1
|
Aydoğan C, Erdoğan İY, El-Rassi Z. Hydrophobic AEROSIL®R972 Fumed Silica Nanoparticles Incorporated Monolithic Nano-Columns for Small Molecule and Protein Separation by Nano-Liquid Chromatography. Molecules 2022; 27:molecules27072306. [PMID: 35408705 PMCID: PMC9000833 DOI: 10.3390/molecules27072306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
A new feature of hydrophobic fumed silica nanoparticles (HFSNPs) when they apply to the preparation of monolithic nano-columns using narrow monolithic fused silica capillary columns (e.g., 50-µm inner diameter) was presented. The monolithic nano-columns were synthesized by an in-situ polymerization using butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) at various concentrations of AEROSIL®R972, called HFSNPs. Dimethyl formamide (DMF) and water were used as the porogenic solvents. These columns (referred to as HFSNP monoliths) were successfully characterized by using scanning electron microscopy (SEM) and reversed-phase nano-LC using alkylbenzenes and polyaromatic hydrocarbons as solute probes. The reproducibility values based on run-to-run, column-to-column and batch-to-batch were found as 2.3%, 2.48% and 2.99% (n = 3), respectively. The optimized column also indicated promising hydrophobic interactions under reversed-phase conditions, while the feasibility of the column allowed high efficiency and high throughput nano-LC separations. The potential of the final HFSNP monolith in relation to intact protein separation was successfully demonstrated using six intact proteins, including ribonuclease A, cytochrome C, carbonic anhydrase isozyme II, lysozyme, myoglobin, and α-chymotrypsinogen A in nano-LC. The results showed that HFSNP-based monolithic nanocolumns are promising materials and are powerful tools for sensitive separations.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl 12000, Turkey
- Department of Chemistry, Bingöl University, Bingöl 12000, Turkey;
- Department of Food Engineering, Bingöl University, Bingöl 12000, Turkey
- Correspondence: ; Tel.: +90-426-216-19-58; Fax: +90-426-216-00-33
| | - İbrahim Y. Erdoğan
- Department of Chemistry, Bingöl University, Bingöl 12000, Turkey;
- Faculty of Health Sciences, Bingöl University, Bingöl 12000, Turkey
| | - Ziad El-Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
2
|
Ma H, Zhang Y, Duan T, Zhang J, Yang F, Zhang Y, Dong Y. Preparation and evaluation of poly (1-allyl-3-methylimidazole chloride@1,6-hexanediol dimethacrylate) conventional size monolithic column for HPLC. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Günyel Z, Aslan H, Demir N, Aydoğan C. Nano-liquid chromatography with a new nano-structured monolithic nanocolumn for proteomics analysis. J Sep Sci 2021; 44:3996-4004. [PMID: 34499809 DOI: 10.1002/jssc.202100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Herein, we report the preparation and application of a new nano-structured monolithic nanocolumn based on modified graphene oxide using narrow fused silica capillary column (e.g., 50 μm internal diameter). The nanocolumn was prepared by an in situ polymerization using butyl methacrylate, ethylene dimethacrylate, and methacryloyl graphene oxide nanoparticles. Dimethyl formamide and water were used as the porogenic solvent. After polymerization, the obtained nanocolumn was coated with dimethyloctadecylchlorosilane in order to enhance the hydrophobicity. Both isocratic and gradient nano-liquid chromatographic separations for small molecules (e.g., alkylbenzenes) and macromolecules (e.g., intact proteins) were performed. Theoretical plates number up to 3600 plates/m in isocratic mode for propylbenzene were achieved. It was demonstrated that the feasibility of graphene oxide modified monolithic nanocolumn for high-efficiency and high-throughput nanoscale proteomics analysis. The high resolving power of monolithic nanocolumn yielded sensitive protein separation with narrower peak width while a high-resolution analysis of peptides from trypsin-digested cytochrome C could be obtained. Graphene oxide based monolithic nanocolumns are promising and can allow to powerful tools for trace proteom sample analysis.
