1
|
Hufnagel M, Rademaekers A, Weisert A, Häberlein H, Franken S. Pharmacological profile of dicaffeoylquinic acids and their role in the treatment of respiratory diseases. Front Pharmacol 2024; 15:1371613. [PMID: 39239645 PMCID: PMC11374715 DOI: 10.3389/fphar.2024.1371613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Dicaffeoylquinic acids (DCQAs) are polyphenolic compounds found in various medicinal plants such as Echinacea species and Hedera helix, whose multi-constituent extracts are used worldwide to treat respiratory diseases. Besides triterpenes, saponins, alkamides, and other constituents, DCQAs are an important group of substances for the pharmacological activity of plant-derived extracts. Therefore, the pharmacological properties of DCQAs have been studied over the last decades, suggesting antioxidative, anti-inflammatory, antimicrobial, hypoglycaemic, cardiovascular protective, neuroprotective, and hepatoprotective effects. However, the beneficial pharmacological profile of DCQAs has not yet been linked to their use in treating respiratory diseases such as acute or even chronic bronchitis. The aim of this review was to assess the potential of DCQAs for respiratory indications based on published in vitro and in vivo pharmacological and pre-clinical data, with particular focus on antioxidative, anti-inflammatory, and respiratory-related effects such as antitussive or antispasmodic properties. A respective literature search revealed a large number of publications on the six DCQA isoforms. Based on this search, a focus was placed on 1,3-, 3,4-, 3,5-, and 4,5-DCQA, as the publications focused mainly on these isomers. Based on the available pre-clinical data, DCQAs trigger cellular mechanisms that are important in the treatment of respiratory diseases such as decreasing NF-κB activation, reducing oxidative stress, or activating the Nrf2 pathway. Taken together, these data suggest an essential role for DCQAs within herbal medicines used for the treatment of respiratory diseases and highlights the need for the identifications of DCQAs as lead substances within such extracts.
Collapse
Affiliation(s)
| | | | - Anika Weisert
- Engelhard Arzneimittel GmbH & Co. KG, Niederdorfelden, Germany
| | - Hanns Häberlein
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Sebastian Franken
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Liang Y, Liu M, Wang Y, Liu L, Gao Y. Analyzing the Material Basis of Anti-RSV Efficacy of Lonicerae japonicae Flos Based on the PK-PD Model. Molecules 2023; 28:6437. [PMID: 37764214 PMCID: PMC10537356 DOI: 10.3390/molecules28186437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Lonicerae japonicae Flos (LJF) possesses a good anti-respiratory syncytial virus (RSV) effect. However, the material basis of LJF in treating RSV is still unclear. In this study, a sensitive and accurate quantitative method based on UHPLC-QQQ MS was established and validated for the simultaneous determination of the 15 ingredients from LJF in RSV-infected mice plasma. Multiple reaction monitoring was performed for quantification of the standards and of the internal standard in plasma. All the calibration curves show good linear regression within the linear range (r2 > 0.9918). The method validation results, including specificity, linearity, accuracy, precision, extraction recovery, matrix effect, and stability of 15 ingredients, are all within the current acceptance criteria. This established method was successfully applied to the pharmacokinetic study of 15 compounds from LJF. Furthermore, the repair rate of lung index and the improvement rate of IFN-γ and IL-6 improved after administration of the LJF, indicating that LJF possessed a positive effect on the treatment of RSV infection. Finally, by combining Spearman and Grey relation analysis, isochlorogenic acid B, isochlorogenic acid C, secoxyloganin, chlorogenic acid, and loganic acid are speculated to be the main effective ingredients of LJF in treating RSV. This study lays the foundation for attempts to reveal the mechanisms of the anti-RSV effect of LJF.
Collapse
Affiliation(s)
- Yuting Liang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Mingjun Liu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Yanghai Wang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Lu Liu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine: Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
| |
Collapse
|
3
|
Wang K, Mi L, Wang X, Zhou L, Xu Z. Integration of Untargeted Metabolomics and Object-Oriented Data-Processing Protocols to Characterize Acerola Powder Composition as Functional Food Ingredient. Antioxidants (Basel) 2023; 12:1341. [PMID: 37507881 PMCID: PMC10376614 DOI: 10.3390/antiox12071341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Acerola powder has been experiencing a surge in demand as a functional food ingredient, particularly due to its usage in vitamin C supplements. However, limited research has been conducted on its other bioactive compounds. In this study, we employed metabolomics and object-oriented data-processing protocols to comprehensively characterize acerola powder. To ensure maximum coverage of metabolomics, we selected a 50% methanol aqueous solution as the extraction solvent and utilized the HSS T3 column for chromatography analysis. Through this approach, we successfully identified a total of 175 compounds in acerola powder, encompassing amino acids and peptides, polyphenols, organic acids, and various other compounds. Additionally, we measured the total phenolic content (TPC) and assessed the antioxidant activity of acerola powder. Furthermore, we analyzed the differential composition of acerola fruit and juice powder, identifying polyphenols and lipids as primary markers in fruit powder, while peptides emerged as key markers in juice powder. Notably, two specific peptides, Thr-Trp and Val-Tyr, were identified as antioxidant peptides. Overall, our study provides novel composition data for acerola powder, shedding light on its potential as a functional food ingredient. These findings contribute to the development and utilization of acerola powder in the formulation of functional food products.
