1
|
Askari Lasaki B, Maurer P, Schönberger H. An integrated physical-chemical system for concurrent carbon, nitrogen, and phosphorus removal in municipal wastewater treatment plants. CHEMOSPHERE 2024; 352:141311. [PMID: 38281602 DOI: 10.1016/j.chemosphere.2024.141311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
A substantial quantity of suspended solids (SS) present in municipal wastewater leads to the swift depletion of the ion exchange (IE) capacity of natural zeolites like Clinoptilolite (CIO). This limitation has become the primary factor contributing to the limited adoption of the IE technique within municipal wastewater treatment plants (WWTPs). However, an extensive lab-scale and pilot-scale study conducted over approximately one year has made it possible to efficiently apply the IE system using CIO (main grain size of 0.5-1.0 mm) upstream of the primary sedimentation tank (PST). The primary treated wastewater (PTWW) was introduced to the IE system either by pre-straining or without any pre-treatment. The IE system's capabilities for removing total suspended solids (TSS), chemical oxygen demand (COD), and phosphorus (P) while primarily focusing on ammonium (NH4+) recovery were undergone for a detailed investigation. Frequent backwashing, involving intermittent water and air injection, was used to mitigate clogging as the main problem of the IE system for treating PTWW. The results revealed a mean removal efficiency of 85 %, 60 %, 50 %, and 30 % for NH4+, TSS, TCOD, and total phosphorus (TP), respectively, per cycle exclusively for the IE system. As the system scaled up, a substantial reduction was observed in the adsorption capacity, shifting from approximately 12 to 1 g NH4+ (kgCIO)-1. Despite this drawback, the study's finding showed that prolonged treatment of PTWW for NH4+ removal and recovery in municipal WWTPs, besides substantially reducing carbonaceous pollutants, is applicable. Implementing this application will not only decrease the biological treatment costs for municipal wastewater but also yield valuable by-products, such as NH4Cl, which can serve as a foundational material for the production of ammonium chloride fertilizer. Therefore, transitioning to IE systems in municipal WWTPs will diminish the reliance on resource-intensive methods like the Harber-Bosch procedure for producing nitrogen fertilizer.
Collapse
Affiliation(s)
- Behnam Askari Lasaki
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany.
| | - Peter Maurer
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Harald Schönberger
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Zhao L, Che X, Huang Y, Zhu K, Du Y, Gao J, Zhang R, Zhang Y, Ma G. Regulation on both Pore Structure and Pressure-resistant Property of Uniform Agarose Microspheres for High-resolution Chromatography. J Chromatogr A 2022; 1681:463461. [DOI: 10.1016/j.chroma.2022.463461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
3
|
Herman CE, Xu X, Traylor SJ, Ghose S, Li ZJ, Lenhoff AM. Behavior of weakly adsorbing protein impurities in flow-through ion-exchange chromatography. J Chromatogr A 2021; 1664:462788. [PMID: 34998025 DOI: 10.1016/j.chroma.2021.462788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Flow-through ion-exchange chromatography is frequently used in polishing biotherapeutics, but the factors that contribute to impurity persistence are incompletely understood. A large number of dilute impurities may be encountered that exhibit physicochemical diversity, making the flow-through separation performance highly sensitive to process conditions. The analysis presented in this work develops two novel correlations that offer transferable insights into the chromatographic behavior of weakly adsorbing impurities. The first, based on column simulations and validated experimentally, delineates the relative contributions of thermodynamic, transport, and geometric properties in dictating the initial breakthrough volumes of dilute species. The Graetz number for mass transfer was found to generalize the transport contributions, enabling estimation of a threshold in the equilibrium constant below which impurity persistence is expected. Impurity adsorption equilibria are needed to use this correlation, but such data are not typically available. The second relationship presented in this work may be used to reduce the experimental burden of estimating adsorption equilibria as a function of ionic strength. A correlation between stoichiometric displacement model parameters was found by consolidating isocratic retention data for over 200 protein-pH-resin combinations from the extant literature. Coupled with Yamamoto's analysis of linear gradient elution data, this correlation may be used to estimate retentivity approximately from a single experimental measurement, which could prove useful in predicting host-cell protein chromatographic behavior.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xuankuo Xu
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Steven J Traylor
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Sanchayita Ghose
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Zheng Jian Li
- Biologics Process Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
4
|
