1
|
Bosco CD, De Cesaris MG, Felli N, Lucci E, Fanali S, Gentili A. Carbon nanomaterial-based membranes in solid-phase extraction. Mikrochim Acta 2023; 190:175. [PMID: 37022492 PMCID: PMC10079727 DOI: 10.1007/s00604-023-05741-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023]
Abstract
Carbon nanomaterials (CNMs) have some excellent properties that make them ideal candidates as sorbents for solid-phase extraction (SPE). However, practical difficulties related to their handling (dispersion in the atmosphere, bundling phenomena, reduced adsorption capability, sorbent loss in cartridge/column format, etc.) have hindered their direct use for conventional SPE modes. Therefore, researchers working in the field of extraction science have looked for new solutions to avoid the above-mentioned problems. One of these is the design of CNM-based membranes. These devices can be of two different types: membranes that are exclusively composed of CNMs (i.e. buckypaper and graphene oxide paper) and polysaccharide membranes containing dispersed CNMs. A membrane can be used either as a filter, operating under flow-through mode, or as a rotating device, operating under the action of magnetic stirring. In both cases, the main advantages arising from the use of membranes are excellent results in terms of transport rates, adsorption capability, high throughput, and ease of employment. This review covers the preparation/synthesis procedures of such membranes and their potential in SPE applications, highlighting benefits and shortcomings in comparison with conventional SPE materials (especially, microparticles carbonaceous sorbents) and devices. Further challenges and expected improvements are addressed too.
Collapse
Affiliation(s)
- Chiara Dal Bosco
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | | | - Nina Felli
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Elena Lucci
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Nanoscience and Advanced Technologies, University of Verona, Strada Le Grazie, 15 37129, Verona, Italy
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
- Hydro-Eco Research Centre, Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Shi X, Wang Y, Deng X, Wu W, Hua W, Zhou Z, Xin K, Tang L, Ning Z. Excellent capture of Pb(II) and Cu(II) by hierarchical nanoadsorbent Fe 3O 4@SiO 2@PAA-SO 3H: A combined experimental and theoretical study. CHEMOSPHERE 2022; 309:136791. [PMID: 36220425 DOI: 10.1016/j.chemosphere.2022.136791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
A novel magnetic nanoadsorbent (Fe3O4@SiO2@PAA-SO3H) was synthesized by grafting acrylic acid and sulfonic group to Fe3O4@SiO2 using a facile cross-link technology. The adsorbent presented water-stability and biocompatibility in wastewater, which exhibited high-selectivity capture for Pb(II) and Cu(II) of 182.5 mg/g and 250.7 mg/g, respectively, at pH 6.0. Furthermore, the adsorption-desorption processes show that nanoadsorbent still retains high uptake capacity after 6 cycles, revealing structural stability and advanced recycling. Effects from other ions existed weak interference in removal of Pb(II) and Cu(II). Meanwhile, the mechanism was further analyzed from both electrostatic potential (ESP) and average local ionization energy (ALIE) based on the density functional theory (DFT). The results indicate that interaction among nanoadsorbent and heavy metal ions is bridged by oxygen active sites. As the Fe3O4@SiO2@PAA-SO3H adsorbent is a hierarchical, highly water-dispersible and biocompatible adsorbent, it is a potential new treatment option for wastewater.
Collapse
Affiliation(s)
- Xin Shi
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China
| | - Yue Wang
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China
| | - Xianhong Deng
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China
| | - Wenbin Wu
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China
| | - Wenting Hua
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China
| | - Ziqin Zhou
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China
| | - Kai Xin
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China
| | - Lihong Tang
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China.
| | - Zhiyuan Ning
- School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, Yunnan Province, PR China.
| |
Collapse
|
3
|
Novikova IV, Novikov RI, Smirnova ZV, Aleksenko SS, Kondrat’ev VB. Determination of Aminoalcohols as Silyl Derivatives with Three Derivatizing Agents by Gas Chromatography with Mass Spectrometry Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Aleksenko SS, Novikova IV, Novikov RI, Smirnova ZV, Kondrat’ev VB. Amino Alcohols: Chromatographic Methods for the Determination of Derivatives of Nitrogen-Containing Toxic Chemicals. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822070024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kothandapani J, Ganesan SS. Concise Review on the Applications of Magnetically Separable Brønsted Acidic Catalysts. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190312152209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Magnetically separable Brønsted acidic catalysts combine the advantages of
high efficiency of homogeneous Brønsted acidic catalyst with the ease of magnetic
separation from the reaction medium. In addition to their ease of separation, the
magnetically separable Brønsted acidic catalysts also possess high stability towards air
and moisture, facile functionalization and tunable hydrophobic properties. This review
portrays the applications of sulfonic acid anchored γ -Fe2O3 or Fe3O4 nanoparticles,
magnetic core encapsulated acid functionalized silica or mesoporous nanoparticles,
functionalized ionic liquid coated acidic magnetically separable nanoparticles and
miscellaneous magnetically separable Brønsted acidic nanoparticles in diverse organic
transformations. In addition, the merits of magnetically separable Brønsted acid
nanocatalyst are also summarized and compared with the traditional homogeneous/heterogeneous Brønsted
acidic catalysts.
Collapse
Affiliation(s)
- Jagatheeswaran Kothandapani
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Subramaniapillai S. Ganesan
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
6
|
Pal Anagoni S, Kauser A, Maity G, Upadhyayula VVR. Quantitative determination of acidic hydrolysis products of Chemical Weapons Convention related chemicals from aqueous and soil samples using ion-pair solid-phase extraction and in situ butylation. J Sep Sci 2017; 41:689-696. [DOI: 10.1002/jssc.201700955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/07/2017] [Accepted: 10/29/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Suresh Pal Anagoni
- National Centre for Mass Spectrometry; Indian Institute of Chemical Technology; Hyderabad Telangana India
| | - Asma Kauser
- National Centre for Mass Spectrometry; Indian Institute of Chemical Technology; Hyderabad Telangana India
| | - Gopal Maity
- National Centre for Mass Spectrometry; Indian Institute of Chemical Technology; Hyderabad Telangana India
| | | |
Collapse
|
7
|
Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017; 983:9-41. [DOI: 10.1016/j.aca.2017.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|