1
|
Khan HMA, Yusof NA, Ahmad SAA, Yu CY, Raston NHA, Rahman SFA. Electrochemical aptasensor for 2-amino-2-thiazoline-4-carboxylic acid (ATCA), a metabolite for cyanide poisoning. Sci Rep 2024; 14:23859. [PMID: 39394261 PMCID: PMC11470007 DOI: 10.1038/s41598-024-72503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/09/2024] [Indexed: 10/13/2024] Open
Abstract
An alternative biomarker for assessing the cyanide levels in postmortem materials is crucial for investigating acute cyanide intoxication. Herein, an aptamer-ligand biorecognition system with high specificity was developed to detect acute cyanide poisoning via its secondary metabolite, 2-amino-2-thiazoline-4-carboxylic acid (ATCA). Potential aptamers were screened from a random library of 66-base single-stranded DNA using GO-SELEX, with individual aptamers being identified through single-stranded DNA sequencing. Molecular docking was employed to predict the affinity of these aptamers toward ATCA and selected counter-targets; these predictions were confirmed using thermodynamic analysis with an isothermal titration calorimeter. Owing to its label-free biomolecular binding interactions, Apt46 exhibited the highest affinity against ATCA and notable selectivity against structurally similar counter-targets. Thus, an amino-tagged Apt46 binding aptamer was attached to a carbon electrode modified with EDC-NHS-activated graphene oxide. The binding of Apt46 to ATCA was quantified by measuring current changes using differential pulse voltammetry. The aptasensor achieved a detection limit of 0.05 µg/mL and demonstrated suitability for detecting ATCA across various biological matrices, with the high recovery percentages ranging from 92.29 to 114.22%. Overall, the proposed ATCA aptasensor is promising for identifying ATCA metabolites in cases of acute cyanide exposure.
Collapse
Affiliation(s)
- Hairunnisa Mohd Anas Khan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | | | - Choo Yee Yu
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Siti Fatimah Abd Rahman
- School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M. Recent molecularly imprinted polymers applications in bioanalysis. CHEMICAL PAPERS 2023; 77:619-655. [PMID: 36213319 PMCID: PMC9524737 DOI: 10.1007/s11696-022-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Collapse
Affiliation(s)
- Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition & Standard of Qeshm (MHCS Company), Qeshm Island, Iran
| | - Seyed Mosayeb Daryanavard
- grid.444744.30000 0004 0382 4371Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Fatma Bassyouni
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, Pharmaceutical industry Research Division, National Research Centre, Cairo, 12622 Egypt
| | - Mohamed Abdel-Rehim
- grid.5037.10000000121581746Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden and Med. Solutions, Stockholm, Sweden
| |
Collapse
|
3
|
Sobiech M, Giebułtowicz J, Luliński P. Computational and experimental studies of magnetic molecularly imprinted sorbent with high specificity towards aceclofenac. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Sobiech M, Giebułtowicz J, Woźnica M, Jaworski I, Luliński P. Theoretical and experimental model of molecularly imprinted polymer surface microenvironment for selective stationary phase – Exemplary of S-pramipexole for potential pharmaceutical analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Zhang J, Liang L, Miao Y, Yang Y, Bao X, Liu C. Open-tubular capillary electrochromatography with hydroxypropyl-β-cyclodextrin imprinted polymers: hybrid polyhedral oligomeric silsesquioxane as a coating for enantioseparation. RSC Adv 2022; 12:9637-9644. [PMID: 35424918 PMCID: PMC8985239 DOI: 10.1039/d2ra00079b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
A hydroxypropyl-β-cyclodextrin (HP-β-CD) imprinted coating based on polyhedral oligomeric silsesquioxane (POSS) for open tubular electrochromatography was prepared. The mixture of methacryl-POSS (MA0735), HP-β-CD (template), methacrylic acid (MAA, monomer), N,N'-methylenebisacrylamide (MBA, crosslinker) and toluene-dimethyl sulfoxide (porogen) was used to synthesize the chiral selective coating. The influence of synthesis parameters on the imprinting effect and separation performance, including the amount of HP-β-CD, POSS, and MAA, was investigated systemically. The optimum polymerization was prepared by mixing HP-β-CD, MA0735, MAA, and MBA with the molar ratio of 1 : 1.87 : 1.60 : 1.60. Five racemates were separated by the modified capillary columns using aqueous buffer. Column efficiency on the POSS-based MIPs coating column was greater than 22 000 plates/m. MIPs-POSS hybrid coating capillaries had improved resolution (3.36 times) and the greatest resolution was up to 6.15 within 10 min.