Collapse
Affiliation(s)
- Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agro-Food Safety and Quality, Institute of Quality Standard & Testing Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Mi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agro-Food Safety and Quality, Institute of Quality Standard & Testing Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Wang
- Key Laboratory of Agro-Food Safety and Quality, Institute of Quality Standard & Testing Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agro-Food Safety and Quality, Institute of Quality Standard & Testing Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Ma C, Sheng N, Li Y, Zheng H, Wang Z, Zhang J. A comprehensive perspective on the disposition, metabolism, and pharmacokinetics of representative multi-components of Dengzhan Shengmai in rats with chronic cerebral hypoperfusion after oral administration. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116212. [PMID: 36739927 DOI: 10.1016/j.jep.2023.116212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Shengmai capsule (DZSM), an evidence-based Chinese medicine comprising Erigeron breviscapus (Vaniot) Hand. -Mazz., Panax ginseng C.A.Mey., Ophiopogon japonicus (Thunb.) Ker Gawl., and Schisandra chinensis (Turcz.) Baill., exhibits an excellent efficacy in treating cardio- and cerebrovascular diseases. It contains caffeoyl compounds, flavonoids, saponins, and lignans as primary active components. However, so far, the characteristics of disposition, metabolism, and pharmacokinetics of its active components remain mostly unclear. AIM OF STUDY To elucidate disposition, metabolism, and pharmacokinetics of representative components of DZSM in rats with chronic cerebral hypoperfusion (CCH) by integrating ex vivo and in situ approaches. MATERIALS AND METHODS Exposure and distribution of absorbed prototypes and their metabolites were comprehensively investigated using sensitive LC-MS/MS and high-resolution LC-Q-TOF/MS. Pharmacokinetics of representative 16 components (12 prototypes and 4 metabolites) with different chemical categories, relatively high in vivo levels, wide tissue distribution, and reported neuroprotective activities were profiled. The ex vivo everted gut sac and in situ linked-rat models were adopted. RESULTS Representative 12 prototypes including 6 caffeoyl compounds (CA, 5-CQA, 3-CQA, 4-CQA, 1,3-CQA, and 3,4-CQA), 1 flavonoid (Scu), 2 saponins (Rd and Rg2), and 3 lignans (SchA, SchB, and SolA) presented characteristic absorption, disposition, and pharmacokinetics profiles in CCH rats. The caffeoyl compounds and flavonoid were well absorbed, exhibited wide distribution, and underwent extensive intestinal metabolism, such as methylation, isomerization, and sulfoconjugation. For CA, 5-CQA, Scu, and 4 related metabolites, the enterohepatic circulation was observed and resulted in bimodal or multimodal pharmacokinetic profiles. Saponins showed relatively low systemic exposure and limited distribution. The PPD-type ginsenoside Rd exhibited longer elimination half-life and systemic circulation than the PPT-type ginsenoside Rg2. No enterohepatic circulation was observed regarding saponins, suggesting that the multimodal pharmacokinetic profile of Rd could be due to its multi-site intestinal absorption. Lignans presented a low in vivo exposure and broad distribution. They were mainly transformed into hydroxylated metabolites. Corresponding to its bimodal pharmacokinetic profile, one metabolite of lignans completed the enterohepatic cycle. CONCLUSION The disposition, metabolism, and pharmacokinetic profiles of representative active components of DZSM were comprehensively characterized and elucidated.
Collapse
Affiliation(s)
- Congyu Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Yuanyuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Hao Zheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
5
|
Fu S, Cheng R, Deng Z, Liu T. Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS. J Pharm Anal 2021; 11:709-716. [PMID: 35028175 PMCID: PMC8740115 DOI: 10.1016/j.jpha.2021.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
The Lianhua Qingwen (LHQW) capsule is a popular traditional Chinese medicine for the treatment of viral respiratory diseases. In particular, it has been recently prescribed to treat infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, due to its complex composition, little attention has been directed toward the analysis of chemical constituents present in the LHQW capsule. This study presents a reliable and comprehensive approach to characterizing the chemical constituents present in LHQW by high-performance liquid chromatography-Q Exactive-Orbitrap mass spectrometry (HPLC-Q Exactive-Orbitrap-MS) coupled with gas chromatography-mass spectrometry (GC-MS). An automated library alignment method with a high mass accuracy (within 5 ppm) was used for the rapid identification of compounds. A total of 104 compounds, consisting of alkaloids, flavonoids, phenols, phenolic acids, phenylpropanoids, quinones, terpenoids, and other phytochemicals, were successfully characterized. In addition, the fragmentation pathways and characteristic fragments of some representative compounds were elucidated. GC-MS analysis was conducted to characterize the volatile compounds present in LHQW. In total, 17 compounds were putatively characterized by comparing the acquired data with that from the NIST library. The major constituent was menthol, and all the other compounds were terpenoids. This is the first comprehensive report on the identification of the major chemical constituents present in the LHQW capsule by HPLC-Q Exactive-Orbitrap-MS, coupled with GC-MS, and the results of this study can be used for the quality control and standardization of LHQW capsules.
Collapse
Affiliation(s)
- Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rongrong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Jiang H, Liu J, Wang Y, Chen L, Liu H, Wang Z, Wang B. Screening the Q-markers of TCMs from RA rat plasma using UHPLC-QTOF/MS technique for the comprehensive evaluation of Wu-Wei-Wen-Tong Capsule. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4711. [PMID: 33764633 DOI: 10.1002/jms.4711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The appropriate selection of quality marker (Q-marker) for performing the comprehensive quality evaluation of traditional Chinese medicines (TCMs) has much more significance. Wu-Wei-Wen-Tong Capsule (WWWTC), a TCMs prescription, is mainly utilized to treat rheumatoid arthritis (RA) in China. However, the comprehensive quality control for WWWTC has not been achieved because of lacking system analysis for the Q-marker. In this study, a dual wavelength, 203 and 270 nm, was selected based on the feature of 15 Q-markers, and a reliable UHPLC-UV fingerprinting approach was established, achieving the comprehensive quality evaluation of WWWTC. First, we identified 91 prototypes in rat plasma after administering a set amount of WWWTC by using UHPLC-QTOF/MS technique and selected them as the candidate Q-markers. Next, based on the "five principles" of Q-marker selection, 15 absorbed components among them including coumarin, cinnamic acid, cinnamaldehyde, cinnamic alcohol, and 2-methoxycinnamaldehyde derived from Monarch medicine of Cmnamomi Mmulus; epimedin C, icariin, baohuoside I, and anhydroicaritin derived from Monarch medicine Epimedii Folium; germacrone, the sesquiterpene compound in Minister medicine Rhizoma Wenyujin Concisum; pachymic acid, the tetracyclic triterpenoid acids in Assistant medicine Poria; baicalin, baicalein, wogonin, and wogonoside in Guide medicine Scutellariae Radix, respectively, were seriously chosen as the Q-markers, indicating preferable pharmacological effect on RA, characterization of transitivity and traceability as well as measurable components in WWWTC. The effective and meaningful strategy displayed a unique perspective for the exploration of Q-markers in the quality evaluation and further ensured efficacy and safety of the TCMs.
