1
|
Chen KE, Tian Y, Cao Y, Yu Z, Zhang Q, Liu W, Xing Y, Cao C, Mu Z, Xu X. Enrichment of low-abundance osteopontin in bovine milk via reciprocating free-flow isoelectric focusing. Electrophoresis 2024. [PMID: 39373619 DOI: 10.1002/elps.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 10/08/2024]
Abstract
Osteopontin (OPN) in milk plays an important role in intestinal and brain development in early infancy, and great attention has been focused on OPN isolation to add extra OPN in infant formula. However, large-scale OPN isolation is limited by the low efficiency of sample pretreatment. Herein, we utilized preparative reciprocating free-flow isoelectric focusing (RFFIEF) to showcase the enrichment of low-abundance OPN in bovine milk, which contained an extremely high concentration of unwanted proteins. The reciprocating IEF format and the design of the multi-channel collector allowed us to enrich OPN in 1 L milk within 6 h. We removed 97.5% of unwanted proteins and obtained an enrichment factor of 11. Thus, our RFFIEF method can be applied to the preparative pretreatment of the large-scale milk sample and potentially improve the efficiency of downstream OPN purification.
Collapse
Affiliation(s)
- Ke-Er Chen
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zixian Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yishu Xing
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhishen Mu
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot, China
| | - Xu Xu
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
2
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Separation and Purification of Hydroxyl-α-Sanshool from Zanthoxylum armatum DC. by Silica Gel Column Chromatography. Int J Mol Sci 2023; 24:ijms24043156. [PMID: 36834566 PMCID: PMC9966115 DOI: 10.3390/ijms24043156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Hydroxyl-α-sanshool is the main alkylamide produced by Zanthoxylum armatum DC., and it is responsible for numbness after consuming Z. armatum-flavored dishes or food products. The present study deals with the isolation, enrichment, and purification of hydroxyl-α-sanshool. The results indicated that the powder of Z. armatum was extracted with 70% ethanol and then filtrated; the supernatant was concentrated to get pasty residue. Petroleum ether (60-90 °C) and ethyl acetate at a 3:2 ratio, with an Rf value of 0.23, were chosen as the eluent. Petroleum ether extract (PEE) and ethyl acetate-petroleum ether extract (E-PEE) were used as the suitable enriched method. Afterward, the PEE and E-PEE were loaded onto silica gel for silica gel column chromatography. Preliminary identification was carried out by TLC and UV. The fractions containing mainly hydroxyl-α-sanshool were pooled and dried by rotary evaporation. Lastly, all of the samples were determined by HPLC. The yield and recovery rates of hydroxyl-α-sanshool in the p-E-PEE were 12.42% and 121.65%, respectively, and the purity was 98.34%. Additionally, compared with E-PEE, the purity of hydroxyl-α-sanshool in the purification of E-PEE (p-E-PEE) increased by 88.30%. In summary, this study provides a simple, rapid, economical, and effective approach to the separation of high-purity hydroxyl-α-sanshool.
Collapse
|
4
|
Abstract
Isotachophoresis (ITP) is a versatile electrophoretic technique that can be used for sample preconcentration, separation, purification, and mixing, and to control and accelerate chemical reactions. Although the basic technique is nearly a century old and widely used, there is a persistent need for an easily approachable, succinct, and rigorous review of ITP theory and analysis. This is important because the interest and adoption of the technique has grown over the last two decades, especially with its implementation in microfluidics and integration with on-chip chemical and biochemical assays. We here provide a review of ITP theory starting from physicochemical first-principles, including conservation of species, conservation of current, approximation of charge neutrality, pH equilibrium of weak electrolytes, and so-called regulating functions that govern transport dynamics, with a strong emphasis on steady and unsteady transport. We combine these generally applicable (to all types of ITP) theoretical discussions with applications of ITP in the field of microfluidic systems, particularly on-chip biochemical analyses. Our discussion includes principles that govern the ITP focusing of weak and strong electrolytes; ITP dynamics in peak and plateau modes; a review of simulation tools, experimental tools, and detection methods; applications of ITP for on-chip separations and trace analyte manipulation; and design considerations and challenges for microfluidic ITP systems. We conclude with remarks on possible future research directions. The intent of this review is to help make ITP analysis and design principles more accessible to the scientific and engineering communities and to provide a rigorous basis for the increased adoption of ITP in microfluidics.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department
of Aeronautics and Astronautics, Stanford
University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Reciprocating free-flow isoelectric focusing with online array ultraviolet detector for process monitoring of protein separation. J Chromatogr A 2022; 1663:462747. [PMID: 34973480 DOI: 10.1016/j.chroma.2021.462747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 11/22/2022]
Abstract
Free-flow isoelectric focusing (FFIEF) is a useful tool for separating and purifying proteins, DNA, cells, and organelles, etc. However, the online monitoring of each fraction during an FFIEF run has not been achieved yet, resulting in a lack of process monitoring of FFIEF. Herein, an online array ultraviolet (UV) detection system was developed for the easy assay of FFE fractions. The detector was integrated with an apparatus of FFIEF with 32 fractions to show the online monitoring, and bovine serum albumin (BSA) and lysozyme were chosen as the model proteins for manifesting the UV detector performance. The experiments revealed that (i) all the fluidic cells had good linearity from 0.03 to 10 mg/mL BSA and fair limits of detection (LODs) of 0.01 mg/mL; (ii) all the cells had good uniformity of UV absorbance; and (iii) the deviations of intra-day and inter-day of UV detector were respectively 3.8% and 5.8%, indicating the fair stability of the UV detector. The UV detector could be well used for the process monitoring of two model proteins through the whole FFIEF run, and the online absorbance assay of proteins at the end of FFIEF. The UV detector herein had the evident potential for rapid and convenient assay of protein fraction in FFIEF as well as other FFE modes.