Collapse
Affiliation(s)
- Jian Zhang
- School of Pharmacy, Xi'an Medical University Xi'an 710021 China
- Institute of Medicine, Xi'an Medical University Xi'an 710021 China
| | - Lingling Liang
- School of Pharmacy, Xi'an Medical University Xi'an 710021 China
- Institute of Medicine, Xi'an Medical University Xi'an 710021 China
| | - Yanqing Miao
- School of Pharmacy, Xi'an Medical University Xi'an 710021 China
- Institute of Medicine, Xi'an Medical University Xi'an 710021 China
| | - Yang Yang
- School of Pharmacy, Xi'an Medical University Xi'an 710021 China
| | - Xin Bao
- School of Pharmacy, Xi'an Medical University Xi'an 710021 China
| | - Chunye Liu
- School of Pharmacy, Xi'an Medical University Xi'an 710021 China
- Institute of Medicine, Xi'an Medical University Xi'an 710021 China
| |
Collapse
|
6
|
Li SY, Petrikovics I, Yu J. Performance comparison between solid phase extraction and magnetic carbon nanotubes facilitated dispersive-micro solid phase extractions (Mag-CNTs/d-µSPE) of a cyanide metabolite in biological samples using GC–MS. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00296-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractDispersive-micro solid phase extraction (d-µSPE) has gained increasing attention due to its convenience, effectiveness, and flexibility for sorbent selection. Among a various selection of materials, magnetic carbon nanotubes (Mag-CNTs) is a promising d-µSPE sorbent with excellent separation efficiency in addition to its high surface area and adsorption capability. In this work, two different surface-modified Mag-CNTs, Mag-CNTs-COOH and Mag-CNTs-SO3H, were developed to facilitate d-µSPE (Mag-CNTs/d-µSPE). The cyanide metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), was selected to evaluate their extraction performance using gas chromatography–mass spectrometry (GC–MS) analysis. The Mag-CNTs-COOH enabled a one-step derivatization/desorption approach in the workflow; therefore, a better overall performance was achieved. Compared to the Mag-CNTs-SO3H/d-µSPE and SPE workflow, the one-step desorption/derivatization approach improved the overall extraction efficiency and reduced solvent consumption and waste production. Both Mag-CNTs/d-µSPE workflows were validated according to ANSI/ASB 036 guidelines and showed excellent analytical performances. The limit of detection (LOD) and limit of quantitation (LOQ) of ATCA in synthetic urine were 5 and 10 ng/mL, respectively, and that in bovine blood were achieved at 10 and 60 ng/mL. The SPE method’s LOD and LOQ were also determined at 1 and 25 ng/mL in bovine blood samples. The Mag-CNTs/d-µSPE methods demonstrated great potential to extract polar and ionic metabolites from biological matrices. The extraction processes of ATCA described in this work can provide an easier-to-adopt procedure for potential routine forensic testing of the stable biomarker in cyanide poisoning cases, particularly for those cases where the cyanide detection window has passed.