Collapse
Affiliation(s)
- Zeynep Günyel
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Hakiye Aslan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey
| |
Collapse
|
4
|
Aydoğan C, Aslan H, Günyel Z, Demir N, Erdoğan İY, Alharthi S, El Rassi Z. Graphene oxide-octadecylsilane incorporated monolithic nano-columns with 50 μm id and 100 μm id for small molecule and protein separation by nano-liquid chromatography. Electrophoresis 2021; 42:2637-2646. [PMID: 34213776 DOI: 10.1002/elps.202100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022]
Abstract
In this study, graphene oxide-octadecylsilane incorporated monolithic nano-columns were developed for protein analysis by nano liquid chromatography (nano LC). The monolithic column with 100 μm id was first prepared by an in situ polymerization using ethylene dimethacrylate (EDMA), 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl), and methacryloyl graphene oxide nanoparticles (MGONPs). MGONPs were synthesized by the treatment of 3-(trimethoxysilyl)propylmethacrylate (TMSPM) and GO. Tetrahydrofuran (THF) and dodecanol were used as the porogenic solvent. The resulting column was functionalized by dimethyloctadecylch lorosilane (DODCS) for the enhancement of hydrophobicity. The functionalization greatly improved the baseline separation of hydrophobic compounds such as polyaromatic hydrocarbons (PAHs). The optimized monolith with respect to total polymerization mixture was characterized by using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) X-ray diffraction (XRD) and chromatographic analyses. The blank monoliths without functionalization exhibited poor separation while a good separation performance of MGONPs functionalized monoliths was achieved. The monolith with 100 μm id was evaluated in protein separation in nano LC using RNase A, Cytochrome C, Lysozyme, Trypsin, and Ca isozyme II as the test proteins. It was shown that protein separation mechanism was based on large π-system of GO and hydrophobicity of the monolithic structure. Theoretical plates number up to 57 600 plates were achieved. The nano-column with 50 μm id was also prepared using the same polymerization mixture under the same chemical conditions. These nano-columns were employed for protein separation by nano LC, and the dependence of both nano-column performance on the internal diameter was also discussed.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey
| | - Hakiye Aslan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Zeynep Günyel
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - İbrahim Y Erdoğan
- Department of Chemistry, Bingöl University, Bingöl, Turkey.,Faculty of Health Sciences, Bingöl University, Bingöl, Turkey
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ziad El Rassi
- Department of Chemistry Oklahoma State University, Stillwater, Oklahloma, USA
| |
Collapse
|
5
|
Ganewatta N, El Rassi Z. Polymethacrylate-based monolithic column with incorporated carbamide-modified fumed silica nanoparticles for hydrophilic liquid interaction chromatography. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1899940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
6
|
Cheraghian G, Wistuba MP. Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen. NANOMATERIALS 2021; 11:nano11020454. [PMID: 33670134 PMCID: PMC7916902 DOI: 10.3390/nano11020454] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 01/12/2023]
Abstract
In this study, bitumen modified by fumed silica nanoparticles was characterized through dynamic shear rheometer tests, scanning electron microscopy, and Fourier transform infrared spectroscopy. The fumed silica nanoparticles were used in three different ratios, i.e., 0.1, 0.2 and 0.3 wt.-% of bitumen. Specifically, the modified bitumen characteristics were studied after laboratory aging by analyzing the chemical composition and rheological properties. From the determination of oxidation degree and carbonyl index it was found that the resistance of the modified bitumen to ultraviolet aging was improved with the increasing nanoparticle content. In bitumen modified by fumed silica nanoparticles, the nanoparticles were well dispersed. Moreover, the results illustrated that the bitumen properties were improved, and the improvement effect of 0.1 wt.-% fumed silica nanoparticles was more distinct than the higher concentrations.
Collapse
|
7
|
Free Amino Acid Analysis in Honey Samples by Hydrophilic Interaction Liquid Chromatography with UV Detection Using Precolumn Derivatization with Dansyl Chloride. Chromatographia 2021. [DOI: 10.1007/s10337-020-03991-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Broeckhoven K, Desmet G. Advances and Innovations in Liquid Chromatography Stationary Phase Supports. Anal Chem 2020; 93:257-272. [DOI: 10.1021/acs.analchem.0c04466] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| | - G. Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Ganewatta N, El Rassi Z. Organic polymer monolithic columns with incorporated bare and cyano-modified fumed silica nanoparticles for use in hydrophilic interaction liquid chromatography. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00239-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThis research article presents the preparation and characterization of monolithic columns with incorporated bare fumed silica nanoparticles (FSNPs) and cyano-modified FNSPs (CN-FSNPs) and their subsequent use in hydrophilic interaction liquid chromatography (HILIC) of neutral, polar, and low molecular weight solutes. The monolithic support was based on the in situ polymerization of glyceryl monomethacrylate (GMM) and ethylene glycol dimethacrylate (EDMA) yielding the poly(GMM-co-EDMA) monolith for the incorporation of bare FNSPs and of CN-FSNPs. The poly(GMM-co-EDMA) functioned as a “true support” for bare FSNPs and CN-FSNPs “stationary phases” as manifested by bare FSNPs and CN-FSNPs being the major contributors to solute retention and column selectivity. Overall, the prepared bare FSNPs and CN-FSNPs stationary phases proved useful in HILIC of small polar solutes including dimethylformamide, formamide, thiourea, nucleobases, nucleosides, organic acids, food additives, vitamins, and biological amines.
