1
|
Sun K, Zeng J, Liu Y, Zhou Z, Chen J, Chen J, Huang X, Gao F, Wang X, Zhang X, Wang X, Eeltink S, Zhang B. Microfluidic Precision Manufacture of High Performance Liquid Chromatographic Microspheres. Angew Chem Int Ed Engl 2024:e202418642. [PMID: 39422286 DOI: 10.1002/anie.202418642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
A key bottleneck in developing chromatographic material is the chemically entangled control of morphology, pore structure, and material chemistry, which holds back precision material manufacture in order to pursue advanced separation performance. In this work, a precision manufacture strategy based on droplet microfluidics was developed, for production of highly efficient chromatographic microspheres with independent control over particle morphology, pore structure and material chemistry. The droplet-synthesized microspheres display extremely narrow particle size distribution (CV<3 %), enabling a 100 % production yield due to complete elimination of sieving steps. More importantly, the size of the droplet-synthesized microspheres is freely adjustable without the need for re-optimizing chemical recipes or reaction conditions. The resulting materials exhibit excellent separation efficiencies, achieving a reduced plate height of hmin=1.67. This precision manufacture strategy also allows for flexible pore design and continuous pore size adjustment across three orders of magnitudes, providing a novel vehicle for resolution fine-tuning targeting protein separation. Besides traditional silica, organic-inorganic hybrid silica, zirconia, and titania microspheres can also be precisely synthesized on the same platform, supporting various separation applications and operating conditions. Powered by precision manufacture, super-throughput production, and versatile chemistry, the high-performance droplet-synthesized separation material will pave the way towards green and precision chromatographic industry.
Collapse
Affiliation(s)
- Kaiyue Sun
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ya Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhuoheng Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jikai Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiawei Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangyu Huang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Fan Gao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd, Hefei, 230088, China
| | | | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Huygens B, Desmet G. A logarithmic law for the velocity- and retention-dependency of the eddy dispersion in chromatographic columns. J Chromatogr A 2024; 1730:465088. [PMID: 38879979 DOI: 10.1016/j.chroma.2024.465088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Applying the recently introduced patchwork model for porous media, we present a new step forward in the modelling of eddy dispersion in chromatographic columns. The logarithmic law describing the velocity dependency emerging from this patchwork model is supplemented with a retention factor dependency via first principles modelling of the variations in flow resistance and retention capacity caused by the packing disorder. Furthermore, it is shown the derived expression is also able to fit the eddy dispersion originating from the wall effect on the packing. When applied to literature data of eddy dispersion, the newly introduced logarithmic law has a goodness of fit that is at least equal to that of Knox' empirical power law (R2>0.98). The main difference is that, whereas Knox' power law requires a separate fit for each component due to the retention factor dependency, the present model simultaneously fits all plate height curves measured on one chromatographic column, using only two parameters with a clear physical meaning.
Collapse
Affiliation(s)
- Bram Huygens
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
3
|
Adrover A, Venditti C, Desmet G. On the modelling of the effective longitudinal diffusion in bi-continuous chromatographic beds. J Chromatogr A 2024; 1721:464817. [PMID: 38518515 DOI: 10.1016/j.chroma.2024.464817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
We report on the possibility to extend to bi-continuous packings the two models for the effective longitudinal diffusion Deff, or B-term band broadening, recently proposed for discontinuous chromatographic beds. In bi-continuous packings, like monolithic columns, solutes experience a connected end-to-end pathway in both the mobile and stationary zones, as opposed to discontinuous packings, wherein the stationary adsorptive zone is distributed over a set of isolated elements. Since it is unclear whether a densely packed bed of spherical particles should be treated as a continuous or a bi-continuous medium, this extension is also crucial to fully understand the behaviour of packed particle beds. The proposed models for the effective longitudinal diffusion Deff originate from the adoption of the Two Zone Moment Analysis (TZMA) method by which Deff can be expressed as a linear combination of two essential quantities γm and γs, referred to as effective zone-diffusion factors. In the present work we propose two analytical models for γm and γs that now cover both the discontinuous and the bi-continuous case. To validate the theory, several bi-continuous packings are investigated, including the tetrahedral skeleton model (TSM), six different Triple Periodic Minimal Surface (TPMS) monoliths and randomly packed beds of spheres. For all of these, the models provide highly accurate results for Deff over a wide range of porosities and zone retention factors k″. The comparison with literature experimental data for both monolithic silica columns and columns packed with fully porous and porous-shell particles is also presented.
