1
|
Song Y, Li W, Ba M, Zhang Y, Liu H, Xu X, Su H, Cai Z, Liu X, Sun T. Ester-functionalized pillar[6]arene as the gas chromatographic stationary phase with high-resolution performance towards the challenging isomers of xylenes, diethylbenzenes, and ethyltoluenes. Anal Bioanal Chem 2024; 416:1321-1335. [PMID: 38231255 DOI: 10.1007/s00216-024-05146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
This work presents the first example of the utilization of polar ester group functionalized pillar[6]arene (P6A-C10-OAc) as a stationary phase for capillary gas chromatographic (GC) separations. The statically coated P6A-C10-OAc column showed a high column efficiency of 5393 plates/m and moderate polar nature. Its resolving capability and retention behaviors were investigated for a mixture of 20 analytes and more than a dozen isomers from apolar to polar in nature. As evidenced, the P6A-C10-OAc column achieved high-resolution separations of all the analytes and good inertness. Importantly, it exhibited distinctly advantageous performance for high resolution of the challenging isomers of xylenes, diethylbenzenes, ethyltoluenes, and halobenzenes over the commercial HP-5 (5% phenyl dimethyl polysiloxane), HP-35 (25% phenyl dimethyl polysiloxane), and PEG-20M (polyethylene glycol) columns.
Collapse
Affiliation(s)
- Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Yuanyuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Haixin Liu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Xiang Xu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China
| | - Haoyu Su
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, People's Republic of China.
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China.
| |
Collapse
|
2
|
Yusuf K, Shekhah O, Alharbi S, Alothman AA, Alghamdi AS, Aljohani RM, ALOthman ZA, Eddaoudi M. A promising sensing platform for explosive markers: Zeolite-like metal-organic framework based monolithic composite as a case study. J Chromatogr A 2023; 1707:464326. [PMID: 37639846 DOI: 10.1016/j.chroma.2023.464326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Preconcentration for on-site detection or subsequent determination is a promising technique for selective sensing explosive markers at low concentrations. Here, we report divinylbenzene monolithic polymer in its blank form (neat-DVB) and as a composite incorporated with sodalite topology zeolite-like metal-organic frameworks (3-ZMOF@DVB), as a sensitive, selective, and cost-effective porous preconcentrator for aliphatic nitroalkanes in the vapor phase as explosive markers at infinite dilution. The developed materials were fabricated as 18 cm gas chromatography (GC) monolithic capillary columns to study their separation performance of nitroalkane mixture and the subsequent physicochemical study of adsorption using the inverse gas chromatography (IGC) technique. A strong preconcentration effect was indicated by a specific retention volume adsorption/desorption ratio equal to 3 for nitromethane on the neat-DVB monolith host-guest interaction, and a 14% higher ratio was observed using the 3-ZMOF@DVB monolithic composite despite the low percentage of 0.7 wt.% of sod-ZMOF added. Furthermore, Incorporating ZMOF resulted in a higher percentage of micropores, increasing the degree of freedom more than bringing stronger adsorption and entropic-driven interaction more than enthalpic. The specific free energy of adsorption (ΔGS) values increased for polar probes and nitroalkanes, denoting that adding ZMOFs earned the DVB monolithic matrix a more specific character. Afterward, Lewis acid-base properties were calculated, estimating the electron acceptor (KA) and electron donor (KB) constants. The neat-DVB was found to have a Lewis basic character with KB/KA = 7.71, and the 3-ZMOF@DVB had a less Lewis basic character with KB/KA = 3.82. An increased electron-accepting nature can be directly related to incorporating sod-ZMOF into the DVB monolithic matrix. This work considers the initial step in presenting a portable explosives detector or preconcentrating explosive markers trace prior to more sophisticated analysis. Additionally, the IGC technique allows for understanding the factors that led to the superior adsorption of nitroalkanes for the developed materials.
