1
|
Ju Z, Guo X, Li L, Tang Y, Qiu M, Zhang W, Ouyang Z, Ma Q. Improved Point-of-Care Mass Spectrometry Analysis with Thin-Layer Chromatography-Based Two-Dimensional Separation and Spray Ionization. Anal Chem 2025; 97:712-720. [PMID: 39722213 DOI: 10.1021/acs.analchem.4c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Point-of-care testing (POCT) involves administering rapid on-site analysis to provide fast biochemical testing results. POCT reduces delays in clinical decision-making and eliminates the need to transport and prepare clinical samples for immediate diagnosis or clinical intervention by healthcare professionals. Herein, a novel methodology integrating thin-layer chromatography-based two-dimensional separation with miniature mass spectrometry was developed for rapid on-site clinical analysis. As a proof-of-concept demonstration, γ-aminobutyric acid, 2-hydroxyglutarate, and N-acetyl-l-aspartic acid, which are widely known as biomarkers for brain gliomas, were selected as model analytes for method development and validation. The proposed approach exhibited satisfactory analytical performance, with 1 ng/mL limits of detection, 2 ng/mL limits of quantitation, and recoveries in the range of 85.9-107.2%. Additionally, on-TLC derivatization and reactive spray ionization strategies were utilized to enhance the mass spectrometric signals compared to underivatized analysis. This method was applied to analyze clinical samples, showcasing its attractive potential outside the laboratory.
Collapse
Affiliation(s)
- Zisheng Ju
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangyu Guo
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Linsen Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
2
|
Shiea J, Lin HJ, Bhat SM, Lee CY, Huang MZ, Ponnusamy VK, Cheng SC. Thin layer chromatography/desorption flame-induced atmospheric pressure chemical ionization/mass spectrometry for the analysis of volatile and semi-volatile mixtures. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9409. [PMID: 36194496 DOI: 10.1002/rcm.9409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Flame-induced atmospheric pressure chemical ionization (FAPCI) has been used to directly characterize chemical compounds on a glass rod and drug tablet surfaces. In this study, FAPCI was further applied to interface thin layer chromatography (TLC) and mass spectrometry (MS) for mixture analysis. METHODS A micro-sized oxyacetylene flame was generated using a small concentric tube system. Hot gas flow and primary reactive species from the micro-flame were directed toward a developed TLC gel plate to thermally desorb and ionize analytes on the gel surface. The resulting analyte ions subsequently entered the MS inlet for detection. RESULTS A 1-1.5-mm-wide light-brown line was observed on the TLC plate after the desorption FAPCI/MS (DFAPCI/MS) analysis, revealing that the gel surface withstood a high temperature from the impact of the micro-flame. Volatile and semi-volatile chemical compounds, including amine and amide standards, drugs, and aromatherapy oils, were successfully desorbed, ionized, and detected using this TLC/DFAPCI/MS. The limit of detection of TLC-DFAPCI/MS was determined to be 5 ng/spot for dibenzylamine and ethenzamide. CONCLUSIONS TLC/DFAPCI/MS is one of the simplest TLC-MS interfaces showing the advantages such as low costs and an easy set up. The technique is useful for characterizing thermally stable volatile and semi-volatile compounds in a mixture.
Collapse
Affiliation(s)
- Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsing-Jung Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | - Chi-Yang Lee
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Min-Zong Huang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sy-Chyi Cheng
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Zhang M, Yu Q, Guo J, Wu B, Kong X. Review of Thin-Layer Chromatography Tandem with Surface-Enhanced Raman Spectroscopy for Detection of Analytes in Mixture Samples. BIOSENSORS 2022; 12:937. [PMID: 36354446 PMCID: PMC9687685 DOI: 10.3390/bios12110937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In the real world, analytes usually exist in complex systems, and this makes direct detection by surface-enhanced Raman spectroscopy (SERS) difficult. Thin layer chromatography tandem with SERS (TLC-SERS) has many advantages in analysis such as separation effect, instant speed, simple process, and low cost. Therefore, the TLC-SERS has great potential for detecting analytes in mixtures without sample pretreatment. The review demonstrates TLC-SERS applications in diverse analytical relevant topics such as environmental pollutants, illegal additives, pesticide residues, toxic ingredients, biological molecules, and chemical substances. Important properties such as stationary phase, separation efficiency, and sensitivity are discussed. In addition, future perspectives for improving the efficiency of TLC-SERS in real sample detecting are outlined.
