1
|
Chen X, Chen X. A novel electrophoretic assisted hydrophobic microdevice for enhancing blood cell sorting: design and numerical simulation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2368-2377. [PMID: 38572530 DOI: 10.1039/d4ay00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Microfluidic technology has great advantages in the precise manipulation of micro-nano particles, and the hybrid microfluidic separation technology has attracted much attention due to the advantages of both active and passive separation technology at the same time. In this paper, the hydrophoresis sorting technique is combined with the dielectrophoresis technique, and a dielectrophoresis-assisted hydrophoresis microdevice is studied to separate blood cells. By using the dielectrophoresis force to change the suspension position of the cells in the channel, the scope of the hydrophoresis device for sorting particles is expanded. At the same time, the effects of microchannel width, fluid velocity, and electrode voltage on cell sorting were discussed, and the cell separation process was simulated. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.
Collapse
Affiliation(s)
- Xinkun Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| | - Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
2
|
Zhang T, Di Carlo D, Lim CT, Zhou T, Tian G, Tang T, Shen AQ, Li W, Li M, Yang Y, Goda K, Yan R, Lei C, Hosokawa Y, Yalikun Y. Passive microfluidic devices for cell separation. Biotechnol Adv 2024; 71:108317. [PMID: 38220118 DOI: 10.1016/j.biotechadv.2024.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.
Collapse
Affiliation(s)
- Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Tianyuan Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Tao Tang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ruopeng Yan
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| |
Collapse
|
3
|
Xu Z, Chen Z, Yang S, Chen S, Guo T, Chen H. Passive Focusing of Single Cells Using Microwell Arrays for High-Accuracy Image-Activated Sorting. Anal Chem 2024; 96:347-354. [PMID: 38153415 DOI: 10.1021/acs.analchem.3c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Sorting single cells from a population was of critical importance in areas such as cell line development and cell therapy. Image-based sorting is becoming a promising technique for the nonlabeling isolation of cells due to the capability of providing the details of cell morphology. This study reported the focusing of cells using microwell arrays and the following automatic size sorting based on the real-time recognition of cells. The simulation first demonstrated the converged streamlines to the symmetrical plane contributed to the focusing effect. Then, the influence of connecting microchannel, flowing length, particle size, and the sample flow rate on the focusing effect was experimentally analyzed. Both microspheres and cells could be aligned in a straight line at the Reynolds number (Re) of 0.027-0.187 and 0.027-0.08, respectively. The connecting channel was proved to drastically improve the focusing performance. Afterward, a tapered microwell array was utilized to focus sphere/cell spreading in a wide channel to a straight line. Finally, a custom algorithm was employed to identify and sort the size of microspheres/K562 cells with a throughput of 1 event/s and an accuracy of 97.8/97.1%. The proposed technique aligned cells to a straight line at low Reynolds numbers and greatly facilitated the image-activated sorting without the need for a high-speed camera or flow control components with high frequency. Therefore, it is of enormous application potential in the field of nonlabeled separation of single cells.
Collapse
Affiliation(s)
- Zheng Xu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, Kowloon, City University of Hong Kong, Hong Kong SAR, China
| | - Shiming Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siyuan Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
4
|
Peng T, Qiang J, Yuan S. Sheathless inertial particle focusing methods within microfluidic devices: a review. Front Bioeng Biotechnol 2024; 11:1331968. [PMID: 38260735 PMCID: PMC10801244 DOI: 10.3389/fbioe.2023.1331968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The ability to manipulate and focus particles within microscale fluidic environments is crucial to advancing biological, chemical, and medical research. Precise and high-throughput particle focusing is an essential prerequisite for various applications, including cell counting, biomolecular detection, sample sorting, and enhancement of biosensor functionalities. Active and sheath-assisted focusing techniques offer accuracy but necessitate the introduction of external energy fields or additional sheath flows. In contrast, passive focusing methods exploit the inherent fluid dynamics in achieving high-throughput focusing without external actuation. This review analyzes the latest developments in strategies of sheathless inertial focusing, emphasizing inertial and elasto-inertial microfluidic focusing techniques from the channel structure classifications. These methodologies will serve as pivotal benchmarks for the broader application of microfluidic focusing technologies in biological sample manipulation. Then, prospects for future development are also predicted. This paper will assist in the understanding of the design of microfluidic particle focusing devices.