Collapse
Affiliation(s)
- Kareem Yusuf
- Advanced Materials Research Chair (AMRC), Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Centre (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), PO Box 6900, Jeddah 23955, Saudi Arabia
| | - Seetah Alharbi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali S Alghamdi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Reem M Aljohani
- Advanced Materials Research Chair (AMRC), Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid A ALOthman
- Advanced Materials Research Chair (AMRC), Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Centre (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), PO Box 6900, Jeddah 23955, Saudi Arabia
| |
Collapse
|
3
|
A monolithic composite based on zeolite-like metal-organic framework@divinylbenzene polymer separates azeotropic fluorocarbon mixture efficiently. J Chromatogr A 2023; 1694:463922. [PMID: 36931139 DOI: 10.1016/j.chroma.2023.463922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Organic monolithic columns are mainly used to separate macromolecules; however, many attempts to extend their performance toward small molecules were examined by incorporating micro- and nanoparticles. The incorporation technique enabled utilizing organic monoliths in gas chromatography (GC) for small molecules, which are still scarce. Here, we prepared a composite matrix of capillary monolithic columns of a zeolite-like metal-organic framework with a sodalite topology (sod-ZMOF) and Divinylbenzene polymer (DVB) for GC separations under 0.5 MPa. Relatively short DVB monolithic columns (18 cm long × 0.25 mm i.d.) incorporated with a tiny amount of sod-ZMOF nanoparticles (0.7 and 1.17 wt%) with an average particle size of 225 nm were successfully fabricated and used to separate linear alkanes and polar probes mixtures with increasing resolution up to 3.7 and 5.1 times, respectively, compared to a blank DVB monolithic column. A high-performance separation of linear alkanes series mixture (methane to decane) was exhibited in less than 2 min. McReynolds constants revealed that sod-ZMOF provided the composite monolith with a nonpolar character yielding a negative average polarity value smaller than the standard squalene column. An Excellent retention time of pentane and octane day-to-day reproducibility was achieved during 16 days and over more than 500 runs with RSD% of 2.25% and 3.3% using a composite monolithic column with 5 mg mL-1 sod-ZMOF (5-ZMOF@DVB). In addition, a qualitative determination of the gas mixture content of three commercially available Lighter gas cartridges was performed via the 5-ZMOF@DVB column. Finally, successfully separating an azeotropic freon mixture of difluoromethane (R-32) and pentafluoroethane (R-125) was achieved with a selectivity of up to 4.84. A further thermodynamic study related the preferential adsorption of R-125 to entropic factors rather than enthalpic while trapping inside ZMOF pores. This work sheds light on utilizing the infinite diversity of MOFs and combining their properties with high permeability and easily fabricated organic monoliths for GC separations of light molecules and gasses. Furthermore, the study highlights the role of GC as an easy and fast approach for the preliminary evaluation of the separation efficiency of porous polymers.
Collapse
|
4
|
de Paula Lima I, Polycarpo Valle S, de Oliveira MAL, de Carvalho Marques FF, Antonio Simas Vaz F. Monolithic stationary phases preparation for use in chromatographic and electromigration techniques: the state-of-the-art. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Post-modification of covalent organic framework for gas chromatographic separation of isomers. J Chromatogr A 2022; 1673:463085. [DOI: 10.1016/j.chroma.2022.463085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
|
6
|
Zhong Z, Zhu M, Chu Z, Ren X, Tu B, Zhang W, Zhang L. Preparation and evaluation of ultra-long open-tubular capillary columns modified with Zeolitic Imidazolate Framework-8 incorporated polymeric porous layer for liquid chromatography. J Chromatogr A 2022; 1668:462880. [DOI: 10.1016/j.chroma.2022.462880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
7
|