Collapse
Affiliation(s)
- Alessandra Adrover
- Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Italy.
| | - Claudia Venditti
- Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Italy
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Adrover A, Venditti C, Desmet G. An alternative general model for the effective longitudinal diffusion in chromatographic beds filled with ordered porous particles. J Chromatogr A 2024; 1715:464598. [PMID: 38171067 DOI: 10.1016/j.chroma.2023.464598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The two-zone moment-analysis method for the determination of the dispersion tensor in hierarchical retentive porous media has been adopted to compute and model the effective longitudinal diffusion Deff, or equivalently the B-term band broadening, in chromatographic beds filled with ordered porous particles. On the one hand, this approach offers accurate numerical results for Deff while keeping computational expenses low. On the other hand, it also gives direct insight for the analytical modelling, readily revealings the two main essential quantities (resp. referred to as the mobile-zone and stationary-zone effective diffusion factors γm and γs) that contribute to Deff. Modelling these two main parameters provided us with two new analytical models for Deff: a general one, valid for diluted and concentrated packings and accurate in the whole range of relevant intra-particle diffusion coefficient Dpz, and an approximate one, reliable for diluted packings and accurate also for concentrated packings with low to intermediate values of Dpz. The large advantage of both models is that they do not need any fitting parameter because all the required information is incorporated into the experimentally accessible geometric obstruction factor in the mobile phase originating from the tortuosity of the through-pore space (limiting case of fully solid particles without any retention). These models hence serve as an alternative to the Effective Medium Theory (EMT) models used so far in the literature. To validate the theory, five ordered geometries have been investigated. The accuracy of the general model proposed has been quantified and found to be comparable with that of the 3rd order approximate Torquato model for four geometries, even for macro-porosities close to the close-packing limit. The case of a 2-d triangular array of ellipsoidal particles with different elongations is also investigated to show the general validity and applicability of the models.
Collapse
Affiliation(s)
- Alessandra Adrover
- Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Italy.
| | - Claudia Venditti
- Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Italy
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Niezen LE, Sasaki T, Sadriaj D, Ritchie H, Broeckhoven K, Cabooter D, Desmet G. Detailed analysis of the effective and intra-particle diffusion coefficient of proteins at elevated pressure in columns packed with wide-pore core-shell particles. J Chromatogr A 2024; 1713:464538. [PMID: 38043163 DOI: 10.1016/j.chroma.2023.464538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
To determine the efficiency that can be obtained in a packed-bed liquid-chromatography column for a particular analyte, a correct determination of the molecular and effective diffusion coefficients (Dm and Deff) of the analyte is required. The latter is usually obtained via peak parking experiments wherein the flow is stopped. As a result, the column pressure rapidly dissipates and the measurement is essentially conducted at ambient pressure. This is problematic for analytes whose retention depends on pressure, such as proteins and potentially other large (dipolar) molecules. In that case, a conventional peak parking experiment is expected to lead to large errors in Deff. To obtain a better estimate ofDeff, the present study reports on the use of a set-up enabling peak parking measurements under pressurized conditions. This approach allowed us to report, for the first time, Deff for proteins at elevated pressure under retained conditions. First, Deff was determined at a (average) pressure of about 105 bar for a set of proteins with varying size, namely: bradykinin, insulin, lysozyme, β-lactoglobulin, and carbonic anhydrase in a column packed with 400 Å core-shell particles. The obtained data were then compared to those of several small analytes: acetophenone, propiophenone, benzophenone, valerophenone, and hexanophenone. A clear trend between Deff and analyte size was observed. The set-up was then used to determine Deff of bradykinin and lysozyme at variable (average) pressures ranging from 28 bar to 430 bar. These experiments showed a decrease in intra-particle and surface diffusion with pressure, which was larger for lysozyme than bradykinin. The data show that pressurized peak parking experiments are vital to correctly determine Deff when the analyte retention varies significantly with pressure.
