1
|
Zhang Y, Hua L, Lin C, Yuan M, Xu W, Raj D. A, Venkidasamy B, Cespedes-Acuna CL, Nile SH, Yan G, Zheng H. Pien-Tze-Huang alleviates CCl4-induced liver fibrosis through the inhibition of HSC autophagy and the TGF-β1/Smad2 pathway. Front Pharmacol 2022; 13:937484. [PMID: 36188553 PMCID: PMC9523731 DOI: 10.3389/fphar.2022.937484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Ethnopharmacological relevance: Pien-Tze-Huang (PZH)—a traditional Chinese medicine (TCM) compound—has been employed to treat various liver inflammation and tumors for over 10 decades. Interestingly, most of the pharmacological effects had been validated and explored toward liver ailment along with pro-inflammatory conditions and cancer at the cellular and molecular level to date. Aim of the study: The present study aimed to investigate the therapeutic effect of PZH on autophagy and TGF-β1 signaling pathways in rats with liver fibrosis and hepatic stellate cell line (HSC). Materials and methods: Male SD rats with carbon tetrachloride (CCl4)-induced liver fibrosis were used as the animal model. Next, PZH treatment was given for 8 weeks. Afterward, the therapeutic effects of PZH were analyzed through a hepatic tissue structure by hematoxylin-eosin (H&E), Van Gieson (VG) staining, and transmission electron microscopy (TEM), activity of ALT and AST by enzyme-associated immunosorbent assay as well. Subsequently, mRNA and protein expression were examined by quantitative polymerase chain reaction (qPCR), Western blotting, and immunohistochemistry (IHC). Then, the cell vitality of PZH-treated HSC and the expression of key molecules prevailing to autophagy were studied in vitro. Meanwhile, SM16 (a novel small molecular inhibitor which inhibits TGFβ-induced Smad2 phosphorylation) was employed to confirm PZH’s effects on the proliferation and autophagy of HSC. Results: PZH pharmacologically exerted anti-hepatic fibrosis effects as demonstrated by protecting hepatocytes and improving hepatic function. The results revealed the reduced production of extracellular collagen by adjusting the balance of matrix metalloproteinase (MMP) 2, MMP9, and tissue inhibitor of matrix metalloproteinase 1 (TIMP1) in PZH-treated CCl4-induced liver fibrosis. Interestingly, PZH inhibited the activation of HSC by down-regulating TGF-β1 and phosphorylating Smad2. Furthermore, PZH down-regulated yeast Atg6 (Beclin-1) and microtubule-associated protein light chain 3 (LC3) toward suppressing HSC autophagy, and PZH exhibited similar effects to that of SM16. Conclusion: To conclude, PZH alleviated CCl4-induced liver fibrosis to reduce the production of extracellular collagen and inhibiting the activation of HSC. In addition, their pharmacological mechanisms related to autophagy and TGF-β1/Smad2 signaling pathways were revealed for the first time.
Collapse
Affiliation(s)
- Yuqin Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Liping Hua
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Chunfeng Lin
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mingzhou Yuan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Anand Raj D.
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Carlos L. Cespedes-Acuna
- Plant Biochemistry and Phytochemical Ecology Lab, Basic Sciences Department University of Bio Bio, Chillan, Chile
| | - Shivraj Hariram Nile
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| | - Guohong Yan
- Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| | - Haiyin Zheng
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Shivraj Hariram Nile, ; Guohong Yan, ; Haiyin Zheng,
| |
Collapse
|
2
|
Chen J, Zheng Q, Zheng Z, Li Y, Liao H, Zhao H, Guo D, Ma Y. Analysis of the differences in the chemical composition of monascus rice and highland barley monascus. Food Funct 2022; 13:7000-7019. [PMID: 35723016 DOI: 10.1039/d2fo00402j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monascus rice (MR) and highland barley monascus (HBM), the monascus fermented products, are applied in food and medicine to reduce cholesterol and promote digestion. Due to the fermentation substrates, their compositions are different. However, the exact differences have not been reported to date. By UPLC-Q-Orbitrap HRMS analysis, multiple components of twenty batches of MR and HBM samples were identified. In total, 100 components were confirmed (e.g., monacolins, pigments, decalin derivatives, amino acids). Then, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to filter the components of MR and HBM. In the PCA model, 88.1% of the total variance was uncovered. The OPLS-DA model showed better discrimination between MR and HBM, and the values of R2X, R2Y, and Q2 were 0.837, 0.996, and 0.956, respectively. Based on the value of the variable importance in projection (VIP) and the result of the t-test, 424 components (VIP > 1, p < 0.05) were acquired. Finally, 11 differential components were selected as the characteristic compounds to discriminate between MR and HBM: the content of 9 monacolins (3-hydroxy-3,5-dihydrodehydromonacolin K, monacolin K, dehydromonacolin K, dehydromonacolin J hydroxy acid, monacophenyl, dihydromonacolin J hydroxy acid, monacolin L, dehydromonacolin J, and monacolin R) in HBM was higher than the content in MR, but the content of 2 pigments (ankaflavin and monascin) was lower in HBM and higher in MR. The findings revealed the similarities and differences in the chemical composition between MR and HBM, which is expected to provide a basis for quality control of HBM.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zheng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenxing Zheng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zhao