Collapse
Affiliation(s)
- Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Jun Qiang
- The School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Shuai Yuan
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Islam MS, Chen X. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel. Biotechnol Prog 2023; 39:e3341. [PMID: 36970770 DOI: 10.1002/btpr.3341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 08/24/2023]
Abstract
The efficient isolation of viable and intact circulating tumor cells (CTCs) from blood is critical for the genetic analysis of cancer cells, prediction of cancer progression, development of drugs, and evaluation of therapeutic treatments. While conventional cell separation devices utilize the size difference between CTCs and other blood cells, they fail to separate CTCs from white blood cells (WBCs) due to significant size overlap. To overcome this issue, we present a novel approach that combines curved contraction-expansion (CE) channels with dielectrophoresis (DEP) and inertial microfluidics to isolate CTCs from WBCs regardless of size overlap. This label-free and continuous separation method utilizes dielectric properties and size variation of cells for the separation of CTCs from WBCs. The results demonstrate that the proposed hybrid microfluidic channel can effectively isolate A549 CTCs from WBCs regardless of their size with a throughput of 300 μL/min, achieving a high separation distance of 233.4 μm at an applied voltage of 50 Vp-p . The proposed method allows for the modification of cell migration characteristics by controlling the number of CE sections of the channel, applied voltage, applied frequency, and flow rate. With its unique features of a single-stage separation, simple design, and tunability, the proposed method provides a promising alternative to the existing label-free cell separation techniques and may have a wide range of applications in biomedicine.
Collapse
Affiliation(s)
- Md Sadiqul Islam
- School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, Washington, 98686, USA
| | - Xiaolin Chen
- School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, Washington, 98686, USA
| |
Collapse
|
6
|
Shi Y, Ye P, Yang K, Qiaoge B, Xie J, Guo J, Wang C, Pan Z, Liu S, Guo J. A lab‐on‐disc centrifugal microfluidic system for ultraprecise plasma separation. Electrophoresis 2022; 43:2250-2259. [DOI: 10.1002/elps.202100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering University of Electronic Science and Technology of China Chengdu P. R. China
| | - Peng Ye
- School of Automation Engineering University of Electronic Science and Technology of China Chengdu P. R. China
| | - Kuojun Yang
- School of Automation Engineering University of Electronic Science and Technology of China Chengdu P. R. China
| | - Bayin Qiaoge
- Department of Electronic, Electrical, and Systems Engineering University of Birmingham Birmingham UK
| | - Jiawen Xie
- School of Automation Engineering University of Electronic Science and Technology of China Chengdu P. R. China
| | - Jiuchuan Guo
- School of Automation Engineering University of Electronic Science and Technology of China Chengdu P. R. China
| | - Chuang Wang
- School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu P. R. China
| | - Zhixiang Pan
- School of Automation Engineering University of Electronic Science and Technology of China Chengdu P. R. China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital University of Electronic Science and Technology Chengdu P. R. China
| | - Jinhong Guo
- School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu P. R. China
| |
Collapse
|
7
|
Bordhan P, Razavi Bazaz S, Jin D, Ebrahimi Warkiani M. Advances and enabling technologies for phase-specific cell cycle synchronisation. LAB ON A CHIP 2022; 22:445-462. [PMID: 35076046 DOI: 10.1039/d1lc00724f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell cycle synchronisation is the process of isolating cell populations at specific phases of the cell cycle from heterogeneous, asynchronous cell cultures. The process has important implications in targeted gene-editing and drug efficacy of cells and in studying cell cycle events and regulatory mechanisms involved in the cell cycle progression of multiple cell species. Ideally, cell cycle synchrony techniques should be applicable for all cell types, maintain synchrony across multiple cell cycle events, maintain cell viability and be robust against metabolic and physiological perturbations. In this review, we categorize cell cycle synchronisation approaches and discuss their operational principles and performance efficiencies. We highlight the advances and technological development trends from conventional methods to the more recent microfluidics-based systems. Furthermore, we discuss the opportunities and challenges for implementing high throughput cell synchronisation and provide future perspectives on synchronisation platforms, specifically hybrid cell synchrony modalities, to allow the highest level of phase-specific synchrony possible with minimal alterations in diverse types of cell cultures.