Collapse
|
7
|
Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Zhang Z, Rui L, Lin Y, Zhang H, Ou J, He J, Wu Q. Preparation of ordered macroporous molecularly imprinted polymers and their applications in purifying cinchona alkaloids from cinchona extract. POLYM INT 2021. [DOI: 10.1002/pi.6205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhi‐Yuan Zhang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Li‐Li Rui
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Ya‐Li Lin
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Hui‐Dan Zhang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Ji‐Ming Ou
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Jian‐Feng He
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Quan‐Zhou Wu
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
9
|
Sobiech M, Giebułtowicz J, Luliński P. Application of Magnetic Core-Shell Imprinted Nanoconjugates for the Analysis of Hordenine in Human Plasma-Preliminary Data on Pharmacokinetic Study after Oral Administration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14502-14512. [PMID: 33227193 PMCID: PMC7735731 DOI: 10.1021/acs.jafc.0c05985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 05/06/2023]
Abstract
In this paper, we developed and validated a new analytical method to determine the pharmacokinetic profile of hordenine in plasma samples of human volunteers after oral administration of hordenine-rich dietary supplements. For this purpose, a magnetic molecularly imprinted sorbent was fabricated and characterized. The application of a magnetic susceptible material facilitates pretreatment step while working with a highly complex sample, reducing time and costs. An optimized, fast, and reliable separation step was combined with liquid chromatography tandem mass spectrometry, providing an analytical method for analysis of hordenine in human plasma after dietary supplement intake. The method was validated (lower limit of quantification of 0.05 μg/L), enabling the pharmacokinetic profile of hordenine to be determined. The highest concentration of hordenine was noted after 65 ± 14 min, reaching the value of 16.4 ± 7.8 μg/L. The average t1/2 was 54 ± 19 min. The apparent volume of distribution was 6000 ± 2600 L (66 ± 24 L/kg when adjusted for weight).
Collapse
Affiliation(s)
- Monika Sobiech
- Department
of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Joanna Giebułtowicz
- Department
of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Luliński
- Department
of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules 2020; 25:molecules25214883. [PMID: 33105855 PMCID: PMC7660098 DOI: 10.3390/molecules25214883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Carboxyl-bearing low-molecular-weight compounds such as keto acids, fatty acids, and other organic acids are involved in a myriad of metabolic pathways owing to their high polarity and solubility in biological fluids. Various disease areas such as cancer, myeloid leukemia, heart disease, liver disease, and lifestyle diseases (obesity and diabetes) were found to be related to certain metabolic pathways and changes in the concentrations of the compounds involved in those pathways. Therefore, the quantification of such compounds provides useful information pertaining to diagnosis, pathological conditions, and disease mechanisms, spurring the development of numerous analytical methods for this purpose. This review article addresses analytical methods for the quantification of carboxylic acids, which were classified into fatty acids, tricarboxylic acid cycle and glycolysis-related compounds, amino acid metabolites, perfluorinated carboxylic acids, α-keto acids and their metabolites, thiazole-containing carboxylic acids, and miscellaneous, in biological samples from 2000 to date. Methods involving liquid chromatography coupled with ultraviolet, fluorescence, mass spectrometry, and electrochemical detection were summarized.
Collapse
|
11
|
Zhao X, Pei W, Guo R, Li X. Selective Adsorption and Purification of the Acteoside in Cistanche tubulosa by Molecularly Imprinted Polymers. Front Chem 2020; 7:903. [PMID: 32039143 PMCID: PMC6989468 DOI: 10.3389/fchem.2019.00903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Acteoside (ACT) is the main component of phenylethanoid glycosides in Cistanche tubulosa, and it is extremely desirable for obtaining high purification of ACT by molecularly imprinted polymers (MIPs) from their extracts. In this study, MIPs were designed and synthetized to adsorb selectively the ACT in C. tubulosa. The effects of different functional monomers, cross-linkers, and solvents of MIPs were investigated. MIPs were studied in terms of static adsorption experiments, dynamic adsorption experiments, and selectivity experiments. The optimal functional monomer, cross-linking agent, and solvent are 4-vinylpyridine, ethylene glycol dimethylacrylate, and the mixed solvent (acetonitrile and N,N-dimethylformamide, 1:1.5, v/v), respectively. Under the optimal conditions, the synthesized MIP1 has a high adsorption performance for ACT. The adsorption capacity of MIP1 to ACT reached 112.60 mg/g, and the separation factor of ACT/echinacoside was 4.68. Because the molecularly imprinted cavities of MIP1 resulted from template molecules of ACT, it enables MIP1 to recognize selectively ACT. Moreover, the N–H groups on MIP1 can form hydrogen bonds with the hydroxyl groups on the ACT; this improves the separation factor of MIP1. The dynamic adsorption of ACT accorded with the quasi-second-order kinetics; it indicated that the adsorption process of MIP1 is the process of chemical adsorption to ACT. MIPs can be applied as a potential adsorption material to purify the active ingredients of herbal medicines.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Wenjing Pei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Ruili Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xueqin Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
12
|
Bodoki AE, Iacob BC, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers (Basel) 2019; 11:polym11122085. [PMID: 31847103 PMCID: PMC6960886 DOI: 10.3390/polym11122085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the considerable effort made in the past decades, multiple aspects of cancer management remain a challenge for the scientific community. The severe toxicity and poor bioavailability of conventional chemotherapeutics, and the multidrug resistance have turned the attention of researchers towards the quest of drug carriers engineered to offer an efficient, localized, temporized, and doze-controlled delivery of antitumor agents of proven clinical value. Molecular imprinting of chemotherapeutics is very appealing in the design of drug delivery systems since the specific and selective binding sites created within the polymeric matrix turn these complex structures into value-added carriers with tunable features, notably high loading capacity, and a good control of payload release. Our work aims to summarize the present state-of-the art of molecularly imprinted polymer-based drug delivery systems developed for anticancer therapy, with emphasis on the particularities of the chemotherapeutics’ release and with a critical assessment of the current challenges and future perspectives of these unique drug carriers.