- National United Engineering Research Center for Tibetan Plateau Microbiology, Tibet, China
| | - Dale Guo
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Yanli F, Xiang Y. Perspectives on Functional Red Mold Rice: Functional Ingredients, Production, and Application. Front Microbiol 2020; 11:606959. [PMID: 33324390 PMCID: PMC7723864 DOI: 10.3389/fmicb.2020.606959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023] Open
Abstract
Monacolin K (MK) is a secondary metabolite of the Monascus species that can inhibit cholesterol synthesis. Functional red mold rice (FRMR) is the fermentation product of Monascus spp., which is rich in MK. FRMR is usually employed to regulate serum cholesterol, especially for hypercholesterolemic patients who refuse statins or face statin intolerance. The present perspective summarized the bioactive components of FRMR and their functions. Subsequently, efficient strategies for FRMR production, future challenges of FRMR application, and possible directions were proposed. This perspective helps to understand the present situation and developmental prospects of FRMR.
Collapse
Affiliation(s)
- Feng Yanli
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
- Hubei Engineering Research Center of Typical Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, China
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Yu Xiang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
- Hubei Engineering Research Center of Typical Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, China
- College of Life Sciences, Hubei Normal University, Huangshi, China
| |
Collapse
|
4
|
Chang YL, Xu GL, Wang XP, Yan X, Xu X, Li X, Chen ZK, Ren X, Chen XQ, Zhang JH, Wang XH, Ren XY, Liu XY, Wang Y, Sun SQ, Li X, She GM. Anti-tumor activity and linear-diarylheptanoids of herbal couple Curcumae Rhizoma-Sparganii Rhizoma and the single herbs. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112465. [PMID: 31821851 DOI: 10.1016/j.jep.2019.112465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumae Rhizoma and Sparganii Rhizoma (CR-SR) are the classical herbal couple for activating blood circulation and treating tumor in clinics. AIM OF THE STUDY To investigate the anti-tumor activity and to clarify the bioactive ingredients of herbal couple CR-SR and the single herbs Curcumae Rhizoma (CR) and Sparganii Rhizoma (SR). MATERIALS AND METHODS The active fractions of CR-SR decoction were fractioned by column chromatography. And isolated compounds were characterized by IR, ESI-MS, 1D and 2D-NMR techniques. Detecting linear-diarylheptanoids in CR-SR, CR and SR was realized through UPLC-LTQ-Orbitrap MSn, based on the fragmentation pathways established in this study, comparison with MS data of isolated compounds and references. The anti-tumor activities of different solvent fractions from CR-SR, CR and SR, as well as isolated ingredients were tested by CCK-8 method. RESULTS Ultimately, a new compound (1), having a sulfonic acid group at C-3, named demethoxyshogasulfonic acid, along with another structurally similar 17 known linear-diarylheptanoids were isolated. These linear-diarylheptanoids (1-18) were divided into 12 categories based on the differences of substituents at C-3 and C-5 on the straight chain of seven carbons. Six fragmentation pathways were established by summarizing MS data of the 18 isolated compounds collected from UPLC-MS. Based on that, and retention times and MS fragmentation ions, 47 linear-diarylheptanoids were identified in CR-SR and CR, in which 12 linear-diarylheptanoids were also detected in SR. Most importantly, 5 sulfonated linear-diarylheptanoids were new compounds detected in CR and CR-SR. And the biological assay indicated that compounds 1-4 and 12-15 significantly reduced the proliferation and inhibited colony formation of MCF-7 and HepG2 cells. CONCLUSION The new compound (1) exhibited good anti-cancer activity, which suggests that a great effort has to be paid to investigate the bioactivity of sulfonated compounds. The fractions of CR-SR decoction exhibited stronger anti-tumor activities than that of CR and SR against 5 different cancer cells. As for chemical composition, it is the first time to report that diarylheptanoids are in Sparganiaceae and the sulfonated compounds in Zingiberaceae. Moreover, the linear-diarylheptanoids found in SR which being tested to possess good anti-tumor activity, plus those compounds in CR enhance the capacity of CR-SR. It shows importance of TCM compatibility.