Collapse
Affiliation(s)
- Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
8
|
Tang H, Niu J, Jin H, Lin S, Cui D. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. MICROSYSTEMS & NANOENGINEERING 2022; 8:62. [PMID: 35685963 PMCID: PMC9170746 DOI: 10.1038/s41378-022-00386-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 05/05/2023]
Abstract
Passive and label-free microfluidic devices have no complex external accessories or detection-interfering label particles. These devices are now widely used in medical and bioresearch applications, including cell focusing and cell separation. Geometric structure plays the most essential role when designing a passive and label-free microfluidic chip. An exquisitely designed geometric structure can change particle trajectories and improve chip performance. However, the geometric design principles of passive and label-free microfluidics have not been comprehensively acknowledged. Here, we review the geometric innovations of several microfluidic schemes, including deterministic lateral displacement (DLD), inertial microfluidics (IMF), and viscoelastic microfluidics (VEM), and summarize the most creative innovations and design principles of passive and label-free microfluidics. We aim to provide a guideline for researchers who have an interest in geometric innovations of passive label-free microfluidics.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| |
Collapse
|
9
|
Jiang D, Ni C, Tang W, Huang D, Xiang N. Inertial microfluidics in contraction-expansion microchannels: A review. BIOMICROFLUIDICS 2021; 15:041501. [PMID: 34262632 PMCID: PMC8254650 DOI: 10.1063/5.0058732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 05/02/2023]
Abstract
Inertial microfluidics has brought enormous changes in the conventional cell/particle detection process and now become the main trend of sample pretreatment with outstanding throughput, low cost, and simple control method. However, inertial microfluidics in a straight microchannel is not enough to provide high efficiency and satisfying performance for cell/particle separation. A contraction-expansion microchannel is a widely used and multifunctional channel pattern involving inertial microfluidics, secondary flow, and the vortex in the chamber. The strengthened inertial microfluidics can help us to focus particles with a shorter channel length and less processing time. Both the vortex in the chamber and the secondary flow in the main channel can trap the target particles or separate particles based on their sizes more precisely. The contraction-expansion microchannels are also capable of combining with a curved, spiral, or serpentine channel to further improve the separation performance. Some recent studies have focused on the viscoelastic fluid that utilizes both elastic forces and inertial forces to separate different size particles precisely with a relatively low flow rate for the vulnerable cells. This article comprehensively reviews various contraction-expansion microchannels with Newtonian and viscoelastic fluids for particle focusing, separation, and microfluid mixing and provides particle manipulation performance data analysis for the contraction-expansion microchannel design.
Collapse
Affiliation(s)
- Di Jiang
- Author to whom correspondence should be addressed:
| | - Chen Ni
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | | - Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis. Talanta 2021; 221:121401. [DOI: 10.1016/j.talanta.2020.121401] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
|
11
|
Tottori N, Nisisako T. Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input. LAB ON A CHIP 2020; 20:1999-2008. [PMID: 32373868 DOI: 10.1039/d0lc00354a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper proposes microfluidic particle separation by sheath-free deterministic lateral displacement (DLD) with inertial focusing in a single straight input channel. Unlike conventional DLD devices for size-based particle separation, in which sheath streams are used to focus the particles before the solution containing them reaches the DLD arrays, the proposed method uses inertial focusing to align the particles along the middle or the sidewalls of the straight rectangular input channel. The two-stage model of inertial focusing is applied to reduce the length of the side-focusing channel. The proposed method is demonstrated by using it to separate fluorescent polymer particles of diameters 13 and 7 μm, in the process of which the effect of the particle focusing regime on the separation performance is also investigated. Through middle focusing, the method is further used to separate MCF-7 cells (a model of circulating tumor cells (CTCs)) and blood cells, with ∼99.0% capture efficiency achieved.