Collapse
Affiliation(s)
- Meizhen Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Wu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
4
|
Kamble A, Kennady CJ, Badiye A, Kapoor N. Detection of diazepam in spiked drink using thin-layer chromatography. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Hu B, Yao ZP. Electrospray ionization mass spectrometry with wooden tips: A review. Anal Chim Acta 2022; 1209:339136. [PMID: 35569859 DOI: 10.1016/j.aca.2021.339136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Electrospray ionization (ESI) is a powerful ionization technique in mass spectrometry (MS). There has been an increasing interest for the new development of ESI technique to extend its applications. ESI-MS with wooden tips (wooden-tip ESI-MS), an ESI technique invented in 2011, enabled not only new applications but also new insights into the ESI mechanism. In this review, the technical aspects of wooden-tip ESI-MS are described, the new features of wooden-tip ESI-MS for sampling and ionization of analytes are highlighted, and the important applications of wooden-tip ESI-MS in various fields in the past 10 years, including food safety, forensic investigation, environmental analysis, biomedical analysis and protein study, are summarized. The perspectives on the further development and applications of wooden-tip ESI-MS are also discussed.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China.
| | - Zhong-Ping Yao
- State Key Laboratory for Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Borisov R, Kanateva A, Zhilyaev D. Recent Advances in Combinations of TLC With MALDI and Other Desorption/Ionization Mass-Spectrometry Techniques. Front Chem 2022; 9:771801. [PMID: 34976947 PMCID: PMC8719418 DOI: 10.3389/fchem.2021.771801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023] Open
Abstract
The combination of planar chromatography with desorption/ionization mass-spectrometry (MS) techniques provides chemists with unique tools for fast and simple separation of mixtures followed by the detection of analytes by the most powerful analytical method. Since its introduction in the early 1990s, thin-layer chromatography (TLC)/matrix-assisted mass spectrometry (MALDI) has been used for the analysis of a wide range of analytes, including natural and synthetic organic compounds. Nowadays, new desorption/ionization approaches have been developed and applied in conjunction with planar chromatography competing with MALDI. This review covers recent developments in the combination of TLC with various desorption/ionization MS methods which were made in recent several years.
Collapse
Affiliation(s)
- Roman Borisov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anastasiia Kanateva
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Zhilyaev
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
7
|
Schisandra chinensis: A comprehensive review on its phytochemicals and biological activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Onay S, Hofer S, Ganzera M. Rapid analysis of nine lignans in Schisandra chinensis by supercritical fluid chromatography using diode array and mass spectrometric detection. J Pharm Biomed Anal 2020; 185:113254. [DOI: 10.1016/j.jpba.2020.113254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023]
|
9
|
Shen Q, Wang H, Li S, Feng J, Song G, Zhang Y, Ma J, Wang H. Development of a mesoporous silica based solid‐phase extraction and ultra‐performance liquid chromatography–MS/MS method for quantifying lignans in
Justicia procumbens. Electrophoresis 2020; 41:379-385. [PMID: 32040861 DOI: 10.1002/elps.201900401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Qing Shen
- Zhejiang Province Key Laboratory of AnesthesiologyDepartment of AnesthesiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou P. R. China
- Institute of SeafoodZhejiang Gongshang University Hangzhou P. R. China
| | - Honghai Wang
- Institute of SeafoodZhejiang Gongshang University Hangzhou P. R. China
| | - Shiyan Li
- Aquatic Products Quality Inspection Center of Zhejiang Province Hangzhou P. R. China
| | - Junli Feng
- Institute of SeafoodZhejiang Gongshang University Hangzhou P. R. China
| | - Gongshuai Song
- Institute of SeafoodZhejiang Gongshang University Hangzhou P. R. China
| | - Yiqi Zhang
- Institute of SeafoodZhejiang Gongshang University Hangzhou P. R. China
| | - Jianfeng Ma
- Zhejiang Province Key Laboratory of AnesthesiologyDepartment of AnesthesiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou P. R. China
| | - Haixing Wang
- Zhejiang Province Key Laboratory of AnesthesiologyDepartment of AnesthesiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou P. R. China
| |
Collapse
|
10
|
Sherma J, Rabel F. Review of advances in planar chromatography-mass spectrometry published in the period 2015–2019. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1725561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | |
Collapse
|
11
|
