1
|
Penelope Mabunda K, Rejoice Maseko B, Ncube S. Development and application of a new QuEChERS-molecularly imprinted solid phase extraction (QuEChERS-MISPE) technique for analysis of DDT and its derivatives in vegetables. Food Chem 2024; 436:137747. [PMID: 37862985 DOI: 10.1016/j.foodchem.2023.137747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The current study synthesized a molecularly imprinted polymer, combined it with the QuEChERS method to form a new hybrid technique, the QuEChERS-MISPE as an alternative to the QuEChERS-dSPE for analysis of DDTs as model pesticides. Batch studies confirmed that the binding of the DDTs to the MIP cavities formed a monolayer formation through chemisorption resulting in an adsorption capacity of 429 ng g-1. A study of matrix effects indicated signal suppression for both techniques. However, the new QuEChERS-MISPE technique is less affected by matrix effects, has better sensitivity and recoveries compared to the conventional QuEChERS-dSPE technique. Application of the new QuEChERS-MISPE technique detected trace levels of DDTs in vegetables in South Africa. However, a health risk assessment indicated that potential risks for consumers was minimal. Although the risk is minimal, the detection of DDTs in vegetables in South Africa should be a concern and more constant monitoring is required.
Collapse
Affiliation(s)
- Karabo Penelope Mabunda
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O. Box 60, Medunsa, 0204, South Africa
| | - Bethusile Rejoice Maseko
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O. Box 60, Medunsa, 0204, South Africa
| | - Somandla Ncube
- Department of Chemistry, Durban University of Technology, P O Box 1334, Durban 4000, South Africa.
| |
Collapse
|
2
|
Fabjanowicz M, Różańska A, Abdelwahab NS, Pereira-Coelho M, Haas ICDS, Madureira LADS, Płotka-Wasylka J. An analytical approach to determine the health benefits and health risks of consuming berry juices. Food Chem 2024; 432:137219. [PMID: 37647705 DOI: 10.1016/j.foodchem.2023.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Food products composition analysis is a prerequisite for verification of product quality, fulfillment of regulatory enforcements, checking compliance with national and international food standards, contracting specifications, and nutrient labeling requirements and providing quality assurance for use of the product for the supplementation of other foods. These aspects also apply to the berry fruit and berry juice. It also must be noted that even though fruit juices are generally considered healthy, there are many risks associated with mishandling both fruits and juices themselves. The review gathers information related with the health benefits and risk associated with the consumption of berry fruit juices. Moreover, the focus was paid to the quality assurance of berry fruit juice. Thus, the analytical methods used for determination of compounds influencing the sensory and nutritional characteristics of fruit juice as well as potential contaminants or adulterations.
Collapse
Affiliation(s)
- Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Anna Różańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Nada S Abdelwahab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina Pereira-Coelho
- Departament of Chemistry, Federal University of Santa Catarina, Des. Vitor Lima Av., Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Isabel Cristina da Silva Haas
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Rd., 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | | | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
3
|
Vosough S, Amini S, Ebrahimzadeh H, Kandeh SH. Application of electrospun composite nanofibers as an efficient sorbent for extraction of pesticides from food samples. J Chromatogr A 2023; 1687:463699. [PMID: 36508768 DOI: 10.1016/j.chroma.2022.463699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Herein, the composite of polylactic acid (PLA)/ Iron-based metal-organic framework (r-MIL-88A)/ Cellulose electrospun nanofibers was fabricated; and then, applied as a novel sorbent for thin-film micro-extraction (TFME) of four selected pesticides followed by GC-FID analysis. From the evaluation of scanning electron microscopy, Fourier transform infrared spectroscopy energy dispersive X-ray spectroscopy and X-ray diffraction, the successful fabrication of composite nanaofibers was approved. The presence of r-MIL-88A/Cellulose with large surface area and plenty of OH-functional groups results in improving PLA extraction efficiency. The effect of various main parameters on extraction efficiency was evaluated. The LODs (based on S/N = 3) were in the range of 1.0 to 1.5 ng mL-1. Intra-day and inter-day relative standard deviations (RSDs) were in the range of 4.8% - 5.6% and 5.2%-6.4%, respectively. In addition, the fiber to fiber relative standard deviations were observed in the range of 5.2%-12.3%. By using the optimized factors, acceptable linearity ranges were obtained in the range of 3.0-1900.0 ng mL-1 for metribuzin and ethofumasate, and 5.0-2000.0 for atrazine and ametryn (R2 = 0.9913-0.9967). The developed method was investigated in fruit juice, vegetables, milk and honey samples, and recoveries (79.3-95.6%) indicate that the PLA/r-MIL-88A/Cellulose can be a prominent composite film for the extraction of the target analytes in various samples.
