible for hundreds of thousands of deaths, mostly in the developing world. Although most of these major infectious diseases are treatable, the early identification of individuals requiring treatment remains a major issue. The incidence of these diseases would be reduced if rapid diagnostic tests were widely available at the community and primary care level in low-resource settings. Strong research efforts are thus being focused on replacing standard clinical diagnostic methods, such as the invasive detection techniques (biopsy or endoscopy) or expensive diagnostic and monitoring methods, by affordable and sensitive tests based on novel biomarkers. The development of new methods that are needed includes solid-phase separation techniques. In this context, the integration of magnetic particles within bioassays and biosensing devices is very promising since they greatly improve the performance of a biological reaction. The diagnosis of clinical samples with magnetic particles can be easily achieved without pre-enrichment, purification or pretreatment steps often required for standard methods, simplifying the analytical procedures. The biomarkers can be specifically isolated and preconcentrated from complex biological matrixes by magnetic actuation, increasing specificity and the sensitivity of the assay. This review addresses these promising features of the magnetic particles for the detection of biomarkers in emerging technologies related with infectious diseases affecting global health, such as malaria, influenza, dengue, tuberculosis or HIV.
Collapse
Affiliation(s)
- Soledad Carinelli
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Martí
- Laboratory of Cellular Immunology, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Alegret
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
7
|
|
8
|
Zhang Y, Liu Y, Ma Q, Song Y, Zhang Q, Wang X, Chen F. Identification of Lactobacillus from the saliva of adult patients with caries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PLoS One 2014; 9:e106185. [PMID: 25166027 PMCID: PMC4148440 DOI: 10.1371/journal.pone.0106185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc.) However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70) and 95.5% of non-lactobacilli (21/22). Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification.
Collapse
Affiliation(s)
- Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Yingyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qingwei Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
9
|
Dudley E. MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:33-58. [DOI: 10.1007/978-3-319-06068-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|