Collapse
Affiliation(s)
- Leon E Niezen
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| | - Tsukasa Sasaki
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| | - Donatela Sadriaj
- University of Leuven (KU Leuven), Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, Leuven, Belgium
| | - Harald Ritchie
- Advanced Materials Technology, Silverside Rd, Wilmington, DE, USA
| | - Ken Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| | - Deirdre Cabooter
- University of Leuven (KU Leuven), Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, Leuven, Belgium
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium.
| |
Collapse
|
6
|
Moussa A, Deridder S, Broeckhoven K, Desmet G. Computational Fluid Dynamics Study of the Dispersion Caused by Capillary Misconnection in Nano-Flow Liquid Chromatography. Anal Chem 2023; 95:13975-13983. [PMID: 37671479 DOI: 10.1021/acs.analchem.3c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
It is well known that high-speed/high-efficiency separations in nano-flow liquid chromatography (LC) are very sensitive to the quality of the connections between the column and the rest of the instrument. In the present study, two types of connection errors (capillary misalignment and the occurrence of an inter-capillary gap) have been investigated using computational fluid dynamics. Interestingly, it has been found that large degrees of capillary misalignment (assuming an otherwise perfect contact between the capillary end-faces) can be afforded without introducing any significant dispersion over the entire range of investigated relative misalignment errors (0 ≤ ε/dcap ≤ 75%), even at the largest flow rates considered in nano-LC. On the other hand, when an inter-capillary gap is present, the dispersion very rapidly increases with the radial width Dc of this gap (extra variance ∼Dcn with n even reaching values above 4). The dependency on the gap length Lc is however much smaller. Results show that, when Dc ≤ 30 μm and Lc ≤ 200 μm, dispersion losses can be limited to the order of 1 nL2 at a flow of 1.5 μL/min, which is generally very small compared to the dispersion in the capillaries (20 μm i.d.) themselves. This result also reconfirms that zero-dead volume connectors with a sufficiently narrow bore can in theory be used without compromising peak dispersion in nano-LC, at least when the capillaries can be matched perfectly to the connector in- and outlet faces. The results are also indicative of the extra dispersion occurring inside microfluidic chips or in the connections between a microfluidic chip and the outer world.
Collapse
Affiliation(s)
- Ali Moussa
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander Deridder
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ken Broeckhoven
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Vankeerberghen B, Verloy S, Jimidar ISM, Gardeniers H, Desmet G. Structured microgroove columns as a potential solution to obtain perfectly ordered particle beds. J Chromatogr A 2023; 1700:464031. [PMID: 37148569 DOI: 10.1016/j.chroma.2023.464031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
We report on a novel concept to produce ordered beds of spherical particles in a suitable format for liquid chromatography. In this concept, spherical particles are either positioned individually (single-layer column) or stacked (multi-layer column) in micromachined pockets that form an interconnected array of micro-grooves acting as a perfectly ordered chromatographic column. As a first step towards realizing this concept, we report on the breakthrough we realized by obtaining a solution to uniformly fill the micro-groove arrays with spherical particles. We show this can be achieved in a few sweeps using a dedicated rubbing approach wherein a particle suspension is manually rubbed over a silicon chip. In addition, numerical calculations of the dispersion in the newly introduced column format have been carried out and demonstrate the combined advantage of order and reduced flow resistance the newly proposed concept has over the conventional packed bed. For fully-porous particles and a zone retention factor of k'' = 2, the hmin decreases from hmin = 1.9 for the best possible packed bed column to around hmin = 1.0 for the microgroove array, while the interstitial velocity-based separation impedance Ei (a direct measure for the required analysis time) decreases from 1450 to 200. The next steps will focus on the removal of occasional particles remaining on the sides of the micro-pockets, the addition of a cover substrate to seal the column and the subsequent conduction of actual chromatographic separations.