Collapse
|
10
|
Zhao S, Yu T, Du Y, Sun X, Feng Z, Ma X, Ding W, Chen C. An organic polymer monolith modified with an amino acid ionic liquid and graphene oxide for use in capillary electrochromatography: application to the separation of amino acids, β-blockers, and nucleotides. Mikrochim Acta 2019; 186:636. [PMID: 31432257 DOI: 10.1007/s00604-019-3723-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
The preparation of an organic polymer monolithic column modified with an amino acid ionic liquid and graphene oxide (AAIL-GO) and its application to capillary electrochromatography (CEC) was described. The AAIL tetramethylammonium-L-arginine was bonded to a monolithic column that was previously modified with graphene oxide by using an hydrochloride/N-hydroxysuccinimide coupling reaction. The morphology of a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was examined by scanning electron microscopy. The incorporation of AAIL and graphene oxide was detected by infrared spectroscopy and elemental analysis. The resulting monolithic column produced a strong and stable electroosmotic flow from the anode to the cathode in the pH range from 3 to 9. Compared with a column modified with AAIL or graphene oxide only, the AAIL-GO-modified column has a better separation ability for amino acids, β-blockers, and nucleotides (the resolution of three amino acids: 2.231 and 2.036, β-blockers: 2.779 and 2.470 and nucleotides: 8.345 and 3.321). Molecular modeling was applied to demonstrate the separation mechanism of small molecules which showed a good support for experimental results. Graphical abstract Schematic representation of capillary electrochromatography (CEC) systems with an amino acid ionic liquid-graphene oxide modified organic polymer monolithic column as stationary phases for separation of amino acids, β-blockers, and nucleotides.
Collapse
Affiliation(s)
- Shiyuan Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Tao Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wen Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| |
Collapse
|
11
|
Covalent organic framework incorporated chiral polymer monoliths for capillary electrochromatography. J Chromatogr A 2019; 1602:481-488. [PMID: 31230876 DOI: 10.1016/j.chroma.2019.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022]
Abstract
A covalent organic framework, Schiff base network-1 (SNW-1), was synthesized and incorporated into cellulase based poly(glycidyl methacrylate-co-ethylene dimethacrylate) (cellulase@poly(GMA-EDMA-SNW-1)) monolith to afford a novel chiral stationary phase for capillary electrochromatography (CEC). SNW-1 is attractive as a stationary phase for CEC because it not only features high surface areas but also provides conjugate structures and abundant amine groups to give π-π electrostatic stacking and hydrogen bonding property. Incorporation of SNW-1 into monolithic column could improve the column efficiency and increase the interactions between the tested racemates and the stationary phase thus significantly improved their CEC separation. The obtained monoliths were characterized by scanning electron microscopy, elemental analysis and nitrogen adsorption. Moreover, effects of SNW-1 concentration, immobilization pH of cellulase and CEC conditions were also investigated. Under the optimized conditions, the cellulase@poly(GMA-EDMA-SNW-1) monolith exhibited excellent enantioseparation performance for eight pairs of different classes of chiral drugs including β-blockers, antihistamines and anticoagulants. Satisfactory repeatability was achieved with relative standard deviations for intra-day, inter-day and column-to-column runs less than 4.5%, and batch-to-batch runs less than 6.8%. The experiment results reveal that the combination of the versatile features of monoliths and unique properties of SNW-1 could be a promising strategy for chiral separation.
Collapse
|
12
|
|
13
|
Fouad A, Ibrahim D, Adly FG, Ghanem A. An insight into chiral monolithic stationary phases for enantioselective high-performance liquid chromatography applications. J Sep Sci 2019; 42:2303-2340. [PMID: 31050176 DOI: 10.1002/jssc.201900159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 02/02/2023]
Abstract
In this review, three main classes of chiral monolithic stationary phases, namely silica-, organic polymer-, and hybrid-based monolithic stationary phases, are covered. Their preparations, applications, and advantages compared with the conventional-packed and open-tubular capillary columns are discussed. A detailed description of the different types and techniques used for the introduction of chiral selectors into the monolithic matrices such as immobilization, functionalization, coating, encapsulation, and bonding. Special emphasis is given to the recent developments of chiral selectors in HPLC monolithic stationary phases during the past 18 years.