Mutaz E. Salih, Aqel A, Abdulkhair BY, Obbed MS, ALOthman ZA, Badjah-Hadj-Ahmed Y, Abdulaziz MA. Preparation and Characterization of Glycidyl Polymethacrylate Monolith Column and its Application for Simultaneous Determination of Paracetamol and Chlorzoxazone in Their Combined Pharmaceutical Formulations. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ravinayagam V, Rehman S. Zeolitic imidazolate framework-8 (ZIF-8) doped TiZSM-5 and Mesoporous carbon for antibacterial characterization. Saudi J Biol Sci 2020; 27:1726-1736. [PMID: 32565689 PMCID: PMC7296497 DOI: 10.1016/j.sjbs.2020.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Drug resistant bacteria affects millions worldwide and remains a serious threat to health care system. The study reports the first application of hybrid nanocomposites based on zeolitic imidazolate framework-8 (ZIF-8) with MFI structured zeolite Ti-ZSM-5 (TiZ5) and mesoporous carbon (MC). The composite was designated as TiZ5/ZIF-8 and MC/ZIF-8 was studied for antibacterial activity. Bioactive components Zn2+ and 2-methyl imidazole present in ZIF-8 was found to exert significant antibacterial effect on Escherchia. coli and Staphyloccocus. No other antibiotic drugs are required. For comparative purpose, Fe-BTC MOF (BTC = 1,3,5-benzenetricarboxylate) was used as second set of nanoformulations (TiZ5/Fe-BTC and MC/Fe-BTC) but showed a lower antibacterial activity. The phase (X-ray diffraction), texture (BET surface area), coordination (DRS-UV-Vis), and morphology (TEM) was investigated. XRD showed the presence of nanosized ZIF-8 over TiZ5 and MC. Surface area calculation using N2 adsorption isotherm showed a reduction in the micropore surface area of ZIF-8 from 1148 m2/g to 224 m2/g (80%) and an increased meso surface area from 31 m2/g to 59 m2/g (90%). The mesopore pore volume increased significantly from 0.05 cm3/g to 0.12 m2/g. MC/ZIF-8 showed similar textural modifications. FT-IR spectra and DRS-UV-Vis spectra showed distinct composite formation with TiZ5, while a weak absorption of ZIF-8 observed over MC. TEM revealed the presence of nanocomposite MC/ZIF-8 and TiZ5/ZIF-8 distributed in nanosize ranging between 25 and 50 nm. TiZ5/ZIF-8 showed the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of 0.5 and 1 mg/ml, respectively against E. coli. The MIC and MBC of TiZ5/ZIF-8 against S. aureus were 1 and 2 mg/ml, respectively. MC/ZIF-8 composite had second best antibacterial activity. This study shows that ZIF-8 based composite holds a great potential against E. coli and S. aureus.
Collapse
Affiliation(s)
- Vijaya Ravinayagam
- Deanship of Scientific Research & Department of Nano-Medicine Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Suriya Rehman
- Departmentof Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Pang J, Liao Y, Huang X, Ye Z, Yuan D. Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples. Talanta 2019; 199:499-506. [PMID: 30952290 DOI: 10.1016/j.talanta.2019.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 03/02/2019] [Indexed: 12/16/2022]
Abstract
In this study, a new metal-organic framework-monolith composite for in-tube solid phase microextraction phase (IT-SPME) of fluoroquinolones (FQs) was prepared. 4-Vinylbenzoic acid was copolymerized with ethylenedimethacrylate in a fused silica capillary to form porous monolith. After that, zeolitic imidazolate frameworks (ZIF-8) were synthesized in situ within the pores and the surface of the monolith by controlled layer-by-layer self-assembly of Zn2+ and imidazole. The introduction of ZIF-8 enhanced the surface area of monolith composite, and thus, improving the extraction performance of IT-SPME for FQs obviously. Under the optimized conditions, a highly sensitive method for the monitoring of FQs residue in water and honey samples was developed by the on-line combination of IT-SPME with high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The limits of detection (S/N = 3) for the targeted FQs in water and honey samples were as low as 0.14-0.61 ng/L and 0.39-1.1 ng/L, respectively. The relative standard deviations (RSDs) for intra-day and inter-day assay variability were less than 10% in all samples. The established on-line IT-SPME-HPLC-FLD was successfully used to detect ultra-trace FQs in environmental water and honey samples. Recoveries at different spiked concentrations ranged from 80.1% to 119% and 80.2-117% for water and honey samples, respectively, with satisfactory reproducibility. Compared to up-to-date reported methods, the proposed approach exhibits some features such as high sensitivity, convenience, partial automation, low consumptions of sample and solvent.