Qin M, Zhou X, Zhu J, Ma M, Wang H, Yang L. Synthesis of gold nanorods with varied length-diameter ratios-applications using SERS for the detection of drugs. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1700131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Miao Qin
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Xia Zhou
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Jun Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Mutian Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Hongyan Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Liangbao Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
12
|
Hu B, Zheng B, Rickert D, Gómez-Ríos GA, Bojko B, Pawliszyn J, Yao ZP. Direct coupling of solid phase microextraction with electrospray ionization mass spectrometry: A Case study for detection of ketamine in urine. Anal Chim Acta 2019; 1075:112-119. [PMID: 31196416 DOI: 10.1016/j.aca.2019.05.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a commonly used technique for analysis of various samples. Solid phase microextraction (SPME) is a simple and efficient technique that combines both sampling and sample preparation into one consolidated step, preconcentrating extracted analytes for ultra-sensitive analysis. Historically, SPME has been coupled with chromatography-based techniques for sample separation prior to analysis, however more recently, the chromatographic step has been omitted, with the SPME device directly coupled with the mass spectrometer. In this study, direct coupling of SPME with ESI-MS was developed, and extensively validated to quantitate ketamine from human urine, employing a practical experimental workflow and no extensive hardware modification to the equipment. Among the different fibers evaluated, SPME device coated with C18/benzenesulfonic acid particles was selected for the analysis due to its good selectivity and signal response. Different approaches, including desorption spray, dripping, desorption ESI and nano-ESI were attempted for elution and ionization of the analytes extracted using the SPME fibers. The results showed that the desorption spray and nano-ESI methods offered better signal response and signal duration than the others that were evaluated. The analytical performance of the SPME-nano-ESI-MS setup was excellent, including limit of detection (LOD) of 0.027 ng/mL, limit of quantitation (LOQ) of 0.1 ng/mL, linear range of 0.1-500.0 ng/mL (R2 = 0.9995) and recoveries of 90.8-109.4% with RSD 3.4-10.6% for three validation points at 4.0, 40.0 and 400.0 ng/mL, far better than the performance of conventional methods. The results herein presented, demonstrated that the direct coupling of SPME fibers with ESI-MS-based systems allowed for the simple and ultra-sensitive determination of analytes from raw samples such as human urine.
Collapse
Affiliation(s)
- Bin Hu
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China; Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bo Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Daniel Rickert
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | - Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| |
Collapse
|
13
|
Han J, Liu W, Su R, Zhu L, Wu D, Xu J, Liu A, Zhang H, Kou W, Zhang X, Yang S. Coupling of micro-solid-phase extraction and internal extractive electrospray ionization mass spectrometry for ultra-sensitive detection of 1-hydroxypyrene and papaverine in human urine samples. Anal Bioanal Chem 2019; 411:3281-3290. [PMID: 30989270 DOI: 10.1007/s00216-019-01794-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023]
Abstract
Quantification of ultra-trace analytes in complex biological samples using micro-solid-phase extraction followed by direct detection with internal extractive electrospray ionization mass spectrometry (μSPE-iEESI-MS) was demonstrated. 1-Hydroxypyrene (1-OHP) and papaverine at attomole levels in human raw urine samples were analyzed under negative and positive ion detection mode, respectively. The μSPE was simply prepared by packing a disposable syringe filter with octadecyl carbon chain (C18)-bonded micro silica particles, which were then treated as the "bulk sample" after the analytes were efficiently enriched by the C18 particles. Under the optimized experimental conditions, the analytes were readily eluted by isopropanol/water (80/20, V/V) at a high voltage of ± 4.0 kV, producing analyte ions under ambient conditions. The limit of detection (LOD) was 0.02 pg/L (9.2 amol) for 1-hydroxypyrene and 0.02 pg/L (5.9 amol) for papaverine. The acceptable linearity (R2 > 0.99), signal stability (RSD ≤ 10.7%), spike recoveries (91-95%), and comparable results for real urine samples were also achieved, opening up possibilities for quantitative analysis of trace compounds (at attomole levels) in complex bio-samples. Graphical abstract.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.,Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Wei Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lixue Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Debo Wu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China.