Collapse
Affiliation(s)
- Hui Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine and Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development Laboratory in Anhui Province, Hefei, China
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine and Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development Laboratory in Anhui Province, Hefei, China
| | - Yanling Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Leijing Chen
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Liu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Zhen Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine and Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development Laboratory in Anhui Province, Hefei, China
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Zhang FX, Li ZT, Yang X, Xie ZN, Chen MH, Yao ZH, Chen JX, Yao XS, Dai Y. Discovery of anti-flu substances and mechanism of Shuang-Huang-Lian water extract based on serum pharmaco-chemistry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113660. [PMID: 33276058 DOI: 10.1016/j.jep.2020.113660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuang-Huang-Lian preparation has captured wide attention since its clinical applications for the successful treatment of upper respiratory tract infection. However, its functional basis under actual therapeutic dose in vivo was still unrevealed. AIM OF THE STUDY This study aimed to reveal the anti-flu substances and mechanism of Shuang-Huang-Lian water extract (SHL) on H1N1 infected mouse model by a strategy based on serum pharmaco-chemistry under actual therapeutic dose and network pharmacology. MATERIALS AND METHODS H1N1 infected mouse model was employed for evaluation of the anti-flu effects of SHL. A simultaneous quantification method was developed by UPLC-TQ-XS MS coupled switch-ions mode and applied to characterize the pharmacokinetics of the multiple components of SHL under actual therapeutic dose. The potential active ingredients were screened out based on their pharmacokinetic parameters. And then, a compound mixture of these active candidates was re-evaluated for the anti-flu activity on H1N1 infected mouse model. Furthermore, the anti-flu mechanism of SHL was also predicted by network pharmacology coupled with the experimental result. RESULTS SHL significantly increased the survival rate and prolonged survival days on H1N1 infected mice at a dosage of 20 g crude drug/kg/day by reversing the increased lung index, down-regulating the inflammatory cytokines (TNF-α, IL-1β, IL-6) and inhibiting the release of IFN-β in bronchoalveolar lavage fluids (BALF). Concomitantly, the pharmacokinetic parameters of fourteen quantified and twenty-one semi-quantified constituents of SHL were characterized. And then, five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin), which displayed satisfactory pharmacokinetic features, were considered as potential active ingredients. Thus, a mixture of these five ingredients was administered to H1N1-infected mice at a dose of 4.24 mg/kg/day. As a result, the therapeutical effects of the mixture were similar to SHL in terms of survival rate, lung index and the release of cytokines (TNF-α, IL-1β and IL-6) in BALF. Moreover, network pharmacology analysis indicated that the TNF-signal pathways might play a role in the anti-flu mechanism of SHL. CONCLUSIONS A mixture of five compounds (baicalin, sweroside, chlorogenic acid, forsythoside A and phillyrin) were the anti-flu substances of SHL. The strategy based on serum pharmaco-chemistry under actual therapeutic dose provided a new sight on exploring in vivo effective substances of TCM.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China; Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Zi-Ting Li
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Zhi-Neng Xie
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Ming-Hao Chen
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Jian-Xin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510632, China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
8
|
Kundisová I, Juan ME, Planas JM. Simultaneous Determination of Phenolic Compounds in Plasma by LC-ESI-MS/MS and Their Bioavailability after the Ingestion of Table Olives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10213-10222. [PMID: 32833444 DOI: 10.1021/acs.jafc.0c04036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The role attributed to polyphenols on human health needs to be correlated with their plasmatic concentrations after food consumption. Then, a method based on liquid-liquid extraction followed by highly sensitive LC-ESI-MS/MS analysis was developed to determinate 16 phenolic compounds in plasma. Validation gave appropriate recovery, matrix effect (80%-120%), linear correlation (R2 > 0.995), precision (<15%), LOQ (0.04-2.51 nM), and short chromatographic run. The method was verified after the administration of Arbequina table olives to rats. A single dose of destoned olives was given by gavage, and plasmatic concentrations of polyphenols were analyzed at 30 min. Interestingly, the profile found in plasma greatly differed from that of the olives. Plasmatic concentrations, from highest to lowest, were salidroside, p-coumaric acid, hydroxytyrosol, verbascoside, tyrosol, luteolin, and luteolin-7-O-glucoside. In conclusion, a simple and robust method was developed, enabling the identification and quantification of unaltered polyphenols in plasma after olives consumption, thus demonstrating its suitability for pharmacokinetics studies.
Collapse
Affiliation(s)
- Ivana Kundisová
- Departament de Bioquı́mica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - M Emília Juan
- Departament de Bioquı́mica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Joana M Planas
- Departament de Bioquı́mica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, Xiao J, Lu B. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40:2605-2649. [PMID: 32779240 DOI: 10.1002/med.21717] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hui Cao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Pharmacognosy Group, Uppsala University, Uppsala, Sweden.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
10
|
Cao Y, Chai C, Chang A, Xu X, Song Q, Liu W, Li J, Song Y, Tu P. Optimal collision energy is an eligible molecular descriptor to boost structural annotation: An application for chlorogenic acid derivatives-focused chemical profiling. J Chromatogr A 2020; 1609:460515. [DOI: 10.1016/j.chroma.2019.460515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
|
11
|
Recent advances of modern sample preparation techniques for traditional Chinese medicines. J Chromatogr A 2019; 1606:460377. [DOI: 10.1016/j.chroma.2019.460377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
|
12
|
Ning ZW, Zhai LX, Peng J, Zhao L, Huang T, Lin CY, Chen WH, Luo Z, Xiao HT, Bian ZX. Simultaneous UPLC-TQ-MS/MS determination of six active components in rat plasma: application in the pharmacokinetic study of Cyclocarya paliurus leaves. Chin Med 2019; 14:28. [PMID: 31406501 PMCID: PMC6685155 DOI: 10.1186/s13020-019-0248-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cyclocarya paliurus (Batal.) Ijinskaja (CP) is a monotypic genus plant, also called sweet tea tree that belongs to the Juglandaceae family, which is mainly distributed in the subtropical highlands in China. Our previous work has verified that CP leaves exhibit a potent hyperglycemic effect by inhibiting pancreatic β cell apoptosis through the regulation of MPAK and Akt signaling pathways. However, the components that contribute to this potential health benefit remain undiscovered. Method A sensitive, reliable, and validated ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC–TQ-MS/MS) method was developed to simultaneously determine the presence of six active components (neochlorogenic acid, chlorogenic acid, quercetin-3-O-glucuronide, kaempferol-3-O-rhamnoside, quercetin, and kaempferol) in rat plasma after a single oral administration (in a dosage of 10.5 g/kg) of an extract of CP leaves to rats. The separation was performed on a Waters ACQUITY BEH C18 column (50 mm × 2.1 mm, 1.7 μm). The detection was conducted by multiple reaction monitoring (MRM) in negative ionization mode. The two highest abundant MRM transitions without interference were optimized for each analyte. Acetonitrile and formic acid aqueous solution (0.1%) was used as the mobile phase at a flow rate of 0.3 ml/min. Result The precision, accuracy, and recovery all satisfied the criteria of international guidance (Bioanalytical Method Validation Guidance for Industry, Food and Drug Administration), and the analytes were stable in plasma for all tested conditions. The main pharmacokinetic parameters were calculated by plasma concentration versus time profiles using the pharmacokinetics program. Conclusion The pharmacokinetic parameters of each compound can facilitate future clinical studies.