Collapse
Affiliation(s)
- Jinling Pang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, China
| | - Yingmin Liao
- Department of Environmental Science & Engineering, Tan Kah Kee College, Zhangzhou 363105, China
| | - Xiaojia Huang
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, China.
| | - Ziwen Ye
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, China
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, China
| |
Collapse
|
10
|
Zajickova Z, Špánik I. Applications of monolithic columns in gas chromatography and supercritical fluid chromatography. J Sep Sci 2019; 42:999-1011. [DOI: 10.1002/jssc.201801071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zuzana Zajickova
- Department of Physical Sciences; Barry University; Miami Shores FL USA
| | - Ivan Špánik
- Institute of Analytical Chemistry; Faculty of Chemical and Food Technology; Slovak University of Technology; Bratislava Slovakia
| |
Collapse
|
11
|
Geng Z, Song Q, Yu B, Cong H. Using ZIF-8 as stationary phase for capillary electrophoresis separation of proteins. Talanta 2018; 188:493-498. [PMID: 30029403 DOI: 10.1016/j.talanta.2018.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/31/2018] [Accepted: 06/09/2018] [Indexed: 11/18/2022]
Abstract
Recently, the separation of proteins has received much attention, although many techniques require expensive instrumentation and trained analysts. In this work, a low-cost, effective, and environmental friendship capillary electrophoresis (CE) for proteins separation was first time introduced. The ZIF-8 with outstanding properties of large surface area, and accessible tunnels and cages were coated the inner surface of silica capillary as a separation media by electrostatic interaction. The fast baseline separation of Lys, CC, BSA and RNase A can be obtained within 10 min using the ZIF-8 nanocrystals coated capillary column under the optimum separation conditions. Meanwhile, this system showed good reproducibility and stability. Using L-glutamic acid as the selector ligand, the D- and L-phenylalanine were successfully separated by the ZIF-8 nanocrystals coated capillary column. Furthermore, the method was also applied to separate egg white proteins, and three main proteins were separated in a single run.
Collapse
Affiliation(s)
- Zhongmin Geng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qianqian Song
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Liang X, Hou X, Chan JH, Guo Y, Hilder EF. The application of graphene-based materials as chromatographic stationary phases. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Zhang J, Chen Z. Metal-organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A 2017; 1530:1-18. [DOI: 10.1016/j.chroma.2017.10.065] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022]
|
14
|
Wang X, Ye N. Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 2017; 38:3059-3078. [PMID: 28869768 DOI: 10.1002/elps.201700248] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/06/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF- or COF-based solid-phase extraction (SPE), solid-phase microextraction (SPME), gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
15
|
A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2439-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Qiang Y, Wang WF, Dhodary B, Yang JL. Zeolitic imidazolate framework 8 (ZIF-8) reinforced macroporous resin D101 for selective solid-phase extraction of 1-naphthol and 2-naphthol from phenol compounds. Electrophoresis 2017; 38:1685-1692. [PMID: 28387953 DOI: 10.1002/elps.201600569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/07/2022]
Abstract
Macroporous resin has been attracting intensive attention due to its critical role in separation and purification of natural products. Herein, a zeolitic imidazolate framework 8 reinforced macroporous resin D101 was prepared via a room temperature growth method and used for dispersive SPE of 1-naphthol and 2-naphthol. The parameters affecting the adsorption and desorption efficiency such as the sample pH, adsorbent amount, extraction time, desorption solvent, and desorption time were investigated. The as-prepared adsorbent showed selectivity for 1-naphthol and 2-naphthol compared to other phenols. Under the optimum dispersive SPE conditions, the detection of 1-naphthol and 2-naphthol coupled with a CZE method was conducted and the LODs for 1-naphthol and 2-naphthol were 1.37 and 1.43 ng/mL, respectively. Moreover, the results of urine sample analysis showed the spiked recoveries to be in the range of 96.2-106.9%. This study indicated that D101@ZIF-8 (where ZIF is zeolitic imidazolate framework) is a promising selective adsorbent for the analysis of 1-naphthol and 2-naphthol in urine samples.