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Aiying Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wei Kou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Shuiping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
14
|
Simple interface for scanning chemical compounds on developed thin layer chromatography plates using electrospray ionization mass spectrometry. Anal Chim Acta 2019; 1049:1-9. [DOI: 10.1016/j.aca.2018.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
|
15
|
Yang X, Huang H, Lu Q, Chen SH, Wang F, Huang OP, Hu B, Yang BC. High-throughput polymer tip-electrospray ionization mass spectrometry for enhanced detection of neopterin and biopterin in clinical urine samples. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:189-194. [PMID: 30597687 DOI: 10.1002/jms.4322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/05/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Urinary biopterin (Bio) and neopterin (Neo) are important markers for clinical diagnosis of hyperphenylalaninemia. Herein, we developed a high-throughput analysis method based on electrospray ionization mass spectrometry (ESI-MS) with polymer tips for the rapid quantitative detection of Bio and Neo in clinical urine samples. Different polymer tips were investigated. It is found that the best detection sensitivity was achieved with hydrophobic polymer tip, ie, polyethylene tips. The high-throughput polymer tip-ESI-MS method allowed a rapid analysis speed at ~40 seconds per sample. The limits of quantification (LOQ) (S/N ≥ 10) for the detection of Bio and Neo were improved to be 5.0 ng/mL. Acceptable relative standard deviation (RSD) values for Neo and Bio were measured to be 12.2% and 13.4% for direct measurement of Bio and Neo in raw urine samples, respectively. Furthermore, Bio and Neo were directly quantified from 18 clinical urine samples by presented method. The ratios of urinary Bio-to-Neo were analyzed for diagnosis of hyperphenylalaninemia. The results demonstrated that the present polymer tip-ESI-MS method is a promising strategy for the rapid analysis of clinical samples.
Collapse
Affiliation(s)
- Xiao Yang
- Neonatal Disease Screening Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Huang Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qing Lu
- Neonatal Disease Screening Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Shao-Hong Chen
- Neonatal Disease Screening Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Feng Wang
- Neonatal Disease Screening Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Ou-Ping Huang
- Neonatal Disease Screening Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Bin Hu
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Bi-Cheng Yang
- Neonatal Disease Screening Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| |
Collapse
|
16
|
Li L, Li W, Hu B. Electrostatic field-induced tip-electrospray ionization mass spectrometry for direct analysis of raw food materials. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:73-80. [PMID: 30422380 DOI: 10.1002/jms.4309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Rapid characterization of metabolites and risk compounds such as chemical residues and natural toxins in raw food materials such as vegetables, meats, and edible living plants and animals plays an important part in ensuing food quality and safety. To rapidly characterize the analytes in raw food materials, it is essential to develop in situ method for directly analyzing raw food materials. In this work, raw food materials including biological tissues and living samples were placed between an electrode and mass spectrometric (MS) inlet under a strong electrostatic field; analytes were rapidly induced to generate electrospray ionization (ESI) from the sample tip by adding a drop of solvent onto the sample. Therefore, the electrostatic field-induced tip-ESI-MS allows raw samples to avoid contacting high voltage, and thus this method has the advantage for in vivo analysis of food living plants and animals. Metabolite profiling, residues of pesticides and veterinary drugs, and natural toxins from raw food materials have been successfully detected. The analytical performances, including the linear ranges, sensitivity, and reproducibility, were investigated for direct sample analysis. The ionization mechanism of electrostatic field-induced tip-ESI was also discussed in this work.
Collapse
Affiliation(s)
- Lei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Wen Li
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
17
|
Indrayanto G. Recent Development of Quality Control Methods for Herbal Derived Drug Preparations. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pharmaceutical industries should apply rigorous QC (quality control) to ensure the consistency, safety, and efficacy of their herbal derived drug-preparations. QC must be performed at every stage of the production line i.e. incoming raw materials, extractions, in-process control, finished products and keeping samples. Due to the complex nature of the chemical content of herbal drugs, two approaches to QC should be taken, that is quantitative determination of the selected marker(s) compound(s), and metabolite profiling. Contamination of herbal medicines by heavy metals, pesticides, toxic metabolites, microbial toxins, pathogenic microorganisms and other foreign matter should also be evaluated. A combination of chemical profiling and multivariate analysis (MVA) is recommended as the QC tool for the botanical identification method (BIM) of herbs, extracts, herb materials, and herbal drug preparations. Microscopic methods, DNA profiling or chemical marker(s) are not recommended for use as the sole BIM due to the lack of specificity. Only markers that meet certain criteria i.e. quality active (QA) markers can be utilized as a QC tool. The limit specification range of markers used as QC tools should be described in the analytical target profile (ATP). To gain reliable results of any analysis that has been performed at any QC laboratory, the analysis method must be validated according to the newest guidance. Sample detection limit of any toxic compound(s) should be lower than its cut-off value and MPL. The reliability of any results of analysis of a QC laboratory must be evaluated by using QC-samples for each series of measurements.