Collapse
Affiliation(s)
- Sahar Vosough
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Miyardan FN, Afshar Mogaddam MR, Farajzadeh MA, Nemati M. Combining modified graphene oxide-based dispersive micro solid phase extraction with dispersive liquid–liquid microextraction in the extraction of some pesticides from zucchini samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Magnetic silicon carbide nanocomposite as a sorbent in magnetic dispersive solid phase extraction followed by dispersive liquid–liquid microextraction in the gas chromatographic determination of pesticides. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Mokhtari S, Khosrowshahi EM, Farajzadeh MA, Nemati M, Mogaddam MRA. A modified quick‐easy‐cheap‐effective‐rugged‐and‐safe method involving carbon nano–onions–based dispersive solid–phase extraction and dispersive liquid–liquid microextraction for pesticides from grape. J Sep Sci 2022; 45:3582-3593. [DOI: 10.1002/jssc.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Saba Mokhtari
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University Nicosia, North Cyprus Mersin 10 99138 Turkey
| | - Mahboob Nemati
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
7
|
Yıldız E, Çabuk H. Dispersive liquid-liquid microextraction method combined with sugaring-out homogeneous liquid-liquid extraction for the determination of some pesticides in molasses samples. J Sep Sci 2021; 44:4151-4166. [PMID: 34510755 DOI: 10.1002/jssc.202100551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022]
Abstract
In this study, a sensitive analytical method was developed to determine some pesticides (cyprodinil, trifloxystrobin, prometryn, propachlor, fenitrothion, chlorpyrifos, profenofos, and phosalone) in molasses samples. Pesticides were extracted from samples by dispersive liquid-liquid microextraction method combined with sugaring-out homogeneous liquid-liquid extraction and determined by gas chromatography-mass spectrometry analysis. In this method, pesticides in molasses samples were first extracted using a water-miscible solvent (acetonitrile) in the sugaring-out homogeneous liquid-liquid extraction stage. The sugar in the ratio of 84-88% naturally contained in the molasses sample enabled phase separation in the acetonitrile-water homogeneous mixture. Then acetonitrile phase containing pesticides was used as dispersing solvent in the second step of the process. Under the specified optimum conditions, the limit of detection was calculated between 0.8-6.1 ng/g and the limit of quantification was in the range of 2.5-20 ng/g. The relative standard deviation values of molasses samples containing 150 ng/g of each analyte were found to be lower than 4.9% intra-day and 5.6% for inter-day. This validated method has been successfully applied to different types of molasses.
Collapse
Affiliation(s)
- Elif Yıldız
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Hasan Çabuk
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
8
|
Xue J, Zhu X, Wu X, Shi T, Zhang D, Hua R. Self-acidity induced effervescence and manual shaking-assisted microextraction of neonicotinoid insecticides in orange juice. J Sep Sci 2019; 42:2993-3001. [PMID: 31301158 DOI: 10.1002/jssc.201900473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 11/07/2022]
Abstract
A novel dispersive liquid-liquid microextraction that combines self-induced acid-base effervescent reaction and manual shaking, coupled with ultra high performance liquid chromatography with tandem mass spectrometry was developed for simultaneous determination of ten neonicotinoid insecticides and metabolites in orange juice. An innovative aspect of this method was the utilization of the acidity of the juice for a self-reaction between acidic components contained in the juice sample and added sodium carbonate which generated carbon dioxide bubbles in situ, accelerating the analytes transfer to the extractant of 1-undecanol. The total acid content of juice sample was measured to produce the maximum amount of bubbles with minimum usage of carbonate. Manual shaking was subsequently adopted and was proven to enhance the extraction efficiency. The factors affecting the performance, including the type and the amount of the carbon dioxide source and extractant, and ionic strength were optimized. Compared with conventional methods, this approach exhibited low limits of detection (0.001-0.1 µg/L), good recoveries (86.2-103.6%), high enrichment factors (25-50), and negligible matrix effects (-12.3-13.7%). The proposed method was demonstrated to provide a rapid, practical, and environmentally friendly procedure due to no acid reagent, toxic solvent, or external energy requirement, giving rise to potential application on other high acid-content matrices.
Collapse
Affiliation(s)
- Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Xianbin Zhu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Taozhong Shi
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Dong Zhang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| |
Collapse
|
9
|
Torbati M, Farajzadeh MA, Afshar Mogaddam MR, Torbati M. Development of microwave-assisted liquid-liquid extraction combined with lighter than water in syringe dispersive liquid-liquid microextraction using deep eutectic solvents: Application in extraction of some herbicides from wheat. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Combination of QuEChERS extraction with magnetic solid phase extraction followed by dispersive liquid–liquid microextraction as an efficient procedure for the extraction of pesticides from vegetable, fruit, and nectar samples having high content of solids. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Xue J, Zhang D, Wu X, Pan D, Shi T, Hua R. Simultaneous determination of neonicotinoid insecticides and metabolites in rice by dispersive solid–liquid microextraction based on an in situ acid–base effervescent reaction and solidification of a floating organic droplet. Anal Bioanal Chem 2018; 411:315-327. [DOI: 10.1007/s00216-018-1482-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
|
12
|
Samsidar A, Siddiquee S, Shaarani SM. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Jouyban A, Farajzadeh MA, Afshar Mogaddam MR. A lighter-than-water deep eutectic-solvent-based dispersive liquid-phase microextraction method in a U-shaped homemade device. NEW J CHEM 2018. [DOI: 10.1039/c8nj00597d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new microextraction method, termed glass-filter-based dispersive liquid-phase microextraction using a lighter-than-water deep eutectic solvent, was developed for the extraction and preconcentration of different classes of pesticides from fruit juice and vegetable samples.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | | |
Collapse
|