Collapse
Affiliation(s)
- Zi-Wan Ning
- 1Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road 7, Kowloon, Hong Kong SAR China
| | - Li-Xiang Zhai
- 1Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road 7, Kowloon, Hong Kong SAR China
| | - Jiao Peng
- 2School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060 China.,3Department of Pharmacy, Peking University Shenzhen Hospital, 518035 Shenzhen, China
| | - Ling Zhao
- 1Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road 7, Kowloon, Hong Kong SAR China
| | - Tao Huang
- 1Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road 7, Kowloon, Hong Kong SAR China
| | - Cheng-Yuan Lin
- 1Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road 7, Kowloon, Hong Kong SAR China
| | - Wei-Hong Chen
- Infinite Chinese Herbal Immunity Research Center, Tianhe District, Guangzhou, 510000 China
| | - Zhen Luo
- Infinite Chinese Herbal Immunity Research Center, Tianhe District, Guangzhou, 510000 China.,5School of Food Science and Engineering, South China University of Technology, Panyu District, Guangzhou, 510006 China
| | - Hai-Tao Xiao
- 2School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zhao-Xiang Bian
- 1Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road 7, Kowloon, Hong Kong SAR China
| |
Collapse
|
13
|
Li L, Zhang X, Bu F, Chen N, Zhang H, Gu J. Simultaneous determination of eight constituents in rat plasma by HPLC-MS/MS and its application to a pharmacokinetic study after oral administration of Shejin-liyan Granule. Biomed Chromatogr 2019; 33:e4648. [PMID: 31301083 DOI: 10.1002/bmc.4648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Shejin-liyan Granule (SJLY) is an effective traditional Chinese prescription medicine for the treatment of acute pharyngitis. In this study, a selective and convenient HPLC-MS/MS method was developed and validated for the simultaneous determination of the following eight constituents in the plasma: galuteolin, tectoridin, tectorigenin, iridin, irigenin, irisflorentin, arctiin and arctigenin. The plasma samples were prepared by a protein precipitation method using acetonitrile, and analysis was carried out on a C18 column using a gradient elution at a flow rate of 0.3 mL/min. The concentration of these analytes was quantified in the positive ion and multiple reaction monitoring modes. The method was validated for selectivity, linearity, accuracy, precision, recovery, matrix effect and sample stability. The obtained results were well within the acceptable limits. The established method was then successfully applied to study the pharmacokinetic profiles of the multiple constituents of Shejin-liyan Granule. According to the area under the curve and maximum concentration data, tectorigenin exhibited the highest exposure followed by arctigenin, irigenin, arctiin and irisflorentin. The concentrations of galuteolin, tectoridin and iridin were low, and a complete concentration-time curve could not be plotted. This research provides useful information for understanding the pharmacokinetics of Shejin-liyan Granule.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xiuwen Zhang
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Fengjiao Bu
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Nianzu Chen
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Hongmei Zhang
- Jinan Center for Food and Drug Control, Jinan, Shandong Province, China
| | - Jifeng Gu
- Department of Pharmacy, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zhao XQ, Guo S, Yan H, Lu YY, Zhang F, Qian DW, Wang HQ, Duan JA. Analysis of phenolic acids and flavonoids in leaves of Lycium barbarum from different habitats by ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Biomed Chromatogr 2019; 33:e4552. [PMID: 30985939 DOI: 10.1002/bmc.4552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
Abstract
The leaves of Lycium barbarum (LLB) have been utilized as crude drugs and functional tea for human health in China and Southeast Asia for thousands of years. To control its quality, a rapid and sensitive ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry method was established and validated for the first time for simultaneous determination of 10 phenolic acids and flavonoids (including neochlorogenic acid, protocatechuic aldehyde, p-hydroxybenzoic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, p-coumaric acid, ferulic acid, rutin and kaempferol-3-O-rutinoside) in LLB. The separation was performed on an Acquity UPLC C18 chromatographic column (100 × 2.1 mm internal diameter, 1.7 μm particle size) with 0.1% formic acid in water (A)-acetonitrile (B) as the mobile phase under gradient elution. Multiple reaction monitoring mode was adopted to simultaneously monitor the target components. The developed method was fully validated in terms of linearity (r2 ≥ 0.9860), precision (RSD ≤ 6.58%), repeatability (RSD ≤ 6.60%), stability (RSD ≤ 6.17%), recovery (95.56-108.06%, RSD ≤ 4.64%) and limit of detection (0.021-0.664 ng/mL) and limit of quantitation (0.069-2.210 ng/mL), and then successfully applied to evaluate the quality of 64 batches of LLB collected from 41 producing areas in four different provinces of China. The results showed that the LLB, especially collected from Inner Mongolia regions, were rich in the phenolic acids and flavonoids. Rutin, kaempferol-3-O-rutinoside and chlorogenic acid are the predominant compounds contained in LLB. The above findings will provide helpful information for the effective utilization of LLB.