Collapse
Affiliation(s)
- Gunawan Indrayanto
- Plant Biotechnology Research Group, Faculty of Pharmacy, Airlangga University, Surabaya 60286, Indonesia
| |
Collapse
|
18
|
Yao YN, Hu B. Analyte-substrate interactions at functionalized tip electrospray ionization mass spectrometry: Molecular mechanisms and applications. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1222-1229. [PMID: 30300951 DOI: 10.1002/jms.4300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/22/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Conventional electrospray ionization mass spectrometry (ESI-MS) commonly uses capillary tip for sample introduction and ionization. In recent years, ESI-MS using noncapillary substrate tips has attracted growing interest as it allows separation and enrichment of analytes from complex samples due to analytes-substrate interactions. In this work, model mixtures and functionalized tips were employed to investigate the molecular mechanism of the analyte-substrate interactions. The mixtures were directly loaded on substrate tips, and then temporal responses of analytes were investigated by monitoring selected ion chromatogram (SIC) responses of each analyte. It is found that all analytes are sprayed out together when bulk solution loaded substrate surface and then sequential ionization of analytes were observed. Sequential ionization of analytes was affected by the analytes-substrate interactions which caused analytes of weaker-interaction to be faster moved and the analytes of stronger-interactions to be retained on the substrate. The main molecular mechanisms of analyte-substrate interactions were revealed to be hydrophobic interactions and electrostatic interactions. Furthermore, based on the mechanistic insights, functionalized tips were further applied for rapid extractive sampling of target analytes from complex samples with good analytical performances. Overall, this study on the mechanism and applications of analyte-substrate interactions is useful for understanding the fundamental principles and further developments of functionalized tip electrospray ionization (TESI).
Collapse
Affiliation(s)
- Ya-Nan Yao
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
19
|
Kucherenko E, Kanateva A, Pirogov A, Kurganov A. Recent advances in the preparation of adsorbent layers for thin-layer chromatography combined with matrix-assisted laser desorption/ionization mass-spectrometric detection. J Sep Sci 2018; 42:415-430. [DOI: 10.1002/jssc.201800625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Anastasiia Kanateva
- Russian Academy of Sciences; A.V. Topchiev Institute of Petrochemical Synthesis; Moscow Russia
| | - Andrey Pirogov
- Faculty of Chemistry; M.V. Lomonosov Moscow State University; Moscow Russia
| | - Alexander Kurganov
- Russian Academy of Sciences; A.V. Topchiev Institute of Petrochemical Synthesis; Moscow Russia
| |
Collapse
|
20
|
Hahn L, Lübtow MM, Lorson T, Schmitt F, Appelt-Menzel A, Schobert R, Luxenhofer R. Investigating the Influence of Aromatic Moieties on the Formulation of Hydrophobic Natural Products and Drugs in Poly(2-oxazoline)-Based Amphiphiles. Biomacromolecules 2018; 19:3119-3128. [DOI: 10.1021/acs.biomac.8b00708] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Michael M. Lübtow
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Frederik Schmitt
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Lehrstuhl Tissue Engineering und Regenerative Medizin and Fraunhofer-Institut für Silicatforschung ISC, Universitätklinikum Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Antje Appelt-Menzel
- Lehrstuhl Tissue Engineering und Regenerative Medizin and Fraunhofer-Institut für Silicatforschung ISC, Universitätklinikum Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
21
|
HPTLC-FLD-SERS as a facile and reliable screening tool: Exemplarily shown with tyramine in cheese. J Food Drug Anal 2018; 26:688-695. [PMID: 29567239 PMCID: PMC9322226 DOI: 10.1016/j.jfda.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/15/2022] Open
Abstract
The serious cytotoxicity of tyramine attracted marked attention as it induced necrosis of human intestinal cells. This paper presented a novel and facile high performance thin-layer chromatography (HPTLC) method tailored for screening tyramine in cheese. Separation was performed on glass backed silica gel plates, using methanol/ethyl acetate/ ammonia (6/4/1 v/v/v) as the mobile phase. Special efforts were focused on optimizing conditions (substrate preparation, laser wavelength, salt types and concentrations) of surface enhanced Raman spectroscopy (SERS) measurements directly on plates after derivatization, which enabled molecule-specific identification of targeted bands. In parallel, fluorescent densitometry (FLD) scanning at 380</400 nm offered satisfactory quantitative performances (LOD 9 ng/zone, LOQ 17 ng/zone, linearity 0.9996 and %RSD 6.7). Including a quick extraction/cleanup step, the established method was successfully validated with different cheese samples, both qualitatively (straightforward confirmation) and quantitatively (recovery rates from 83.7 to 108.5%). Beyond this application, HPTLC-FLD-SERS provided a new horizon in fast and reliable screening of sophisticated samples like food and herb drugs, striking an excellent balance between specificity, sensitivity and simplicity.