Collapse
Affiliation(s)
- Bert Vankeerberghen
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandrien Verloy
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium; Mesoscale Chemical Systems, University of Twente, Enschede, the Netherlands
| | - Ignaas S M Jimidar
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium; Mesoscale Chemical Systems, University of Twente, Enschede, the Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems, University of Twente, Enschede, the Netherlands
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
8
|
Moussa A, Broeckhoven K, Desmet G. Fundamental investigation of the dispersion caused by a change in diameter in nano liquid chromatography capillary tubing. J Chromatogr A 2023; 1688:463719. [PMID: 36542892 DOI: 10.1016/j.chroma.2022.463719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
We report on a Computational Fluid Dynamics (CFD) study of the extra dispersion caused by the change in diameter when coupling two pieces of capillary tubing with different diameter. In this first investigation into the problem, the focus is on the typical flow rates (0.25≤F≤2μL/min) and diameters (d≤40μm) used in nano-LC, considering both the case of either a doubling or halving of the diameter. The CFD simulations allow to study the problem from a fundamental point of view, i.e., under otherwise perfect conditions (perfect alignment, zero dead-volume). Flow rates, capillary diameters, diffusion coefficients and liquid viscosities have been varied over a range relevant for nano-LC (Reynolds-numbers Re ≤ 1), with also an excursion made towards high-temperature nano-LC conditions (Re ≥ 10 and more). The extra dispersion caused by the change in diameter has been quantified via a volumetric variance σ2conn, defined in such a way that the overall dispersion across the entire capillary system can be easily reconstructed from the known analytical solutions in the individual segments. When the two capillaries are longer than their diffusion entry length, covering most of the practical cases, σ2conn converges to a limiting value σ2conn,∞ which varies to a close approximation with the square of flow rate. Under the investigated nano-LC conditions, the σ2conn,∞-values are surprisingly small (e.g., on the order of 0.01 to 0.15 nL2 in a 20 to 40μm connection) compared to the dispersion occurring in the remainder of the capillaries.
Collapse
Affiliation(s)
- Ali Moussa
- Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Ken Broeckhoven
- Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Gert Desmet
- Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| |
Collapse
|
9
|
Broeckhoven K, Desmet G. Theory of separation performance and peak width in gradient elution liquid chromatography: A tutorial. Anal Chim Acta 2022; 1218:339962. [PMID: 35701036 DOI: 10.1016/j.aca.2022.339962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Separation performance in chromatography has been extensively studied since the dawn of the technique. Although the basic principles of band broadening and the resulting separation performance in isocratic elution are in general well known and understood, this is much less the case for gradient separations. In this tutorial, first the basic principles, concepts and parameters that determine separation performance, peak width and variance and analysis time in isocratic separations are reviewed. This is subsequently used to discuss the parameters that affect peak width in gradient elution, together with the concepts of plate count and plate height in this elution mode. In addition, the effect of peak compression in gradient elution is elaborated. Finally, the effect of extra-column dispersion on separation performance in gradient elution is discussed, and an overview of how these contributions can be experimentally evaluated is given.