Collapse
Affiliation(s)
- Yan-Li Chang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Guan-Ling Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiao-Ping Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xin Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiao Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiao Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zi-Kang Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xuan Ren
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xi-Qin Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jing-Han Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiu-Huan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xue-Yang Ren
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiao-Yun Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Yu Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Si-Qi Sun
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiang Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Gai-Mei She
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
5
|
Zhu B, Qi F, Wu J, Yin G, Hua J, Zhang Q, Qin L. Red Yeast Rice: A Systematic Review of the Traditional Uses, Chemistry, Pharmacology, and Quality Control of an Important Chinese Folk Medicine. Front Pharmacol 2019; 10:1449. [PMID: 31849687 PMCID: PMC6901015 DOI: 10.3389/fphar.2019.01449] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Red yeast rice (RYR), a Chinese traditional folk medicine produced by the fermentation of cooked rice kernels with a Monascaceae mold, Monascus purpureus, has long been used to treat blood circulation stasis, indigestion, diarrhea, and limb weakness in East Asian countries. This article provides a systematic review of the traditional uses, chemistry, biological activities, and toxicology of RYR to highlight its future prospects in the field of medicine. The literature reviewed for this article was obtained from the Web of Science, Elsevier, SciFinder, PubMed, CNKI, ScienceDirect, and Google Scholar, as well as Ph.D. and M.Sc. dissertations, published prior to July 2019. More than 101 chemical constituents have been isolated from RYR, mainly consisting of monacolins, pigments, organic acids, sterols, decalin derivatives, flavonoids, polysaccharides, and other compounds. Crude extracts of RYR, as well as its isolated compounds, possess broad pharmacological properties with hypolipidemic, anti-atherosclerotic, anti-cancer, neurocytoprotective, anti-osteoporotic, anti-fatigue, anti-diabetic, and anti-hypertensive activities. However, further studies are needed to characterize its diverse chemical constituents and the toxicological actions of the main bioactive compounds. New pharmacological trials addressing the overlooked traditional uses of RYR, such as in the treatment of indigestion and diarrhea, are required.
Collapse
Affiliation(s)
- Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangyuan Qi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianjun Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Yin
- Department of Pharmacy, Hangzhou Twin-Horse Biotechnology Co., Ltd., Hangzhou, China
| | - Jinwei Hua
- Institute of Traditional Chinese Medicine, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Qiaoyan Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Liang JX, Zhang QQ, Huang YF, Pang HQ, Liu XG, Gao W, Li P, Yang H. Comprehensive chemical profiling of monascus-fermented rice product and screening of lipid-lowering compounds other than monacolins. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111879. [PMID: 30991138 DOI: 10.1016/j.jep.2019.111879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Monascus-fermented rice product (MFRP) has been regarded as a dietary supplement and traditional medicine with circulation-promoting effects in China and other countries for centuries. AIM OF THE STUDY This study was carried out to profile the chemical components in MFRP, and provide available information for elucidating the potential lipid-lowering compounds other than monacolins. MATERIALS AND METHODS High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS) and gas chromatography coupled with mass spectrometry (GC-MS) methods were applied to comprehensive analysis of chemical components in MFRP. Potential small molecules were identified by comparing with reference standards, or tentatively characterized by comparing their retention time and high-resolution mass spectral data with previous literature. The lipid-lowering properties of ten major non-monacolin compounds were evaluated in cholesterol-fed zebrafish larvae. And one with optimum lipid-lowering activity was subsequently evaluated in high fat diet-fed C57BL/6 J mice, with the dyslipidemia and ectopic lipid deposition being investigated. RESULTS A total of 99 compounds were characterized in MFRP, including 38 monacolins, 5 decalins, 6 isoflavones, 13 pigments, 8 azaphilonoids, 11 amino acids, 4 nucleosides, 9 lipid acids, 4 phytosterols and glycerol. The preliminary screening showed that ergosterol remarkably reduced cholesterol levels in zebrafish larvae. Moreover, ergosterol delayed body weight gain and decreased circulating total cholesterol, triglyceride, low density lipoprotein cholesterol levels in high fat diet-fed mice. Ectopic lipid accumulation was also ameliorated in the liver and heart of obese mice. CONCLUSION Global analysis of chemical components and screening of lipid-lowering non-monacolin compounds in MFRP have improved our understanding of its therapeutic material basis.
Collapse
Affiliation(s)
- Jin-Xiu Liang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qun-Qun Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan-Fei Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Han-Qing Pang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin-Guang Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Song J, Luo J, Ma Z, Sun Q, Wu C, Li X. Quality and Authenticity Control of Functional Red Yeast Rice-A Review. Molecules 2019; 24:E1944. [PMID: 31137594 PMCID: PMC6572552 DOI: 10.3390/molecules24101944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
Abstract
Red yeast rice (RYR) is made by fermenting the rice with Monascus. It is commonly used in food colorants, dyeing, and wine making in China and its neighboring countries. Nowadays RYR has two forms on the market: common RYR is used for food products, the other form is functional RYR for medicine. However, some researchers reported that commercial lovastatin (structure is consistent with monacolin K) is illegally added to common RYR to meet drug quality standards, so as to imitate functional RYR and sell the imitation at a higher price. Based on current detection methods, it is impossible to accurately distinguish whether functional RYR is adulterated. Therefore, it is especially important to find a way to authenticate functional RYR. In the current review, the advances in history, applications, components (especially monacolins, monacolins detection methods), quality standards, authentication methods and perspectives for the future study of RYR are systematically reviewed.