Collapse
|
22
|
Yang BC, Wan XD, Yang X, Li YJ, Zhang ZY, Wan XJ, Luo Y, Deng W, Wang F, Huang OP. Rapid determination of carbendazim in complex matrices by electrospray ionization mass spectrometry with syringe filter needle. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:234-239. [PMID: 29314422 DOI: 10.1002/jms.4057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/23/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
The determination of pesticide residues is an indispensable task in controlling food safety and environment protection. Carbendazim is one of the extensive uses of pesticides in the agricultural industry. In this study, a simple method utilizing syringe filter has been applied as electrospray ionization emitter for mass spectrometric identification and quantification of carbendazim in complex matrices including soil, natural water, and fruit juice samples, which contain many insoluble materials. With online syringe filter of the complex samples, most of insoluble materials such as soil were excluded in spray ionization process due to the filter effect, and analytes were subsequently sprayed out from syringe needle for mass spectrometric detection. The pore sizes of filters and diameters of syringe needles also were investigated. The analytical performances, including the linear range (1-200 ng·mL-1 ), limit of detection (0.2-0.6 ng·mL-1 , S/N > 3), limit of quantitation (3.5-8.6 ng·mL-1 , S/N > 10), reproducibility (6.4%-12.5%, n = 6), and recoveries (72.1%-91.0%, n = 6) were well acceptable for direct analysis of raw samples. Matrix effect for detection of carbendazim in soil samples also was experimentally investigated. This study demonstrated that syringe filter needle coupled with electrospray ionization mass spectrometry is a simple, efficient, and sensitive method for detection of pesticide residues in water, soil, and fruit juice for risk assessment.
Collapse
Affiliation(s)
- Bi-Cheng Yang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Xi-di Wan
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Xiao Yang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yun-Jun Li
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Zi-Yu Zhang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Xiao-Ju Wan
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yong Luo
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Wei Deng
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Feng Wang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Ou-Ping Huang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
23
|
Hu B, So PK, Yang Y, Deng J, Choi YC, Luan T, Yao ZP. Surface-Modified Wooden-Tip Electrospray Ionization Mass Spectrometry for Enhanced Detection of Analytes in Complex Samples. Anal Chem 2018; 90:1759-1766. [DOI: 10.1021/acs.analchem.7b03675] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bin Hu
- State
Key Laboratory of Chirosciences, Food Safety and Technology Research
Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong Special Administrative Region, China
- Institute
of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- State
Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)
and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China
| | - Pui-Kin So
- State
Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)
and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong Special Administrative Region, China
| | - Yunyun Yang
- Guangdong
Engineering and Technology Research Center for Ambient Mass Spectrometry,
Guangdong Provincial Key Laboratory of Emergency Test for Dangerous
Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiewei Deng
- State
Key Laboratory of Chirosciences, Food Safety and Technology Research
Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong Special Administrative Region, China
- State
Key
Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation
and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Yi-Ching Choi
- State
Key Laboratory of Chirosciences, Food Safety and Technology Research
Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong Special Administrative Region, China
- State
Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)
and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China
| | - Tiangang Luan
- State
Key
Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation
and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Zhong-Ping Yao
- State