Collapse
Affiliation(s)
- Naotomo Tottori
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Takasi Nisisako
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
12
|
Hydrophoresis — A Microfluidic Principle for Directed Particle Migration in Flow. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4107-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Zhang T, Hong ZY, Tang SY, Li W, Inglis DW, Hosokawa Y, Yalikun Y, Li M. Focusing of sub-micrometer particles in microfluidic devices. LAB ON A CHIP 2020; 20:35-53. [PMID: 31720655 DOI: 10.1039/c9lc00785g] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sub-micrometer particles (0.10-1.0 μm) are of great significance to study, e.g., microvesicles and protein aggregates are targets for therapeutic intervention, and sub-micrometer fluorescent polystyrene (PS) particles are used as probes for diagnostic imaging. Focusing of sub-micrometer particles - precisely control over the position of sub-micrometer particles in a tightly focused stream - has a wide range of applications in the field of biology, chemistry and environment, by acting as a prerequisite step for downstream detection, manipulation and quantification. Microfluidic devices have been attracting great attention as desirable tools for sub-micrometer particle focusing, due to their small size, low reagent consumption, fast analysis and low cost. Recent advancements in fundamental knowledge and fabrication technologies have enabled microfluidic focusing of particles at sub-micrometer scale in a continuous, label-free and high-throughput manner. Microfluidic methods for the focusing of sub-micrometer particles can be classified into two main groups depending on whether an external field is applied: 1) passive methods, which utilize intrinsic fluidic properties without the need of external actuation, such as inertial, deterministic lateral displacement (DLD), viscoelastic and hydrophoretic focusing; and 2) active methods, where external fields are used, such as dielectrophoretic, thermophoretic, acoustophoretic and optical focusing. This article mainly reviews the studies on the focusing of sub-micrometer particles in microfluidic devices over the past 10 years. It aims to bridge the gap between the focusing of micrometer and nanometer scale (1.0-100 nm) particles and to improve the understanding of development progress, current advances and future prospects in microfluidic focusing techniques.
Collapse
Affiliation(s)
- Tianlong Zhang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan. and School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Zhen-Yi Hong
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Shi-Yang Tang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| |
Collapse
|
14
|
Yanai T, Ouchi T, Yamada M, Seki M. Hydrodynamic Microparticle Separation Mechanism Using Three-Dimensional Flow Profiles in Dual-Depth and Asymmetric Lattice-Shaped Microchannel Networks. MICROMACHINES 2019; 10:mi10060425. [PMID: 31242547 PMCID: PMC6632020 DOI: 10.3390/mi10060425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
We herein propose a new hydrodynamic mechanism of particle separation using dual-depth, lattice-patterned asymmetric microchannel networks. This mechanism utilizes three-dimensional (3D) laminar flow profiles formed at intersections of lattice channels. Large particles, primarily flowing near the bottom surface, frequently enter the shallower channels (separation channels), whereas smaller particles flowing near the microchannel ceiling primarily flow along the deeper channels (main channels). Consequently, size-based continuous particle separation was achieved in the lateral direction in the lattice area. We confirmed that the depth of the main channel was a critical factor dominating the particle separation efficiencies, and the combination of 15-μm-deep separation channels and 40-μm-deep main channels demonstrated the good separation ability for 3–10-μm particles. We prepared several types of microchannels and successfully tuned the particle separation size. Furthermore, the input position of the particle suspension was controlled by adjusting the input flow rates and/or using a Y-shaped inlet connector that resulted in a significant improvement in the separation precision. The presented concept is a good example of a new type of microfluidic particle separation mechanism using 3D flows and may potentially be applicable to the sorting of various types of micrometer-sized objects, including living cells and synthetic microparticles.
Collapse
Affiliation(s)
- Takuma Yanai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Takatomo Ouchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
15
|
De Jesús Vega M, Wakim J, Orbey N, Barry C. Numerical evaluation and experimental validation of cross-flow microfiltration device design. Biomed Microdevices 2019; 21:21. [PMID: 30790088 DOI: 10.1007/s10544-019-0378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This research presents a comprehensive analysis of the design and validation of a cross-flow microfiltration device for separation of microspheres based on size. Simulation results showed that pillar size, pillar shape, incorporation of back-flow preventers, and rounding of pillar layouts affected flow patterns in a cross-flow microfiltration device. Simulation results suggest that larger pillar sizes reduce filtration capacity by decreasing the density of microfiltration gaps in the device. Therefore, 10 μm rather than 20 μm diameter pillars were incorporated in the device. Fluid flow was not greatly affected when comparing circular, octagonal, and hexagonal pillars. However, side-channel fluid velocities decreased when using triangular and square pillars. The lengths of back-flow prevention walls were optimized to completely prevent back flow without inhibiting filtration ability. A trade-off was observed in the designs of the pillar layouts; while rounding the pillars layout in the channels bends eliminated stagnation areas, the design also decreased side-channel fluid velocity compared to the right-angle layout. Experimental separation efficiency was tested using polydimethylsiloxane (PDMS) and silicon microfluidic devices with microspheres simulating white and red blood cells. Efficiencies for separation of small microspheres to the side channels ranged from 73 to 75%. The silicon devices retained the large microspheres in the main channel with efficiencies between 95 and 100%, but these efficiencies were lower with PDMS devices and were affected by sphere concentration. Additionally, PDMS devices resulted in greater agglomeration of spheres when compared to silicon devices. PDMS devices, however, were easier and less expensive to fabricate.