Collapse
Affiliation(s)
- Xue-Qin Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - You-Yuan Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han-Qing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Sun X, Lan J, Tong R, Zhang H, Sun S, Xiong A, Wang Z, Yang L. An integrative investigation on the efficacy of Plantaginis semen based on UPLC-QTOF-MS metabolomics approach in hyperlipidemic mice. Biomed Pharmacother 2019; 115:108907. [PMID: 31071507 DOI: 10.1016/j.biopha.2019.108907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Plantaginis semen, the dried mature seed of Plantago asiatica L. or Plantago deprdssa Willd., has a prominent effect on the treatment of obesity, type 2 diabetes and lipid disorders, however, its clinical application is limited due to inadequate in-depth mechanism exploration and incomplete discussion of action targets of its in vivo. Therefore, an untargeted metabolomics approach was firstly applied to study the serum metabolic differences in mice. Metabolomics analysis was performed using ultra performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) together with multivariate statistical data analysis. The results showed that Plantaginis semen can mainly improve blood lipids, some degree in blood glucose and insulin levels in high-fat mice, in addition, the phenotype of liver and fat stained sections demonstrated remarkable results. A total of 22 metabolites involved in arachidonic acid, glycerophospholipid, glycosphingolipid, linoleate, Omega-3 fatty acid, phosphatidylinositol phosphate and tyrosine metabolisms were identified. In further, it was found that the possible mechanisms of Plantaginis semen on hyperlipidemic mice lied in the biosynthesis of thyroxine, biological effects of enzymes of phospholipase A2 activity, glucosylceramide synthase and inositol essential enzyme 1α, genes expressions of fatty acid metabolism and inflammation. Serum metabolomics revealed that Plantaginis semen could cure the organism disease via regulating multiple metabolic pathways which will be helpful for understanding the mechanism of this herb and providing references for better applications of it in clinic, even researches on other TCMs.
Collapse
Affiliation(s)
- Xiaomeng Sun
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiping Lan
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Renchao Tong
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haoyue Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuai Sun
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
16
|
Yao H, Huang X, Xie Y, Huang X, Ruan Y, Lin X, Huang L, Shi P. Identification of Pharmacokinetic Markers for Guanxin Danshen Drop Pills in Rats by Combination of Pharmacokinetics, Systems Pharmacology, and Pharmacodynamic Assays. Front Pharmacol 2018; 9:1493. [PMID: 30622470 PMCID: PMC6308302 DOI: 10.3389/fphar.2018.01493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
This paper reported a feasibility study strategy of identifying pharmacokinetic (PK) markers for a cardiovascular herbal medicine, Guanxin Danshen drop pill (GDDP). First, quantification analysis revealed the constituent composition in the preparation by high-performance liquid chromatography (HPLC). Subsequently, physiochemical property calculation predicted the solubility and intestinal permeability of the constituents in the preparation. Furthermore, HPLC-MS analysis ascertained the absorbable ingredients and their PK properties in rat plasma. The main effective substances from the ingredients absorbed into blood and their cardiovascular effects were also predicted by systems pharmacology study, and were further confirmed by in vivo protective effects on isoprenaline-induced myocardial injury in mice. Finally, the ingredients with high content, representative structure feature, favorable PK properties, high relevant degree to myocardial ischemia (MI) issues, and validated therapeutic effects were considered as the PK markers for the preparation. Ginsenosides Rg1, Rb1, and tanshinone (TS) IIA were identified originally as PK markers for representing PK properties of GDDP. In addition, integrated PK studies were carried out according to previous reports, viz. drug concentration sum method and the AUC weighting method, to understand the in vivo process of GDDP comprehensively. The present study maybe provide a reference approach to identify PK markers for cardiovascular herbal medicines.
Collapse
Affiliation(s)
- Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaomei Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yunjiao Xie
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xuliang Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yijun Ruan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, Bee Science College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Qiao X, Wang Q, Wang S, Kuang Y, Li K, Song W, Ye M. A 42-Markers Pharmacokinetic Study Reveals Interactions of Berberine and Glycyrrhizic Acid in the Anti-diabetic Chinese Medicine Formula Gegen-Qinlian Decoction. Front Pharmacol 2018; 9:622. [PMID: 29971002 PMCID: PMC6018403 DOI: 10.3389/fphar.2018.00622] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
Herbal medicines are commonly used as compound formulas in clinical practice to achieve optimal therapeutic effects. However, the combination mechanisms usually lack solid evidence. In this study, we report synergistic interactions through altering pharmacokinetics in Gegen-Qinlian Decoction (GQD), an anti-diabetic Chinese medicine formula. A multi-component pharmacokinetic study of GQD and the single herbs was conducted by simultaneously monitoring 42 major bioactive compounds (markers) in rats plasma using LC/MS/MS within 30 min. GQD could remarkably improve the plasma concentrations of berberine (BER) and other alkaloids in Huang-Lian by at least 30%, and glycyrrhizic acid (GLY) from Gan-Cao played a major role. A Caco-2 cell monolayer test indicated that GLY improved the permeability of BER by inhibiting P-glycoprotein. Although GLY alone did not show observable effects, the co-administration of GLY (ig, 50 or 80 mg/kg) could improve the anti-diabetic effects of berberine (ig, 50 mg/kg) in db/db mice in a dose-dependent manner. The blood glucose decreased by 46.9%, whereas the insulin level increased by 40.8% compared to the control group. This is one of the most systematic studies on the pharmacokinetics of Chinese medicine formulas, and the results demonstrate the significance of pharmacokinetic study in elucidating the combination mechanisms of compound formulas.
Collapse
Affiliation(s)
- Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shuang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Kai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wei Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Qian W, Kang A, Peng L, Xie T, Ji J, Zhou W, Shan J, Di L. Gas chromatography-mass spectrometry based plasma metabolomics of H1N1-induced inflammation in mice and intervention with Flos Lonicerae Japonica-Fructus Forsythiae herb pair. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:122-130. [PMID: 29890405 DOI: 10.1016/j.jchromb.2018.05.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/27/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
Flos Lonicerae Japonica-Fructus Forsythiae herb pair (Yin-Qiao in Chinese, YQ), is used clinically for the treatment of viral pneumonia due to its heat-clearing and detoxifying functions. In the present work, the effect of YQ in H1N1-induced inflammation in mice was investigated by metabolomics based on GC-MS. Body weight and histological results were used to assess the lung injury, while the levels of IL-6 and TNF-α in plasma were used to evaluate the extent of inflammation. The acquired GC-MS data were further subjected to multivariate data analysis, and the significantly altered metabolites identified. After statistical and pathway analysis, 17 significantly altered metabolites and 3 possible metabolic pathways were found in plasma between normal and H1N1-induced pneumonia mice, while 17 significant differential metabolites were identified when YQ treatment group was compared with model group. This work indicates that oral administration of YQ could protect mice from H1N1-induced inflammation partially by ameliorating the associated metabolic disturbances.