Collapse
Affiliation(s)
- Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| | - Basanta Dhodary
- Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| |
Collapse
|
17
|
Chen Y, Huang X, Zhang S, Li S, Cao S, Pei X, Zhou J, Feng X, Wang B. Shaping of Metal-Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. J Am Chem Soc 2016; 138:10810-3. [PMID: 27511140 DOI: 10.1021/jacs.6b06959] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The applications of metal-organic frameworks (MOFs) toward industrial separation, catalysis, sensing, and some sophisticated devices are drastically affected by their intrinsic fragility and poor processability. Unlike organic polymers, MOF crystals are insoluble in any solvents and are usually not thermoplastic, which means traditional solvent- or melting-based processing techniques are not applicable for MOFs. Herein, a continuous phase transformation processing strategy is proposed for fabricating and shaping MOFs into processable fluids, shaped bodies, and even MOF foams that are capable of reversible transformation among these states. Based on this strategy, a cup-shaped Cu-MOF composite and hierarchically porous MOF foam were developed for highly efficient catalytic C-H oxidation (conv. 76% and sele. 93% for cup-shaped Cu-MOF composite and conv. 92% and sele. 97% for porous foam) with ease of recycling and dramatically improved kinetics. Furthermore, various MOF-based foams with low densities (<0.1 g cm(-3)) and high MOF loadings (up to 80 wt %) were obtained via this protocol. Imparted with hierarchically porous structures and fully accessible MOFs uniformly distributed, these foams presented low energy penalty (pressure drop <20 Pa, at 500 mL min(-1)) and showed potential applications as efficient membrane reactors.
Collapse
Affiliation(s)
- Yifa Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing, 100081, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University , Liaocheng, 252059, P. R. China
| | - Shenghan Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing, 100081, P. R. China
| | - Siqing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing, 100081, P. R. China
| | - Sijia Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing, 100081, P. R. China
| | - Xiaokun Pei
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing, 100081, P. R. China
| | - Junwen Zhou
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing, 100081, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing, 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology , 5 South Zhongguancun Street, Beijing, 100081, P. R. China
| |
Collapse
|
18
|
Yang X, Li C, Qi M, Qu L. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers. J Chromatogr A 2016; 1460:173-80. [DOI: 10.1016/j.chroma.2016.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022]
|
19
|
Property evaluations and application for separation of small molecules of a nanodiamond-polymer composite monolithic column. Talanta 2016; 154:237-48. [DOI: 10.1016/j.talanta.2016.03.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 11/19/2022]
|
20
|
Lv Y, Tan X, Svec F. Preparation and applications of monolithic structures containing metal-organic frameworks. J Sep Sci 2016; 40:272-287. [DOI: 10.1002/jssc.201600423] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yongqin Lv
- International Research Center for Soft Matter; Beijing University of Chemical Technology; Beijing China
| | - Xinyi Tan
- College of Chemistry; Jilin University; Changchun China
| | - Frantisek Svec
- International Research Center for Soft Matter; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
21
|
Qu Q, Xuan H, Zhang K, Ding Y, Xu Q. Layer-by-layer assembly of zeolite imidazolate framework-8 as coating material for capillary electrochromatography. Electrophoresis 2016; 37:2175-80. [DOI: 10.1002/elps.201600121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/17/2016] [Accepted: 05/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Qishu Qu
- Key Laboratory of Functional Molecule Design and Interface Process, School of Materials and Chemical Engineering; Anhui Jianzhu University; Hefei P. R. China
| | - Han Xuan
- Key Laboratory of Functional Molecule Design and Interface Process, School of Materials and Chemical Engineering; Anhui Jianzhu University; Hefei P. R. China
| | - Kehua Zhang
- Key Laboratory of Functional Molecule Design and Interface Process, School of Materials and Chemical Engineering; Anhui Jianzhu University; Hefei P. R. China
| | - Yi Ding
- Key Laboratory of Functional Molecule Design and Interface Process, School of Materials and Chemical Engineering; Anhui Jianzhu University; Hefei P. R. China
| | - Qin Xu
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou P. R. China
| |
Collapse
|
22
|
Yusuf K, Badjah-Hadj-Ahmed AY, Aqel A, Aouak T, ALOthman ZA. Zeolitic imidazolate framework-methacrylate composite monolith characterization by inverse gas chromatography. J Chromatogr A 2016; 1443:233-40. [DOI: 10.1016/j.chroma.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/02/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
|
23
|
Urban J. Current trends in the development of porous polymer monoliths for the separation of small molecules. J Sep Sci 2015; 39:51-68. [DOI: 10.1002/jssc.201501011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Jiří Urban
- Department of Analytical Chemistry, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|