Collapse
Affiliation(s)
- Andreea Elena Bodoki
- Inorganic Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-597-256 (int. 2838)
| |
Collapse
|
13
|
Sobiech M, Giebułtowicz J, Luliński P. Theoretical and experimental proof for selective response of imprinted sorbent - analysis of hordenine in human urine. J Chromatogr A 2019; 1613:460677. [PMID: 31727352 DOI: 10.1016/j.chroma.2019.460677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
Abstract
The objective of this paper was to extend comprehensive theoretical and experimental investigations at the molecular level to identify factors responsible for the high selectivity of imprinted sorbents. This knowledge was utilized in a new analytical strategy devoted to the analysis of hordenine in human urine after beer consumption. Among the various polymeric compositions tested, the most effective material was built up from methacrylic acid and ethylene glycol dimethacrylate (MIP1), showing a satisfactory binding capacity (4.44 ± 0.15 µmol g-1) and high specificity towards hordenine (AF = 5.90). The comprehensive analyses of porosity data and surface measurements revealed differences between imprinted polymers. The characterization of binding sites of MIP1 revealed a heterogeneous population with two values of Kd (2.75 and 370 μmol L-1) and two values of Bmax (1.82 and 99 μmol g-1) for higher and lower affinity respectively. The extensive theoretical analyses of interactions between various analytes and the MIP model cavity showed the highest binding energy for hordenine (ΔEB1 = -175.17 kcal mol-1). The method was validated for selectivity, lowest limit of quantification, calibration curve performance, precision, accuracy, matrix effect, carry-over and stability in urine. Extracts were prepared according to guidelines of the European Medicines Agency. The validation criteria were fulfilled, and the method was satisfactorily applied to urine samples collected prior to, and 2 h after, consumption of 2 L of beer, revealing the presence of hordenine at the mean level of 129 ± 27 ng mL-1. Additionally, ability of the sorbent to purify the urine sample was assessed using flow injection analysis tandem mass spectrometry, for comparison with other extraction techniques.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
14
|
A modified zeolite/iron oxide composite as a sorbent for magnetic dispersive solid-phase extraction for the preconcentration of nonsteroidal anti-inflammatory drugs in water and urine samples. J Chromatogr A 2019; 1603:33-43. [DOI: 10.1016/j.chroma.2019.06.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 11/18/2022]
|
15
|
Woźnica M, Luliński P. Design of selective molecularly imprinted sorbent for the optimized solid-phase extraction of S-pramipexole from the model multicomponent sample of human urine. J Sep Sci 2019; 42:1412-1422. [PMID: 30681270 DOI: 10.1002/jssc.201801101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/04/2023]
Abstract
The objective of this article was to design the selective molecularly imprinted sorbent dedicated to the solid-phase extraction of S-pramipexole from the complex matrix such as human urine. For that purpose, S-2,6-diamino-4,5,6,7-tetrahydrobenzothiazole was used as the template acting as the structural analog of S-pramipexole and five various monomers were employed in the presence of ethylene glycol dimethacrylate to produce molecularly imprinted polymers. The binding capabilities of resulted polymers revealed that the highest imprinting effect was noted for polymer prepared from the itaconic acid. The comprehensive analysis of morphology and the characterization of binding sites showed not only negligible differences in the extension of surfaces of imprinted and nonimprinted polymers but also higher heterogeneity of binding sites in the imprinted material. Comprehensive optimization of the molecularly imprinted solid-phase extraction allowed to select the most appropriate solvents for loading, washing, and elution steps. Subsequent optimization of mass of sorbent and volumes of solvents allowed to achieve satisfactory total recoveries of S-pramipexole from the model multicomponent real sample of human urine that equals to 91.8 ± 3.2% for imprinted sorbent with comparison to only 37.1 ± 1.1% for Oasis MCX.