Collapse
Affiliation(s)
- Wenjuan Qian
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - An Kang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Linxiu Peng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wei Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Medical Metabolomics Center, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Liuqing Di
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
19
|
Xiong Z, Wang Y, Lang L, Ma S, Zhao L, Xiao W, Wang Y. Tissue metabolomic profiling to reveal the therapeutic mechanism of reduning injection on LPS-induced acute lung injury rats. RSC Adv 2018; 8:10023-10031. [PMID: 35540831 PMCID: PMC9078858 DOI: 10.1039/c7ra13123b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) is a severe respiratory disease. To date, no medical interventions have been proven effective in improving the outcome. Reduning injection (RDN) showed a potential effect in the therapy of ALI. However, seldom does research concern the holistic pharmacological mechanisms of RDN on ALI. A metabolomic strategy, based on two consecutive extractions of the lung tissue, has been developed to investigate therapeutic mechanisms of RDN on ALI model rat. The extraction procedure was an aqueous extraction with methanol-water followed by organic extraction with dichloromethane-methanol. According to the lipophilicity of extracts, aqueous extracts were analyzed on the T3 column and organic extracts on the C18 column. Partial least-squares discriminant analysis was utilized to identify differences in metabolic profiles of rats. A total of 14 potential biomarkers in lung tissue were identified, which mainly related to phospholipid metabolism, sphingolipid metabolism, nucleotide metabolism and energy metabolism. The combined analytical method provides complementary metabolomics information for exploring the action mechanism of RDN against ALI. And the obtained results indicate metabolomics is a promising tool for understanding the holism and synergism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Yanmin Wang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Lang Lang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Shuping Ma
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| | - Wei Xiao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd 58 Haichang South Road, Xinpu District Lianyungang 222001 China
| | - Yanjuan Wang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986289 +86-24-23986290
| |
Collapse
|
20
|
Shi P, Lin X, Yao H. A comprehensive review of recent studies on pharmacokinetics of traditional Chinese medicines (2014–2017) and perspectives. Drug Metab Rev 2017; 50:161-192. [DOI: 10.1080/03602532.2017.1417424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, Bee Science College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Zan T, Piao L, Wei Y, Gu Y, Liu B, Jiang D. Simultaneous determination and pharmacokinetic study of three flavonoid glycosides in rat plasma by LC-MS/MS after oral administration of Rubus chingii Hu extract. Biomed Chromatogr 2017; 32. [PMID: 28976589 DOI: 10.1002/bmc.4106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/24/2017] [Accepted: 09/26/2017] [Indexed: 11/11/2022]
Abstract
A simple and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of isoquercitrin, kaempferol-3-O-rutinoside and tiliroside in rat plasma. Plasma samples were deproteinized with methanol and separated on a Hypersil Gold C18 column (2.1 × 50 mm, i.d., 3.0 μm) using gradient elution with the mobile phase of water and methanol at a flow rate of 0.4 mL/min. Mass spectrometric detection was performed with negative ion electrospray ionization in selected reaction monitoring mode. All analytes showed good linearity over their investigated concentration ranges (r2 > 0.99). The lower limit of quantification was 1.0 ng/mL for isoquercitrin and 2.0 ng/mL for kaempferol-3-O-rutinoside and tiliroside, respectively. Intra- and inter-day precisions were <8.2% and accuracy ranged from -11.5 to 9.7%. The mean extraction recoveries of analytes and IS from rat plasma were >80.4%. The assay was successfully applied to investigate the pharmacokinetic study of the three ingredients after oral administration of Rubus chingii Hu to rats.
Collapse
Affiliation(s)
- Tao Zan
- Department of Critical Care Medicine, the First Hospital of Jilin University, Changchun, China
| | - Li Piao
- Department of Gynecology, the First Hospital of Jilin University, Changchun, China
| | - Yuntao Wei
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yue Gu
- Department of Hepatopancreatobiliary Surgery, the First Hospital of Jilin University, Changchun, China
| | - Baohua Liu
- Department of Emergency, the First Hospital of Jilin University, Changchun, China
| | - Daqing Jiang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
22
|
Zhou W, Yin A, Shan J, Wang S, Cai B, Di L. Study on the Rationality for Antiviral Activity of Flos Lonicerae Japonicae-Fructus Forsythiae Herb Chito-Oligosaccharide via Integral Pharmacokinetics. Molecules 2017; 22:E654. [PMID: 28425933 PMCID: PMC6154603 DOI: 10.3390/molecules22040654] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
In the present study, the rationality for the antiviral effect (H1N1 virus) of Flos Lonicerae Japonicae (FLJ, named JinYinHua)-Fructus forsythiae (FF, named LianQiao) herb couple preparations improved by chito-oligosaccharide (COS) was investigated. We found that the improvement of antiviral activity for four preparations attributed to the enhancement of bioavailability for the FLJ-FF herb couple in vivo, and that caffeic acid derivatives are the most important type of components for antiviral activity. The anti-Influenza virus activity-half maximal inhibitory concentration (IC50), not area under concentration (AUC) was considered as the weighting factor for integrating the pharmacokinetics of caffeic acid derivatives. It was found that the integral absorption, both in vitro and in vivo, especially that in Shuang-Huang-Lian, can be improved significantly by COS, an absorption enhancer based on tight junction. The results indicated that the antiviral activity in four preparations improved by COS was mainly attributed to the integral absorption enhancement of caffeic acid derivatives.
Collapse
Affiliation(s)
- Wei Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
- Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing 210023, China.
- Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Ailing Yin
- Department of Pharmacy, Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing 210021, China.
