1
|
A new paradigm in public health assessment: Water fingerprinting for protein markers of public health using mass spectrometry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Melfi MT, Nardiello D, Natale A, Quinto M, Centonze D. An automated food protein isolation approach on preparative scale by two‐dimensional liquid chromatography with active modulation interface. Electrophoresis 2018; 40:1096-1106. [DOI: 10.1002/elps.201800500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Teresa Melfi
- Dipartimento di Scienze Agrariedegli Alimenti e dell'AmbienteUniversità degli Studi di Foggia Foggia Italy
| | - Donatella Nardiello
- Dipartimento di Scienze Agrariedegli Alimenti e dell'AmbienteUniversità degli Studi di Foggia Foggia Italy
| | - Anna Natale
- Dipartimento di Scienze Agrariedegli Alimenti e dell'AmbienteUniversità degli Studi di Foggia Foggia Italy
| | - Maurizio Quinto
- Dipartimento di Scienze Agrariedegli Alimenti e dell'AmbienteUniversità degli Studi di Foggia Foggia Italy
| | - Diego Centonze
- Dipartimento di Scienze Agrariedegli Alimenti e dell'AmbienteUniversità degli Studi di Foggia Foggia Italy
| |
Collapse
|
3
|
Ji S, Wang S, Xu H, Su Z, Tang D, Qiao X, Ye M. The application of on-line two-dimensional liquid chromatography (2DLC) in the chemical analysis of herbal medicines. J Pharm Biomed Anal 2018; 160:301-313. [PMID: 30114608 DOI: 10.1016/j.jpba.2018.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
Herbal medicines are complicated chemical systems containing hundreds of small molecules of various polarities, structural types, and contents. Thus far, the chromatographic separation of herbal extracts is still a big challenge. Two-dimensional liquid chromatography (2DLC) has become an attractive separation tool in the past few years. Particularly, a lot of attention has been paid to on-line 2DLC. In this review, we aim to give an overview on applications of on-line 2DLC in the chemical analysis of herbal medicines since 2010. Firstly, classification and general configurations of on-line 2DLC were briefly introduced. Then, we summarized main applications in herbal medicines of heart-cutting 2DLC (LC-LC), comprehensive 2DLC (LC × LC), and their combinations, with emphasis on LC × LC. Mass spectrometry is the most popular detector coupled with 2DLC, which allows sensitive and accurate structural characterization of herbal compounds. Finally, future developments in on-line 2DLC techniques were also discussed.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Shuang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Haishan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Civil Aviation Medicine Center & Civil Aviation General Hospital, Civil Aviation Administration of China, A-1 Gaojing, Chaoyang District, Beijing 100123, China
| | - Zhenyu Su
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Daoquan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
4
|
Silva LM, Clements JA. Mass spectrometry based proteomics analyses in kallikrein-related peptidase research: implications for cancer research and therapy. Expert Rev Proteomics 2017; 14:1119-1130. [PMID: 29025353 DOI: 10.1080/14789450.2017.1389637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Kallikrein-related peptidases (KLKs) are a family of serine peptidases that are deregulated in numerous pathological conditions, with a multitude of KLK-mediated functional roles implicated in the progression of cancer. Advances in multidimensional mass spectrometry (MS)-based proteomics have facilitated the quantitative measurement of deregulated KLK expression in cancer, identifying certain KLKs, as well as their substrates, as potential cancer biomarkers. Areas covered: In this review, we discuss how these approaches have been utilized for KLK biomarker discovery and unbiased substrate determination in complex protein pools that mimic the in vivo extracellular microenvironment. Expert commentary: Although a limited number of studies have been performed, the quantity of information generated has greatly improved our understanding of the functional roles of KLKs in cancer progression. In addition, these data suggest additional means through which deregulated KLK expression may be targeted in cancer treatment, highlighting the potential therapeutic value of these state-of-the-art MS-based studies.
Collapse
Affiliation(s)
- Lakmali Munasinghage Silva
- a Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch , National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda , MD , USA
| | - Judith Ann Clements
- b School of Biomedical Sciences , Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Translational Research Institute , Woolloongabba , Australia
| |
Collapse
|
5
|
Multiplexed assay for protein quantitation in the invertebrate Gammarus fossarum by liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2017; 409:3969-3991. [DOI: 10.1007/s00216-017-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 11/26/2022]
|
6
|
Jin P, Wang K, Huang C, Nice EC. Mining the fecal proteome: from biomarkers to personalised medicine. Expert Rev Proteomics 2017; 14:445-459. [PMID: 28361558 DOI: 10.1080/14789450.2017.1314786] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Fecal proteomics has gained increased prominence in recent years. It can provide insights into the diagnosis and surveillance of many bowel diseases by both identifying potential biomarkers in stool samples and helping identify disease-related pathways. Fecal proteomics has already shown its potential for the discovery and validation of biomarkers for colorectal cancer screening, and the analysis of fecal microbiota by MALDI-MS for the diagnosis of a range of bowel diseases is gaining clinical acceptance. Areas covered: Based on a comprehensive analysis of the current literature, we introduce the range of sensitive and specific proteomics methods which comprise the current 'Proteomics Toolbox', explain how the integration of fecal proteomics with data processing/bioinformatics has been used for the identification of potential biomarkers for both CRC and other gut-related pathologies and analysis of the fecal microbiome, outline some of the current fecal assays in current clinical practice and introduce the concept of personalised medicine which these technologies will help inform. Expert commentary: Integration of fecal proteomics with other proteomics and genomics strategies as well as bioinformatics is paving the way towards personalised medicine, which will bring with it improved global healthcare.