Key Laboratory of Chirosciences, Food Safety and Technology Research
Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong Special Administrative Region, China
- State
Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)
and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China
- Key
Laboratory of Natural Resources of Changbai Mountain and Functional
Molecules, (Yanbian University) Ministry of Education, Yanji, Jilin 133002, China
| |
Collapse
|
24
|
Aliaga-Aguilar H. Characterization and Analysis of Paper Spray Ionization of Organic Compounds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:17-25. [PMID: 29038995 DOI: 10.1007/s13361-017-1826-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/23/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Paper spray ionization has arisen relatively recently as a complement and alternative to electro- and nanospray ionization with silica capillaries. A majority of the work in the present literature focuses on the chemical aspect of paper spray. In order to study the physical and phenomenological facet of its implementation, we measured current and voltage distributions of Taylor cones. To study transport phenomena on filter paper, we addressed the behavior of large, sparingly soluble tetraalkylammonium ions, which are usually used as mobility standards, in paper spray. The variation of intensity with time of monomers and dimers of these ions was measured with a differential mobility analyzer and compared with that produced by contamination in the paper. At the same time, we evaluated the proficiency of different paper spray techniques for protein analysis using nano spray as a reference. Experiments suggest that Taylor cones in paper spray are subject to hysteresis, whereas transport phenomena in the porous substrate notably affects the ionization of the sample. Additionally, we observed that paper spray tends to favor lower charge states in proteins. Graphical Abstract.
Collapse
Affiliation(s)
- Hugo Aliaga-Aguilar
- Department of Mechanical Engineering and Materials Science, Yale University, 17 Hillhouse Ave., New Haven, CT, 06511, USA.
- Departamento de Ingeniería de Organización, Administración de Empresas y Estadística, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politecnica de Madrid, Plaza del Cardenal Cisneros, 3, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Singh J, Parkash J, Kaur V, Singh R. New approach for the quantification of metallic species in healthcare products based on optical switching of a Schiff base possessing ONO donor set. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:263-270. [PMID: 28587946 DOI: 10.1016/j.saa.2017.05.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
A new method is reported for the quantification of some metallic components of healthcare products utilizing a Schiff base chelator derived from 2-hydroxyacetophenone and ethanolamine. The Schiff base chelator recognizes some metallic species such as iron, copper and zinc (important components of some healthcare products), and cadmium (common contaminant in healthcare products) giving colorimetric/fluorimetric response. It coordinates with Fe2+/Fe3+ and Cu2+ ions via ONO donor set and switches the colour to bright red, green and orange, respectively. Similarly, it switches 'ON' a fluorometric response when coordinates with Zn2+ and Cd2+ ions. In the present approach, detailed studies on the colorimetric and fluorimetric response of ONO Schiff base is investigated in detail. The Job plot for the complexation of ONO switch with various metal ions suggested formation of 1:1 (metal-chelator) complex with Fe2+, Fe3+, and Cu2+ while 1:2 (metal-chelator) for Zn2+ and Cd2+ ions. The limit of detection, limit of quantification are 6.73, 18.0, 25.0, 0.65, 1.10μM and 27.0, 72.0, 100.0, 2.60 and 4.40μM for Fe2+, Fe3+, Cu2+, Zn2+ and Cd2+ ions, respectively. Under the optimized conditions, chelator was used for the quantification of important metals present in healthcare products via direct dissolution and furnace treatment during sample preparation. The results were found precise and accurate for both sample preparation techniques using the developed method.
Collapse
Affiliation(s)
- Jaswant Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Jyoti Parkash
- Department of Chemistry, Sikh National College, Banga 144505, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sec-10, Chandigarh 160011, India.