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing 210021, China.
| | - Baochang Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
- Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing 210023, China.
| |
Collapse
|
23
|
Simultaneous Determination of Three Furanocoumarins by UPLC/MS/MS: Application to Pharmacokinetic Study of Angelica dahurica Radix after Oral Administration to Normal and Experimental Colitis-Induced Rats. Molecules 2017; 22:molecules22030416. [PMID: 28272365 PMCID: PMC6155430 DOI: 10.3390/molecules22030416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/19/2022] Open
Abstract
In traditional oriental medicine, Angelica dahurica Radix (ADR) is used in the treatment of gastrointestinal, respiratory, neuromuscular, and dermal disorders. We evaluated the pharmacokinetic profiles of oxypeucedanin, imperatorin, and isoimperatorin, major active ingredients of ADR, in normal and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rats. A rapid, sensitive, and validated UPLC/MS/MS method was established for evaluating the pharmacokinetics of three furanocoumarins. After oral administration of ADR (0.5 and 1.0 g/kg), blood samples were collected periodically from the tail vein. In colitis rats, the time to reach the peak concentration (Tmax) of imperatorin and isoimperatorin was significantly delayed (p < 0.05). Lower peak plasma concentrations (Cmax) and longer mean residence times for all furanocoumarins were also observed (p < 0.05) compared with normal rats. There was no significant difference in the area under the plasma concentration-time curve or elimination half-lives. Thus, the delayed Tmax and decreased Cmax, with no influence on the elimination half-life, could be colitis-related changes in the drug-absorption phase. Therefore, the prescription and use of ADR in colitis patients should receive more attention.
Collapse
|
24
|
Wang J, Cao G, Wang H, Ye H, Zhong Y, Wang G, Hao H. Characterization of isochlorogenic acid A metabolites in rats using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2017; 31. [PMID: 28052484 DOI: 10.1002/bmc.3927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/10/2016] [Accepted: 01/01/2017] [Indexed: 12/17/2022]
Abstract
Isochlorogenic acid A is widely present in fruits, vegetables and herbal medicines, and is characterized by anti-inflammatory, hepatoprotective and antiviral properties. However, little is known about its metabolic fate and pharmacokinetic properties. This study is thus designed to investigate the metabolic fate of isochlorogenic acid A. An analytical method based on high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF MS) was established to characterize the metabolites of isochlorogenic acid A in the plasma, urine and feces of rats. A total of 32 metabolites were identified. The metabolic pathways mainly include hydrolyzation, dehydroxylation, hydrogenation and conjugation with methyl, glucuronic acid, glycine, sulfate, glutathione and cysteine. Moreover, the pharmacokinetic profiles of all the circulating metabolites were investigated. M11 resulting from hydrolyzation, dehydroxylation and hydrogenation was the dominant circulating metabolite after the intragastric administration of isochlorogenic acid A. The results obtained will be useful for further study of elucidating potential bioactive metabolites which can provide better explanation of the pharmacological and/or toxicological effects of this compound.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guoxiu Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Ye
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yunxi Zhong
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Peng H, Zhang L, Cai Z, Wu Y, Chen N, Gu C, Chen Y, Lin X, Xia X, Liu A. Pharmacokinetics study of isorhamnetin in rat plasma by a sensitive electrochemical sensor based on reduced graphene oxide. RSC Adv 2017. [DOI: 10.1039/c7ra03632a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sensitive voltammetric method was developed for the determination of isorhamnetin and its pharmacokinetics investigation.
Collapse
|
26
|
Yang Z, Zhang W, Li X, Shan B, Liu J, Deng W. Determination of sophoraflavanone G and kurarinone in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study. J Sep Sci 2016; 39:4344-4353. [PMID: 27808456 DOI: 10.1002/jssc.201600681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 11/10/2022]
Abstract
This study aimed to develop and validate a simple and sensitive ultra high performance liquid chromatography tandem mass spectrometry method for the simultaneous determination of sophoraflavanone G and kurarinone in rat plasma by using rutin as the internal standard. Then, the developed method was applied to investigate the pharmacokinetics of sophoraflavanone G and kurarinone in rats after dosing the flavonoid extract from Sophora flavescens. Plasma samples were processed using a liquid-liquid extraction procedure with ethyl acetate. The analysis was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring with an electrospray ionization source in negative ionization mode. Quantitative ion transitions of m/z 423.2→161.2, 437.2→161.1, and 609.3→300.3 were monitored for sophoraflavanone G, kurarinone, and rutin, respectively. The calibration curves of the two analytes exhibited good linearity (r2 >0.9923) over the range of 0.1-200 ng/mL for sophoraflavanone G and 0.1-1000 ng/mL for kurarinone. Relative standard deviations were less than 13.2% for the intra- and inter-day precisions and no more than 12.6% for the recovery, showing good precision and satisfactory accuracy of the developed method. The validated method was successfully applied to the pharmacokinetic study of sophoraflavanone G and kurarinone after a single intravenous (25 mg/kg) and oral (500 mg/kg) administration of the flavonoid extract from S. flavescens, and the absolute bioavailability for sophoraflavanone G and kurarinone was about 36 and 17%, respectively.
Collapse
Affiliation(s)
- Zhixin Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenjun Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Xia Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baisong Shan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiajia Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weizhe Deng
- The 211st hospital of the People's Liberation Army, Harbin, China
| |
Collapse
|
27
|
Wu YT, Cai MT, Chang CW, Yen CC, Hsu MC. Bioanalytical Method Development Using Liquid Chromatography with Amperometric Detection for the Pharmacokinetic Evaluation of Forsythiaside in Rats. Molecules 2016; 21:molecules21101384. [PMID: 27754467 PMCID: PMC6274433 DOI: 10.3390/molecules21101384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022] Open
Abstract
An analytical method entailing high-performance liquid chromatography coupled with electrochemical detection was developed for determining forsythiaside (FTS) in rat plasma. Rat plasma samples were prepared through efficient trichloroacetic acid deproteination. FTS and the internal standard were chromatographically separated on a reversed-phase core-shell silica C18 column (100 mm × 2.1 mm, i.d. 2.6 μm), with a mobile phase consisting of an acetonitrile-0.05-M phosphate solution (11.8:88.2, v/v), at a flow rate of 400 μL/min. The calibration curve, with r² > 0.999, was linear in the 20-1000 ng/mL range. The intra- and interday precision were less than 9.0%, and the accuracy ranged from 94.5% to 106.5% for FTS. The results indicated that the newly developed HPLC-EC method is more sensitive than previous reported methods using UV detection, and this new analytical method is applied successfully for the pharmacokinetic study of FTS. The hydrogel delivery system can efficiently improve bioavailability and mean residual time for FTS, as evidenced by the 2.5- and 6.3-fold increase of the area under the curve and the extension of the half-life, respectively.