Collapse
Affiliation(s)
- Ali Fouad
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Diana Ibrahim
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Frady G Adly
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Ashraf Ghanem
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| |
Collapse
|
14
|
Yang J, He S, Liu A, Chen J, Dong Y. Preparation of a poly(1, 6-hexylene dimethacrylate) conventional size high performance liquid chromatographic monolithic column for separation of small molecules. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Fresco-Cala B, Cárdenas S. Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques. Anal Chim Acta 2018; 1031:15-27. [DOI: 10.1016/j.aca.2018.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022]
|
16
|
Zhou XJ, Zhang LS, Song WF, Huang YP, Liu ZS. A polymer monolith incorporating stellate mesoporous silica nanospheres for use in capillary electrochromatography and solid phase microextraction of polycyclic aromatic hydrocarbons and organic small molecules. Mikrochim Acta 2018; 185:444. [DOI: 10.1007/s00604-018-2964-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
|
17
|
Alharthi S, El Rassi Z. Poly(2-carboxyethyl acrylate- co-ethylene glycol dimethacrylate) monolithic precursor. Part II. Carbodiimide assisted post-polymerization modification with tris and d-Glucamine for use in hydrophilic interaction capillary liquid chromatography. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1511802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sarah Alharthi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
18
|
Alharthi S, El Rassi Z. Poly(2-carboxyethyl acrylate- co-ethylene glycol dimethacrylate) precursor monolith. Part I. Carbodiimide assisted post-polymerization modification with octadecyl ligands for use in reversed phase capillary liquid chromatography. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1511801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sarah Alharthi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
19
|
Ganewatta N, El Rassi Z. Poly(glyceryl monomethacrylate-co-ethylene glycol dimethacrylate) monolithic columns with incorporated bare and surface modified gluconamide fumed silica nanoparticles for hydrophilic interaction capillary electrochromatography. Talanta 2018; 179:632-640. [DOI: 10.1016/j.talanta.2017.11.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022]
|
20
|
Ganewatta N, El Rassi Z. Organic polymer-based monolithic stationary phases with incorporated nanostructured materials for HPLC and CEC. Electrophoresis 2017; 39:53-66. [PMID: 28926678 DOI: 10.1002/elps.201700312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
This review article is concerned with the recent advances made in the field of organic polymer-based monoliths with incorporated nanostructured materials (NSMs) for use in liquid chromatography and capillary electrochromatography. It covers the pertinent literature published over the last 7-8 years with a total of 56 references. The present article has two distinct parts: one major part encompassing "traditional" organic polymer-based monoliths modified with NSMs and a minor part on cryogels modified with NSMs.
Collapse
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK
| |
Collapse
|
21
|
Beeram SR, Rodriguez E, Doddavenkatanna S, Li Z, Pekarek A, Peev D, Goerl K, Trovato G, Hofmann T, Hage DS. Nanomaterials as stationary phases and supports in liquid chromatography. Electrophoresis 2017; 38:2498-2512. [DOI: 10.1002/elps.201700168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Zhao Li
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Allegra Pekarek
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Darin Peev
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - Kathryn Goerl
- Department of Chemistry University of Nebraska Lincoln NE USA
| | - Gianfranco Trovato
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - Tino Hofmann
- Department of Electrical Engineering University of Nebraska Lincoln NE USA
| | - David S. Hage
- Department of Chemistry University of Nebraska Lincoln NE USA
| |
Collapse
|
22
|
Xu S, Mo R, Jin C, Cui X, Bai R, Ji Y. Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography. J Pharm Biomed Anal 2017; 140:190-198. [DOI: 10.1016/j.jpba.2017.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 11/26/2022]
|
23
|
|
24
|
Rathnasekara R, Khadka S, Jonnada M, El Rassi Z. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and high-performance liquid chromatography. Electrophoresis 2016; 38:60-79. [DOI: 10.1002/elps.201600356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Murthy Jonnada
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| | - Ziad El Rassi
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| |
Collapse
|
25
|
Boronic acid-fumed silica nanoparticles incorporated large surface area monoliths for protein separation by nano-liquid chromatography. Anal Bioanal Chem 2016; 408:8457-8466. [DOI: 10.1007/s00216-016-9968-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/26/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022]
|