Sánchez-Trasviña C, Flores-Gatica M, Enriquez-Ochoa D, Rito-Palomares M, Mayolo-Deloisa K. Purification of Modified Therapeutic Proteins Available on the Market: An Analysis of Chromatography-Based Strategies. Front Bioeng Biotechnol 2021; 9:717326. [PMID: 34490225 PMCID: PMC8417561 DOI: 10.3389/fbioe.2021.717326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
Proteins, which have inherent biorecognition properties, have long been used as therapeutic agents for the treatment of a wide variety of clinical indications. Protein modification through covalent attachment to different moieties improves the therapeutic's pharmacokinetic properties, affinity, stability, confers protection against proteolytic degradation, and increases circulation half-life. Nowadays, several modified therapeutic proteins, including PEGylated, Fc-fused, lipidated, albumin-fused, and glycosylated proteins have obtained regulatory approval for commercialization. During its manufacturing, the purification steps of the therapeutic agent are decisive to ensure the quality, effectiveness, potency, and safety of the final product. Due to the robustness, selectivity, and high resolution of chromatographic methods, these are recognized as the gold standard in the downstream processing of therapeutic proteins. Moreover, depending on the modification strategy, the protein will suffer different physicochemical changes, which must be considered to define a purification approach. This review aims to deeply analyze the purification methods employed for modified therapeutic proteins that are currently available on the market, to understand why the selected strategies were successful. Emphasis is placed on chromatographic methods since they govern the purification processes within the pharmaceutical industry. Furthermore, to discuss how the modification type strongly influences the purification strategy, the purification processes of three different modified versions of coagulation factor IX are contrasted.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Miguel Flores-Gatica
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Daniela Enriquez-Ochoa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| |
Collapse
|
5
|
Chen T, Yang L, Yang X, Liao F. Ion-exchange medium coated with abundant small zwitterions for the purification of soluble proteins. Prep Biochem Biotechnol 2020; 51:405-413. [PMID: 32967535 DOI: 10.1080/10826068.2020.1821218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new ion-exchange medium was prepared from magnetic particles of ∼1.0 µm through coating with small zwitterions and then functionalizing with ampholytic groups for the isoelectric point of ∼6.4 and denoted MSP-ZEWB. With Meyerozyma guilliermondii uricase (MGU) as the model of soluble proteins, the purification of a protein via ion-exchange was compared between MSP-ZEWB through elution in discontinuous mode and Toyopearl SP-650C as a classical ion-exchange medium through elution in continuous mode. MGU was adsorbed at pH 7.6 or 8.0 and eluted via competitive displacement by NaCl or electrostatic repulsions with an elution buffer at pH 10 to reverse the type of net charges of MGU. From MSP-ZEWB, MGU was eluted more rapidly with the elution percentages higher than those from Toyopearl SP-650C. For yielding a unit of MGU activity, MSP-ZEWB gave the elution solution volumes that were ∼50% of those obtained with Toyopearl SP-650C. The yields of MGU of the highest purity from MSP-ZEWB were higher than those from Toyopearl SP-650C, but the highest purification folds with both media were comparable. MSP-ZEWB regenerated for 16 times still showed the consistent purification efficacy. Therefore, the ion-exchange media bearing small zwitterion coats showed great promise for the purification of soluble proteins.
Collapse
Affiliation(s)
- Tong Chen
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linyu Yang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaolan Yang
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fei Liao
- School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
6
|
Kumar V, Lenhoff AM. Mechanistic Modeling of Preparative Column Chromatography for Biotherapeutics. Annu Rev Chem Biomol Eng 2020; 11:235-255. [DOI: 10.1146/annurev-chembioeng-102419-125430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatography has long been, and remains, the workhorse of downstream processing in the production of biopharmaceuticals. As bioprocessing has matured, there has been a growing trend toward seeking a detailed fundamental understanding of the relevant unit operations, which for some operations include the use of mechanistic modeling in a way similar to its use in the conventional chemical process industries. Mechanistic models of chromatography have been developed for almost a century, but although the essential features are generally understood, the specialization of such models to biopharmaceutical processing includes several areas that require further elucidation. This review outlines the overall approaches used in such modeling and emphasizes current needs, specifically in the context of typical uses of such models; these include selection and improvement of isotherm models and methods to estimate isotherm and transport parameters independently. Further insights are likely to be aided by molecular-level modeling, as well as by the copious amounts of empirical data available for existing processes.