Collapse
Affiliation(s)
- Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Ting Cai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chih-Wei Chang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ching-Chi Yen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
28
|
Zhang Q, Xiao C, Wang W, Qian M, Xu J, Yang H. Chromatography column comparison and rapid pretreatment for the simultaneous analysis of amantadine, rimantadine, acyclovir, ribavirin, and moroxydine in chicken muscle by ultra high performance liquid chromatography and tandem mass spectrometry. J Sep Sci 2016; 39:3998-4010. [DOI: 10.1002/jssc.201600490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Qiaoyan Zhang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Chaogeng Xiao
- Institute of Food Sciences; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Wei Wang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Mingrong Qian
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Jie Xu
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang China
| |
Collapse
|
29
|
Wei Y, Guo D, Hou X, Jiang D. WITHDRAWN: Simultaneous determination of astragalin, isoquercitrin, kaempferol-3-O-rutinoside and tiliroside in rat plasma by LC–MS/MS and its application to a pharmacokinetic study after oral administration of Rubus chingii Hu extract. J Chromatogr B Analyt Technol Biomed Life Sci 2016. [DOI: 10.1016/j.jchromb.2016.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Cheng TF, Jia YR, Zuo Z, Dong X, Zhou P, Li P, Li F. Quality assessment of traditional Chinese medicine herb couple by high-performance liquid chromatography and mass spectrometry combined with chemometrics. J Sep Sci 2016; 39:1223-31. [DOI: 10.1002/jssc.201501259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/22/2015] [Accepted: 01/15/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Tao-fang Cheng
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
| | - Yu-ran Jia
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
| | - Zheng Zuo
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
| | - Xin Dong
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
| | - Ping Zhou
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
| | - Fei Li
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
| |
Collapse
|
31
|
Cao Z, Ding Y, Ke Z, Cao L, Li N, Ding G, Wang Z, Xiao W. Luteoloside Acts as 3C Protease Inhibitor of Enterovirus 71 In Vitro. PLoS One 2016; 11:e0148693. [PMID: 26870944 PMCID: PMC4752227 DOI: 10.1371/journal.pone.0148693] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Luteoloside is a member of the flavonoids family that exhibits several bioactivities including anti-microbial and anti-cancer activities. However, the antiviral activity of luteoloside against enterovirus 71 (EV71) and the potential mechanism(s) responsible for this effect remain unknown. In this study, the antiviral potency of luteoloside against EV71 and its inhibitory effects on 3C protease activity were evaluated. First, we investigated the cytotoxicity of luteoloside against rhabdomyosarcoma (RD) cells, which was the cell line selected for an in vitro infection model. In a subsequent antiviral assay, the cytopathic effect of EV71 was significantly and dose-dependently relieved by the administration of luteoloside (EC50 = 0.43 mM, selection index = 5.3). Using a plaque reduction assay, we administered luteoloside at various time points and found that the compound reduced EV71 viability in RD cells rather than increasing defensive mobilization or viral absorption. Moreover, biochemical studies focused on VP1 (a key structural protein of EV71) mRNA transcript and protein levels also revealed the inhibitory effects of luteoloside on the EV71 viral yield. Finally, we performed inhibition assays using luteoloside to evaluate its effect on recombinant 3C protease activity. Our results demonstrated that luteoloside blocked 3C protease enzymatic activity in a dose-dependent manner (IC50 = 0.36 mM) that was similar to the effect of rutin, which is a well-known C3 protease inhibitor. Collectively, the results from this study indicate that luteoloside can block 3C protease activity and subsequently inhibit EV71 production in vitro.
Collapse
Affiliation(s)
- Zeyu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Yue Ding
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Zhipeng Ke
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Na Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Gang Ding
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| |
Collapse
|
32
|
Zhou W, Cai B, Shan J, Wang S, Di L. Discovery and Current Status of Evaluation System of Bioavailability and Related Pharmaceutical Technologies for Traditional Chinese Medicines--Flos Lonicerae Japonicae--Fructus Forsythiae Herb Couples as an Example. Int J Mol Sci 2015; 16:28812-40. [PMID: 26690115 PMCID: PMC4691079 DOI: 10.3390/ijms161226132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have attracted extensive interest throughout the world due to their long history of health protection and disease control, and the internalization of TCM preparations or patented drugs has been considered a wind vane in the process of TCM modernization. However, multi-target effects, caused by multiple components in TCMs, hinder not only the construction of the quality evaluation system (bioavailability), but also the application of pharmaceutical technologies, which results in the poor efficacy in clinical practice. This review describes the methods in the literature as well as in our thoughts about how to identify the marker components, establish the evaluation system of bioavailability, and improve the bioavailability in TCM preparations. We expect that the current study will be positive and informative.
Collapse
Affiliation(s)
- Wei Zhou
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
- Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing 210023, China.
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Baochang Cai
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Nanjing Haichang Chinese Medicine Group Co., Ltd., Nanjing 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liuqing Di
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
- Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing 210023, China.
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
33
|
Zhou W, Shan J, Wang S, Cai B, Di L. Transepithelial transport of phenolic acids in Flos Lonicerae Japonicae in intestinal Caco-2 cell monolayers. Food Funct 2015. [DOI: 10.1039/c5fo00358j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intestinal absorptions of phenolic acids as well as those inFlos Lonicerae Japonicaewere all mainly restricted by TJs.
Collapse
Affiliation(s)
- Wei Zhou
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- People's Republic of China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease
- Institute of Pediatrics
- Nanjing University of Chinese Medicine
- Nanjing 210046
- PR China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease
- Institute of Pediatrics
- Nanjing University of Chinese Medicine
- Nanjing 210046
- PR China
| | - Baochang Cai
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- People's Republic of China
| | - Liuqing Di
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- People's Republic of China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM
| |
Collapse
|
34
|
Lin L, Lin H, Zhang M, Dong X, Yin X, Qu C, Ni J. Types, principle, and characteristics of tandem high-resolution mass spectrometry and its applications. RSC Adv 2015. [DOI: 10.1039/c5ra22856e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We review the principle and functional characteristics of different types or models for THRMS and provide a brief description of its applications in medical research, food safety, and environmental protection fields.
Collapse
Affiliation(s)
- Longfei Lin
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Hongmei Lin
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Miao Zhang
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Xiaoxv Dong
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Xingbin Yin
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Changhai Qu
- Modern Research Center for TCM
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Jian Ni
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| |
Collapse
|