Collapse
Affiliation(s)
- Marisel De Jesús Vega
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA, 01854, USA
| | - Joseph Wakim
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA, 01854, USA
| | - Nese Orbey
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA, 01854, USA.
| | - Carol Barry
- Department of Plastics Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA, 01854, USA
| |
Collapse
|
16
|
Lee DH, Li X, Jiang A, Lee AP. An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood. BIOMICROFLUIDICS 2018; 12:054104. [PMID: 30271519 PMCID: PMC6145860 DOI: 10.1063/1.5049149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/03/2018] [Indexed: 05/08/2023]
Abstract
Reliable separation and isolation of target single cells from bodily fluids with high purity is of great significance for an accurate and quantitative understanding of the cellular heterogeneity. Here, we describe a fully integrated single-blood-cell analysis platform capable of size-selective cell separation from a population containing a wide distribution of sizes such as diluted blood sample and highly efficient entrapment of single monocytes. The spiked single U937 cells (human monocyte cell line) are separated in sequence by two different-sized microfilters for removing large cell clumps, white blood cells, and red blood cells and then discriminated by dielectrophoretic force and isolated individually by downstream single-cell trapping arrays. When 2% hematocrit blood cells with a final ratio of 1:1000 U937 cells were introduced under the flow rate of 0.2 ml/h, 400 U937 cells were trapped sequentially and deterministically within 40 s with single-cell occupancy of up to 85%. As a proof-of-concept, we also demonstrated single monocyte isolation from diluted blood using the integrated microfluidic device. This size-selective, label-free, and live-cell enrichment microfluidic single blood-cell isolation platform for the processing of cancer and blood cells has a myriad of applications in areas such as single-cell genetic analysis, stem cell biology, point-of-care diagnostics, and cancer diagnostics.
Collapse
Affiliation(s)
| | - Xuan Li
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92967, USA
| | - Alan Jiang
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92967, USA
| | | |
Collapse
|
17
|
|
18
|
Luo T, Fan L, Zeng Y, Liu Y, Chen S, Tan Q, Lam RHW, Sun D. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation. LAB ON A CHIP 2018; 18:1521-1532. [PMID: 29725680 DOI: 10.1039/c8lc00173a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.
Collapse
Affiliation(s)
- Tao Luo
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hyun JC, Choi J, Jung YG, Yang S. Microfluidic cell concentrator with a reduced-deviation-flow herringbone structure. BIOMICROFLUIDICS 2017; 11:054108. [PMID: 29034052 PMCID: PMC5617731 DOI: 10.1063/1.5005612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/19/2017] [Indexed: 05/11/2023]
Abstract
In this study, a microfluidic cell concentrator with a reduced-deviation-flow herringbone structure is proposed. The reduced-deviation-flow herringbone structure reduces the magnitude of deviation flow by a factor of 3.3 compared to the original herringbone structure. This structure shows higher recovery efficiency compared to the original herringbone structure for various particle sizes at high flow rate conditions. Using the reduced-deviation-flow herringbone structure, the experimental results show a recovery efficiency of 98.5% and a concentration factor of 3.4× at a flow rate of 100 ml/h for all particle sizes. An iterative concentration process is performed to achieve a higher concentration factor for 10.2-μm particles and Jurkat cells. With two stages of the concentration process, we were able to achieve over 98% recovery efficiency and a concentration factor of 10-11×. Cell viability was found to be above 96% after iterative concentration. We believe that this device could be used to concentrate cells as a preparatory step for studying low-abundance cells.