Collapse
Affiliation(s)
- Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zubing Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiang Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Wang ZX, Zhang YX, Zeng YL, Li X, Chen Z, Luo JM, Zhang Y, Zhang YL, Qiao YJ. Discovery of TAS2R14 Agonists from Platycodon grandiflorum Using Virtual Screening and Affinity Screening Based on a Novel TAS2R14-Functionalized HEMT Sensor Combined with UPLC-MS Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11663-11671. [PMID: 30259737 DOI: 10.1021/acs.jafc.8b04455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
TAS2R14 is of great potential as a therapeutic target against asthma, and the discovery of TAS2R14 agonists can be very valuable for treating this disease. Herein, we developed a strategy using virtual screening and affinity screening based on a fabricated biosensor combined with UPLC-MS analysis to screen TAS2R14 agonists from Platycodon grandiflorum. By ligand-based virtual screening, 16 best-fit candidates were yielded. A novel TAS2R14-functionalized high-electron-mobility transistor (HEMT) sensor was applied to detect and fish out the potential TAS2R14 agonists from P. grandiflorum extracts. Those components captured by the immobilized TAS2R14 were eluted and characterized on UPLC-QTOF MS. As a result, six potential TAS2R14 agonists were screened out and identified. Among them, platycodin L was confirmed to be a special agonist of TAS2R14 for the first time and had an EC50 of 15.03 ± 1.15 μM via intracellular calcium mobilization assay ( n = 6). The results indicated that the proposed strategy was efficient to discover TAS2R14 agonists from the herb directly.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Yu-Xin Zhang
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Yan-Ling Zeng
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Xi Li
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Zhao Chen
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Jia-Ming Luo
- Key Laboratory of Semiconductor Materials Science , Chinese Academy of Sciences , Beijing 100083 , P. R. China
| | - Yang Zhang
- Key Laboratory of Semiconductor Materials Science , Chinese Academy of Sciences , Beijing 100083 , P. R. China
| | - Yan-Ling Zhang
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Yan-Jiang Qiao
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| |
Collapse
|
9
|
Ruangpayungsak N, Sithisarn P, Rojsanga P. High performance liquid chromatography fingerprinting and chemometric analysis of antioxidant quality of Thunbergia laurifolia leaves. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1485038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nuchnan Ruangpayungsak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pongtip Sithisarn
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Piyanuch Rojsanga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Patel S. Functional food red yeast rice (RYR) for metabolic syndrome amelioration: a review on pros and cons. World J Microbiol Biotechnol 2016; 32:87. [PMID: 27038957 DOI: 10.1007/s11274-016-2035-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022]
Abstract
Red yeast rice (RYR), the fermentation product of mold Monascus purpureus has been an integral part of Oriental food and traditional Chinese medicine, long before the discovery of their medicinal roles. With the identification of bioactive components as polyketide pigments (statins), and unsaturated fatty acids, RYR has gained a nutraceutical status. Hypercholesterolemic effect of this fermented compound has been validated and monacolin K has been recognized as the pivotal component in cholesterol alleviation. Functional similarity with commercial drug lovastatin sans the side effects has catapulted its popularity in other parts of the world as well. Apart from the hypotensive role, ameliorative benefits of RYR as anti-inflammatory, antidiabetic, anticancer and osteogenic agent have emerged, fueling intense research on it. Mechanistic studies have revealed their interaction with functional agents like coenzyme Q10, astaxanthin, vitamin D, folic acid, policosanol, and berberine. On the other hand, concurrence of mycotoxin citrinin and variable content of statin has marred its integration in mainstream medication. In this disputable scenario, evaluation of the scopes and lacunae to overcome seems to contribute to an eminent area of healthcare. Red yeast rice (RYR), the rice-based fermentation product of mold Monascus purpureus is a functional food. Its bioactive component monacolin K acts like synthetic drug lovastatin, without the severe side effects of the latter. RYR has been validated to lower cholesterol, control high blood pressure; confer anti-flammation, hypoglycaemic, anticancer and osteogenic properties. However, dose inconsistency and co-occurrence of toxin citrinin hampers its dietary supplementation prospect. Further research might facilitate development of RYR as a nutraceutical.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.
| |
Collapse
|