Collapse
Affiliation(s)
- Ping Jin
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Kui Wang
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Canhua Huang
- a Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology , the Affiliated Hospital of Hainan Medical College , Haikou , China.,b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Edouard C Nice
- b State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| |
Collapse
|
7
|
The clinical utility of mass spectrometry based protein assays. Clin Chim Acta 2016; 459:155-161. [DOI: 10.1016/j.cca.2016.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
|
8
|
Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016; 16:2160-82. [PMID: 27302376 PMCID: PMC5051956 DOI: 10.1002/pmic.201500449] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ehwang Song
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Song Nie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karin D Rodland
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
9
|
Percy AJ, Byrns S, Pennington SR, Holmes DT, Anderson NL, Agreste TM, Duffy MA. Clinical translation of MS-based, quantitative plasma proteomics: status, challenges, requirements, and potential. Expert Rev Proteomics 2016; 13:673-84. [DOI: 10.1080/14789450.2016.1205950] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Andrew J. Percy
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| | - Simon Byrns
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Stephen R. Pennington
- Department of Pathology, School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Daniel T. Holmes
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - N. Leigh Anderson
- Department of Clinical Biomarkers, SISCAPA Assay Technologies, Inc., Washington, DC, USA
| | - Tasha M. Agreste
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| | - Maureen A. Duffy
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA
| |
Collapse
|
10
|
Li Z, Chen K, Guo MZ, Tang DQ. Two-dimensional liquid chromatography and its application in traditional Chinese medicine analysis and metabonomic investigation. J Sep Sci 2016; 39:21-37. [DOI: 10.1002/jssc.201500634] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Kai Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Meng-zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
- Department of Pharmaceutical Analysis, School of Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Dao-quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
- Department of Pharmaceutical Analysis, School of Pharmacy; Xuzhou Medical College; Xuzhou China
| |
Collapse
|
11
|
Li Y, Dai H, Zhang Q, Zhang S, Chen S, Hong Z, Lin Y. In situ generation of electron acceptor to amplify the photoelectrochemical signal from poly(dopamine)-sensitized TiO2 signal crystal for immunoassay. J Mater Chem B 2016; 4:2591-2597. [DOI: 10.1039/c5tb02525g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoelectrochemical protocol was designed for quantitative monitoring of tumor markers by utilizing poly(dopamine)-sensitized TiO2 signal crystal.
Collapse
Affiliation(s)
- Yilin Li
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Qingrong Zhang
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Shupei Zhang
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Sihong Chen
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Zhensheng Hong
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
- College of Physics and Energy
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Yanyu Lin
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| |
Collapse
|
12
|
Wang H, Shi T, Qian WJ, Liu T, Kagan J, Srivastava S, Smith RD, Rodland KD, Camp DG. The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification. Expert Rev Proteomics 2015; 13:99-114. [PMID: 26581546 DOI: 10.1586/14789450.2016.1122529] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry (MS) -based proteomics has become an indispensable tool with broad applications in systems biology and biomedical research. With recent advances in liquid chromatography (LC) and MS instrumentation, LC-MS is making increasingly significant contributions to clinical applications, especially in the area of cancer biomarker discovery and verification. To overcome challenges associated with analyses of clinical samples (for example, a wide dynamic range of protein concentrations in bodily fluids and the need to perform high throughput and accurate quantification of candidate biomarker proteins), significant efforts have been devoted to improve the overall performance of LC-MS-based clinical proteomics platforms. Reviewed here are the recent advances in LC-MS and its applications in cancer biomarker discovery and quantification, along with the potentials, limitations and future perspectives.
Collapse
Affiliation(s)
- Hui Wang
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Tujin Shi
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Tao Liu
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Jacob Kagan
- b Division of Cancer Prevention , National Cancer Institute (NCI) , Rockville , MD , USA
| | - Sudhir Srivastava
- b Division of Cancer Prevention , National Cancer Institute (NCI) , Rockville , MD , USA
| | - Richard D Smith
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Karin D Rodland
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - David G Camp
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
13
|
Zhou L, Li Q, Wang J, Huang C, Nice EC. Oncoproteomics: Trials and tribulations. Proteomics Clin Appl 2015; 10:516-31. [PMID: 26518147 DOI: 10.1002/prca.201500081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/19/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Qifu Li
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Jiandong Wang
- Department of Biomedical; Chengdu Medical College; Chengdu Sichuan Province P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
| | - Edouard C. Nice
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|
14
|
Recent advances in the application of hydrophilic interaction chromatography for the analysis of biological matrices. Bioanalysis 2015; 7:2927-45. [DOI: 10.4155/bio.15.200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hydrophilic interaction chromatography (HILIC) is being increasingly used for the analysis of hydrophilic compounds in biological matrices. The complexity of biological samples demands adequate sample preparation procedures, specifically adjusted for HILIC analyses. Currently, most bioanalytical assays are performed on bare silica and ZIC-HILIC columns. Trends in HILIC for bioanalysis include smaller particle sizes and miniaturization of the analytical column. For complex biological samples, multidimensional techniques can separate and identify more compounds than 1D separations. The high volatility of the mobile phase, the added separation power and high sensitivity make MS the detection method of choice for bioanalysis using HILIC, although other detectors such as evaporative light scattering detection, charged aerosol detection and nuclear magnetic resonance have been reported.
Collapse
|
15
|
Absolute quantification of podocalyxin, a potential biomarker of glomerular injury in human urine, by liquid chromatography–mass spectrometry. J Chromatogr A 2015; 1397:81-5. [DOI: 10.1016/j.chroma.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/20/2015] [Accepted: 04/01/2015] [Indexed: 12/30/2022]
|