Collapse
Affiliation(s)
- Ji-Chul Hyun
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Jongchan Choi
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Yu-Gyung Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | | |
Collapse
|
20
|
Yan S, Zhang J, Yuan D, Li W. Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 2016; 38:238-249. [DOI: 10.1002/elps.201600386] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Sheng Yan
- School of Mechanical, Materials and Mechatronic Engineering; University of Wollongong; Wollongong Australia
| | - Jun Zhang
- School of Mechanical, Materials and Mechatronic Engineering; University of Wollongong; Wollongong Australia
- School of Mechanical Engineering; Nanjing University of Science and Technology; Nanjing P. R. China
| | - Dan Yuan
- School of Mechanical, Materials and Mechatronic Engineering; University of Wollongong; Wollongong Australia
| | - Weihua Li
- School of Mechanical, Materials and Mechatronic Engineering; University of Wollongong; Wollongong Australia
| |
Collapse
|
21
|
Wang Y, Du F, Pesch GR, Köser J, Baune M, Thöming J. Microparticle trajectories in a high-throughput channel for contact-free fractionation by dielectrophoresis. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Kim B, Choi S. Smart Pipette and Microfluidic Pipette Tip for Blood Plasma Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:190-197. [PMID: 26568206 DOI: 10.1002/smll.201502719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/05/2015] [Indexed: 06/05/2023]
Abstract
An integrated method for blood plasma separation is presented by combining a pneumatic device, which is referred to as a "smart pipette," and a hydrophoretic microchannel as a microfluidic pipette tip for whole-blood sample preparation. This method enables hemolysis-free, high-purity plasma separation through smart pipetting of whole blood, potentially providing the means for rapid, inexpensive blood sample preparation for point-of-care testing.
Collapse
Affiliation(s)
- Byeongyeon Kim
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Sungyoung Choi
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| |
Collapse
|
23
|
Song S, Kim MS, Lee J, Choi S. A continuous-flow microfluidic syringe filter for size-based cell sorting. LAB ON A CHIP 2015; 15:1250-4. [PMID: 25599969 DOI: 10.1039/c4lc01417k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This communication presents a microfluidic method for size-based cell sorting, which provides a simple and robust approach for cell cycle synchronization by manual and stand-alone operation.
Collapse
Affiliation(s)
- Seungjeong Song
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | | | | | | |
Collapse
|
24
|
|
25
|
Yan S, Zhang J, Alici G, Du H, Zhu Y, Li W. Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device. LAB ON A CHIP 2014; 14:2993-3003. [PMID: 24939716 DOI: 10.1039/c4lc00343h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plasma is a complex substance that contains proteins and circulating nucleic acids and viruses that can be utilised for clinical diagnostics, albeit a precise analysis depends on the plasma being totally free of cells. We proposed the use of a dielectrophoresis (DEP)-active hydrophoretic method to isolate plasma from blood in a high-throughput manner. This microfluidic device consists of anisotropic microstructures embedded on the top of the channel which generate lateral pressure gradients while interdigitised electrodes lay on the bottom of the channel which can push particles or cells into a higher level using a negative DEP force. Large and small particles or cells (3 μm and 10 μm particles, and red blood cells, white blood cells, and platelets) can be focused at the same time in our DEP-active hydrophoretic device at an appropriate flow rate and applied voltage. Based on this principle, all the blood cells were filtrated from whole blood and then the plasma was extracted with a purity of 94.2% and a yield of 16.5% at a flow rate of 10 μL min(-1). This solved the challenging problem caused by the relatively low throughput of the DEP based device. Our DEP-active hydrophoretic device is a flexible and tunable system that can control the lateral positions of particles by modulating the external voltages without redesigning and fabricating a new channel, and because it is easy to operate, it is easily compatible with other microfluidic platforms that are used for further detection.
Collapse
Affiliation(s)
- Sheng Yan
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser. Sci Rep 2014; 4:5060. [PMID: 24862936 PMCID: PMC4033927 DOI: 10.1038/srep05060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/07/2014] [Indexed: 11/08/2022] Open
Abstract
This paper proposes a novel concept of dielectrophoresis (DEP)-active hydrophoretic focusing of micro-particles and murine erythroleukemia (MEL) cells. The DEP-active hydrophoretic platform consists of crescent shaped grooves and interdigitated electrodes that generate lateral pressure gradients. These embedded electrodes exert a negative DEP force onto the particles by pushing them into a narrow space in the channel where the particle to groove interaction is intensive and hydrophoretic ordering occurs. Particles passing through the microfluidic device are directed towards the sidewalls of the channel. The critical limitation of DEP operating at a low flow rate and the specific hydrophoretic device for focusing particles of given sizes were overcome with the proposed microfluidic device. The focusing pattern can be modulated by varying the voltage. High throughput was achieved (maximum flow rate ~150 μL min(-1)) with good focusing performance. The non-spherical MEL cells were utilised to verify the effectiveness of the DEP-active hydrophoretic device.
Collapse
|