Collapse
Affiliation(s)
- Marcin Woźnica
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Gyamfi OA, Bortey-Sam N, Mahon SB, Brenner M, Rockwood GA, Logue BA. Metabolism of Cyanide by Glutathione To Produce the Novel Cyanide Metabolite 2-Aminothiazoline-4-oxoaminoethanoic Acid. Chem Res Toxicol 2019; 32:718-726. [DOI: 10.1021/acs.chemrestox.8b00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Obed A. Gyamfi
- Department of Chemistry and Biochemistry, South Dakota State University, Box 2202, Brookings, South Dakota 57007, United States
| | - Nesta Bortey-Sam
- Department of Chemistry and Biochemistry, South Dakota State University, Box 2202, Brookings, South Dakota 57007, United States
| | - Sari B. Mahon
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92612, United States
| | - Matthew Brenner
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92612, United States
| | - Gary A. Rockwood
- Analytical Toxicology Division, United States Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Brian A. Logue
- Department of Chemistry and Biochemistry, South Dakota State University, Box 2202, Brookings, South Dakota 57007, United States
| |
Collapse
|
17
|
Li SY, Petrikovics I, Yu JCC. Development of magnetic carbon nanotubes for dispersive micro solid phase extraction of the cyanide metabolite, 2-aminothiazoline-4-carboxylic acid, in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1109:67-75. [PMID: 30738339 DOI: 10.1016/j.jchromb.2019.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/07/2018] [Accepted: 01/26/2019] [Indexed: 11/20/2022]
Abstract
2-aminothiazoline-4-carboxylic acid (ATCA) is a minor metabolite of cyanide and is suggested to be a promising biomarker for cyanide exposure due to its specificity to cyanide metabolism and its excellent short- and long-term stability during storage. In this study, magnetic carbon nanotubes, including magnetic multi-walled carbon nanotubes (Mag-MWCNT) and magnetic single-walled carbon nanotubes (Mag-SWCNT) were synthesized as a novel sorbent for dispersive micro solid phase extraction (d-μSPE) to extract ATCA from biological matrices. ATCA spiked deionized water samples with the addition of the isotopic internal standard (ATCA - 13C, 15N) were subjected to Mag-CNT/d-μSPE to confirm extraction efficiency of this new technique. The extracted ATCA was derivatized and quantitated using gas chromatography/mass spectrometry (GC/MS) analysis. The extraction parameters were optimized and a detection limits of 15 and 25 ng/mL were obtained for synthetic urine and bovine blood respectively with a linear dynamic range of 30-1000 ng/mL. The optimized Mag-CNT/d-μSPE method facilitated efficient extraction of ATCA using 2 mg of Mag-MWCNT with a 10-minute extraction time. The current assay was also found to be effective for the extraction of ATCA with average recoveries of 97.7 ± 4.0% (n = 9) and 96.5 ± 12.1% (n = 9) from synthetic urine and bovine blood respectively. The approach of using Mag-CNT to facilitate d-μSPE offered a novel alternative to extract ATCA from complex biological matrices.
Collapse
Affiliation(s)
- Sun Yi Li
- Department of Forensic Science, Sam Houston State University, Huntsville, TX 77341, United States of America
| | - Ilona Petrikovics
- Department of Chemistry, Sam Houston State University, Huntsville, TX 77341, United States of America
| | - Jorn Chi Chung Yu
- Department of Forensic Science, Sam Houston State University, Huntsville, TX 77341, United States of America.