Collapse
|
6
|
Jiang X, Liu S, Zhang Y, Ji Y, Sohail A, Cao C, Wang P, Xiao H. Free-Flow Isoelectric Focusing for Comprehensive Separation and Analysis of Human Salivary Microbiome for Lung Cancer. Anal Chem 2020; 92:12017-12025. [DOI: 10.1021/acs.analchem.0c02627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoteng Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Simcere Pharmaceutical Co., Ltd., Nanjing 210042, Jiangsu, China
| | - Amir Sohail
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Simcere Pharmaceutical Co., Ltd., Nanjing 210042, Jiangsu, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Chen H, Zhang L, Zhang W, Wang S. Construction of discontinuous capillary isoelectric focusing system and its application in pre-fractionation of exosomal proteins. Talanta 2020; 208:119876. [DOI: 10.1016/j.talanta.2019.04.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/28/2019] [Accepted: 04/28/2019] [Indexed: 01/15/2023]
|
8
|
Šalplachta J, Horká M, Šlais K. Capillary electrophoresis with preparative isoelectric focusing preconcentration for sensitive determination of amphotericin B in human blood serum. Anal Chim Acta 2019; 1053:162-168. [DOI: 10.1016/j.aca.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/06/2018] [Accepted: 12/09/2018] [Indexed: 12/15/2022]
|
9
|
Islinger M, Wildgruber R, Völkl A. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles. Electrophoresis 2018; 39:2288-2299. [DOI: 10.1002/elps.201800187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim; University of Heidelberg; Heidelberg Germany
| | | | - Alfred Völkl
- Department of Medical Cell Biology; Institute of Anatomy; University of Heidelberg; Heidelberg Germany
| |
Collapse
|
10
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
He YC, Kong FZ, Fan LY, Wu JY, Liu XP, Li J, Sun Y, Zhang Q, Yang Y, Wu XJ, Xiao H, Cao CX. Preparation of intact mitochondria using free-flow isoelectric focusing with post-pH gradient sample injection for morphological, functional and proteomics studies. Anal Chim Acta 2017; 982:200-208. [DOI: 10.1016/j.aca.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 12/31/2022]
|
12
|
Šalplachta J, Horká M, Šlais K. Preparative isoelectric focusing in a cellulose-based separation medium. J Sep Sci 2017; 40:2498-2505. [PMID: 28432777 DOI: 10.1002/jssc.201700036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 01/04/2023]
Abstract
An improved preparative method based on isoelectric focusing of analytes in a cellulose-based separation medium is described in this study. Cellulose is suspended in an aqueous solution of simple buffers, ethylene glycol, glycerol, nonionic surfactant, and colored pI markers. Water partially evaporates during focusing run and the separation takes place in an in situ generated layer of cellulose, which has a gel-like appearance at the end of analysis. Final positions of analytes are indicated by the positions of zones of focused pI markers. Fractions, segments of the separation medium with analytes, can be simply collected by spatula and analyzed by downstream analytical methods. Good focusing ability of the new method and almost quantitative recovery of model proteins, cytochrome c and bovine serum albumin, was verified by gel electrophoresis and capillary isoelectric focusing of the collected fractions.
Collapse
Affiliation(s)
- Jiří Šalplachta
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Marie Horká
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Karel Šlais
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| |
Collapse
|
13
|
Dutta D. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing. J Chromatogr A 2017; 1484:85-92. [PMID: 28081900 PMCID: PMC5316482 DOI: 10.1016/j.chroma.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 01/24/2023]
Abstract
Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071, United States.
| |
Collapse
|
14
|
El Rassi Z, Puangpila C. Liquid-phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2014-2016. Electrophoresis 2016; 38:150-161. [DOI: 10.1002/elps.201600413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ziad El Rassi
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| | - Chanida Puangpila
- Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|