Collapse
Affiliation(s)
- Vijesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
7
|
Yeo S, An J, Park C, Kim D, Lee J. Design and Characterization of Phosphatidylcholine-Based Solid Dispersions of Aprepitant for Enhanced Solubility and Dissolution. Pharmaceutics 2020; 12:pharmaceutics12050407. [PMID: 32365589 PMCID: PMC7285057 DOI: 10.3390/pharmaceutics12050407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.
Collapse
|
8
|
Li Y, Stern D, Lock LL, Mills J, Ou SH, Morrow M, Xu X, Ghose S, Li ZJ, Cui H. Emerging biomaterials for downstream manufacturing of therapeutic proteins. Acta Biomater 2019; 95:73-90. [PMID: 30862553 DOI: 10.1016/j.actbio.2019.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Downstream processing is considered one of the most challenging phases of industrial manufacturing of therapeutic proteins, accounting for a large portion of the total production costs. The growing demand for therapeutic proteins in the biopharmaceutical market in addition to a significant rise in upstream titers have placed an increasing burden on the downstream purification process, which is often limited by high cost and insufficient capacities. To achieve efficient production and reduced costs, a variety of biomaterials have been exploited to improve the current techniques and also to develop superior alternatives. In this work, we discuss the significance of utilizing traditional biomaterials in downstream processing and review the recent progress in the development of new biomaterials for use in protein separation and purification. Several representative methods will be highlighted and discussed in detail, including affinity chromatography, non-affinity chromatography, membrane separations, magnetic separations, and precipitation/phase separations. STATEMENT OF SIGNIFICANCE: Nowadays, downstream processing of therapeutic proteins is facing great challenges created by the rapid increase of the market size and upstream titers, starving for significant improvements or innovations in current downstream unit operations. Biomaterials have been widely used in downstream manufacturing of proteins and efforts have been continuously devoted to developing more advanced biomaterials for the implementation of more efficient and economical purification methods. This review covers recent advances in the development and application of biomaterials specifically exploited for various chromatographic and non-chromatographic techniques, highlighting several promising alternative strategies.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Shih-Hao Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States.
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
9
|
Gu J, Zhang Y, Tong H, Liu Y, Sun L, Wang Y, Xiao L. Preparation and evaluation of dextran-grafted mixed-mode chromatography adsorbents. J Chromatogr A 2019; 1599:1-8. [DOI: 10.1016/j.chroma.2019.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022]
|
10
|
Vecchiarello N, Timmick SM, Goodwine C, Crowell LE, Love KR, Love JC, Cramer SM. A combined screening and in silico strategy for the rapid design of integrated downstream processes for process and product‐related impurity removal. Biotechnol Bioeng 2019; 116:2178-2190. [DOI: 10.1002/bit.27018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Nicholas Vecchiarello
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Center for Biotechnology and Interdisciplinary Studies Troy New York
| | - Steven M. Timmick
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Center for Biotechnology and Interdisciplinary Studies Troy New York
| | - Chaz Goodwine
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Center for Biotechnology and Interdisciplinary Studies Troy New York
| | - Laura E. Crowell
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Kerry R. Love
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge Massachusetts
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Steven M. Cramer
- Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Center for Biotechnology and Interdisciplinary Studies Troy New York
| |
Collapse
|
11
|
Reich SJ, Svidrytski A, Hlushkou D, Stoeckel D, Kübel C, Höltzel A, Tallarek U. Hindrance Factor Expression for Diffusion in Random Mesoporous Adsorbents Obtained from Pore-Scale Simulations in Physical Reconstructions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04840] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan-Johannes Reich
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Artur Svidrytski
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Dzmitry Hlushkou
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Daniela Stoeckel
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Christian Kübel
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexandra Höltzel
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
12
|
Ye L, Liang C, He J, Ou J, Wu Q. Facile Preparation of Ordered Macroporous Carboxyl Group Functionalized Polymer@SiO2 Composites and Their Adsorption Performance Towards Proteins. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0789-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Bhambure R, Angelo JM, Gillespie CM, Phillips M, Graalfs H, Lenhoff AM. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. II. Functional properties. J Chromatogr A 2017; 1506:55-64. [DOI: 10.1016/j.chroma.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 11/28/2022]
|
14
|
Liu T, Lin DQ, Wang CX, Yao SJ. Poly(glycidyl methacrylate)-grafted hydrophobic charge-induction agarose resins with 5-aminobenzimidazole as a functional ligand. J Sep Sci 2016; 39:3130-6. [DOI: 10.1002/jssc.201600482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Cun-Xiang Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| |
Collapse
|
15
|
|