| |
Collapse
|
18
|
Solid phase extraction technique as a general field of application of molecularly imprinted polymer materials. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Giebułtowicz J, Sobiech M, Rużycka M, Luliński P. Theoretical and experimental approach to hydrophilic interaction dispersive solid-phase extraction of 2-aminothiazoline-4-carboxylic acid from human post-mortem blood. J Chromatogr A 2018; 1587:61-72. [PMID: 30579638 DOI: 10.1016/j.chroma.2018.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
In this paper, we proposed an innovative hydrophilic interaction dispersive solid-phase extraction (HI-d-SPE) protocol suitable for the isolation of the potential cyanide intoxication marker, 2-aminothiazoline-4-carboxylic acid (ATCA), from such complicated matrix as post-mortem blood. To create an optimal HI-d-SPE protocol, two sorbents were used: a molecularly imprinted polymer (MIP) and commercially available Oasis-MCX®. The latter sorbent was identified as more recovery-efficient with higher clean-up abilities in a carefully optimized process. Computational analysis was employed to provide insight into the adsorption mechanism of the two selected sorbents. The theoretical results were in agreement with the experiment regarding the efficiency of the sorbent. HI-d-SPE was successfully applied to the analysis of ATCA in 20 post-mortem blood samples using LC-MS/MS. The analytical performance of the method was finally compared to prior existing methods, in turn revealing its superiority.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- Bioanalysis and Drugs Analysis Department, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Rużycka
- Bioanalysis and Drugs Analysis Department, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
20
|
Lian Z, Wang J. Determination of ciprofloxacin in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection. MARINE POLLUTION BULLETIN 2016; 111:411-417. [PMID: 27474342 DOI: 10.1016/j.marpolbul.2016.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
A high selective pre-treatment method for the cleanup and preconcentration of ciprofloxacin in natural seawater samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The ciprofloxacin imprinted polymers were synthesized and the characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted materials showed high adsorption ability for ciprofloxacin and were applied as special solid-phase extraction sorbents for selective separation of ciprofloxacin. An off-line MISPE procedure was optimized and the developed MISPE method allowed direct purification and enrichment of the ciprofloxacin from the aqueous samples prior to high-performance liquid chromatography analysis. The recoveries of spiked seawater on the MISPE cartridges ranged from 75.2 to 112.4% and the relative standard deviations were less than 4.46%. Five seawater samples from Jiaozhou Bay were analyzed and ciprofloxacin was detected in two samples with the concentrations of 0.24 and 0.38μgL(-1), respectively.
Collapse
Affiliation(s)
- Ziru Lian
- Marine College, Shandong University, Weihai 264209, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100,China.
| |
Collapse
|
21
|
Zhao QL, Zhou J, Zhang LS, Huang YP, Liu ZS. Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography. Talanta 2016; 152:277-82. [DOI: 10.1016/j.talanta.2016.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 01/05/2023]
|
22
|
Ma X, Meng Z, Qiu L, Chen J, Guo Y, Yi D, Ji T, Jia H, Xue M. Solanesol extraction from tobacco leaves by Flash chromatography based on molecularly imprinted polymers. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1020:1-5. [PMID: 26994329 DOI: 10.1016/j.jchromb.2016.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
A novel solanesol extraction method based on molecularly imprinted polymer (MIP) as the Flash chromatography stationary phase was established and evaluated. Spherical MIP particles in a size range of 250-350 μm (d (0.5)=320 μm) for solanesol were synthesized by suspension polymerization, with imprinting factor of 3.9. The MIP particles (5.5 g) were packed in common Teflon column as the stationary phase while the sample solution and elution solvent were confirmed as methanol and methanol/acetic acid solution (80/20, v/v), loading at 4 ml/min and eluting 8 ml/min, respectively. Under the optimal chromatographic conditions, the adsorption capacity of the MIP-Flash column was determined as 107.3 μmol/g, and in each process, 370.8 mg purified solanesol (98.4%) could be obtained from the extract (20 mM, 40 ml) of tobacco leaves (14.7 g), and the yield of solanesol was 2.5% of the dry weight of tobacco leaves. The results reported here confirm the feasibility to extract highly purified active ingredients directly from natural products on a large scale by MIP-Flash chromatography.
Collapse
Affiliation(s)
- Xiaoqin Ma
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Zihui Meng
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Lili Qiu
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Chen
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Yushu Guo
- Navy General Hospital, Beijing 100048, China
| | - Da Yi
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Ji
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Hua Jia
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China
| | - Min Xue
- School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|