| |
Collapse
|
26
|
Fu X, Liang H, Xia B, Huang C, Ji B, Zhou Y. Determination of Sulfonamides in Chicken Muscle by Pulsed Direct Current Electrospray Ionization Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8256-8263. [PMID: 28854784 DOI: 10.1021/acs.jafc.7b03803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simple and rapid approach for the simultaneous detection of trace amounts of six sulfonamides in chicken muscle was developed using pulsed direct current electrospray ionization tandem mass spectrometry (pulsed-dc ESI-MS/MS). The pretreatment of chicken muscle samples consisted of two steps: acetonitrile extraction and n-hexane delipidation. Sulfonamides do not need to be derivatized or chromatographed prior to pulsed-dc ESI-MS/MS. The factors affecting the performance of pulsed-dc ESI-MS/MS were studied. Under optimum conditions, the quantitative performance of pulsed-dc ESI-MS/MS was validated according to European Union Decision 2002/657/EC, and the sensitivity of pulsed-dc ESI-MS/MS was 3 times higher than that of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The limits of detection obtained by pulsed-dc ESI-MS/MS were in the range of 0.07-0.11 μg/kg. The proposed method was simple, rapid, and sensitive, and was successfully used for quantitation and rapid screening of sulfonamides in real chicken muscle samples.
Collapse
Affiliation(s)
- Xian Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences , No. 93 South Keyuan Road, Gaoxin Distinct, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hengxing Liang
- Chengdu Institute for Food and Drug Control , Chengdu 610045, P. R. China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences , No. 93 South Keyuan Road, Gaoxin Distinct, Chengdu 610041, P. R. China
| | - Chunyan Huang
- Chengdu Institute for Food and Drug Control , Chengdu 610045, P. R. China
| | - Baocheng Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences , No. 93 South Keyuan Road, Gaoxin Distinct, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences , No. 93 South Keyuan Road, Gaoxin Distinct, Chengdu 610041, P. R. China
| |
Collapse
|
27
|
Ferey J, Da Silva D, Lafite P, Daniellou R, Maunit B. TLC-UV hyphenated with MALDI-TOFMS for the screening of invertase substrates in plant extracts. Talanta 2017; 170:419-424. [DOI: 10.1016/j.talanta.2017.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
|
28
|
Quantification of monohydroxylated polycyclic aromatic hydrocarbons in human urine samples using solid-phase microextraction coupled with glass-capillary nanoelectrospray ionization mass spectrometry. Anal Chim Acta 2017; 973:68-74. [DOI: 10.1016/j.aca.2017.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/27/2017] [Accepted: 04/02/2017] [Indexed: 12/21/2022]
|
29
|
Yang BC, Wang F, Yang X, Zou W, Wang JC, Zou Y, Liu FY, Liu H, Huang OP. Medical swab touch spray-mass spectrometry for newborn screening of nicotine and cotinine in meconium. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:1237-1242. [PMID: 27723220 DOI: 10.1002/jms.3892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 05/07/2023]
Abstract
Newborn screening is one of public health concerns designed to screen infants shortly after birth. Prenatal exposure to tobacco smoke such as nicotine has been reported to affect babies. Levels of nicotine and cotinine in meconium were widely used to evaluate the tobacco exposure of foetuses during pregnancy in a polluted environment. In this study, medical swabs were applied by using touch spray-mass spectrometry (TS-MS) to collect meconium from newborn infants for detection of nicotine and cotinine. Parameters such as choice of spray solvents, solvent volume and collision energy for screening of nicotine and cotinine were optimized. The limits of detection, reproducibility and matrix effect for analysis of meconium were also investigated. In this study, the levels of nicotine and cotinine in 54 puerpera volunteers were screened by TS-MS and were validated by using traditional liquid chromatography-mass spectrometry. These results showed that medical swab TS-MS would be useful for newborn screening of nicotine and cotinine in meconium with high reproducibility, speed, sensitivity and specificity. The use of disposable medical swabs involves no sample preparation and no chromatographic separation, significantly reducing the cost and time required for screening a large number of clinical sample. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bi-Cheng Yang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Feng Wang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Xiao Yang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Wei Zou
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Jia-Chun Wang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yang Zou
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Fa-Ying Liu
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Huai Liu
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Ou-Ping Huang
- Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
30
|
Zhou F, Liu S, Xing J, Song F, Liu Z, Liu S. Thermal-assisted gasification injector for analyzing high-salt solution samples: a novel device developed for online coupling of liquid chromatography with direct analysis in real time mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c6ra12712f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A thermal-assisted gasification injector was designed for online coupling of liquid-chromatography to direct-analysis-in-real-time mass-spectrometry. The method can be used in analysis with an inorganic salt matrix and weak polar solvent.
Collapse
Affiliation(s)
- Feng Zhou
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Shuying Liu
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| |
Collapse
|