Collapse
Affiliation(s)
- Ken Broeckhoven
- Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium.
| | - Gert Desmet
- Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| |
Collapse
|
10
|
Review of recent insights in the measurement and modelling of the B-term dispersion and related mass transfer properties in liquid chromatography. Anal Chim Acta 2022; 1214:339955. [DOI: 10.1016/j.aca.2022.339955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022]
|
11
|
Ismail OH, Catani M, Mazzoccanti G, Felletti S, Manetto S, De Luca C, Ye M, Cavazzini A, Gasparrini F. Boosting the enantioresolution of zwitterionic-teicoplanin chiral stationary phases by moving to wide-pore core-shell particles. J Chromatogr A 2022; 1676:463190. [PMID: 35704958 DOI: 10.1016/j.chroma.2022.463190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
A novel zwitterionic-teicoplanin chiral stationary phase (CSP), based on superficially porous particles (SPPs) of 2.7 µm particle diameter and 160 Å pore size, has been prepared and evaluated towards the enantioseparation of important classes of compounds, including chiral drugs, pesticides, and N-derivatized amino acids. The comparison with two analogous CSPs prepared on SPPs with 2.7 and 2.0 µm particle diameter and 90 Å pore size has revealed that the use of large-pore particles allows to dramatically improve both the enantioselectivity and the resolution-per-analysis-time, at the point that the column prepared with the new CSP outperformed the one packed with the finest particles. On the novel wide-pore CSP, the separation of fifteen racemates of pratical importance was significantly improved in terms of both enantioselectivity and resolution-per-analysis time-compared to the CSPs based on SPPs with smaller pores (90 Å). Such a CSP would be suitable for very fast enantioseparations allowing the saving of solvent for greener high-efficiency/high-throughput applications.
Collapse
Affiliation(s)
- Omar H Ismail
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università di Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Martina Catani
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università di Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, Roma 00185, Italy
| | - Simona Felletti
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università di Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Simone Manetto
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, Roma 00185, Italy
| | - Chiara De Luca
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università di Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Michael Ye
- MilliporeSigma, 595 North Harrison Road, Bellefonte, PA 16823, United States
| | - Alberto Cavazzini
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università di Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, Roma 00185, Italy.
| |
Collapse
|
12
|
Huygens B, Song H, Cabooter D, Desmet G. Detailed numerical analysis of the effect of radial column heterogeneities on peak parking experiments with slowly diffusing analytes. J Chromatogr A 2021; 1656:462557. [PMID: 34563893 DOI: 10.1016/j.chroma.2021.462557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/27/2022]
Abstract
The origin of the peak skewness that can be observed when applying the deconvolution method to isolate the diffusion process from the flow processes for peak parking experiments conducted under conditions of slow radial equilibration and strong trans-column velocity gradients was investigated. Numerical simulations were carried out for a variety of trans-column velocity profiles and a broad range of experimental conditions and system parameters were investigated. Results show that, under the aforementioned conditions, the traditionally employed variance subtraction method displays a consistent error which follows the dynamics of the diffusive relaxation during both the peak parking and the flow steps. It is also found that, under the same conditions, the peak deconvolution method is bound to produce deconvoluted "parking-only" peaks that are strongly asymmetric, despite the perfectly symmetric nature of the pure diffusion process marking this parking step. It is shown that this asymmetry is acquired during the flow step following the parking stop. During this step, parked and non-parked peaks are deformed in different ways, despite being subjected to the same trans-column velocity profile. This different deformation cannot be filtered away with the deconvolution or the variance subtraction method, hence introducing an error. Solutions to alleviate the peak skewness and the variance error consist of parking the peak close to the inlet or the outlet or exiting the parked peak through the column inlet (flow reversal method). Under the considered conditions, these approaches could reduce the error on the measured effective diffusion coefficient up to 87%. Carrying out the variance subtraction or the deconvolution process with a peak that has also been parked for a substantially long parking time instead of using a "no-parking" peak as is customary done, is another option to counter the effect.
Collapse
Affiliation(s)
- Bram Huygens
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| | - Huiying Song
- KU Leuven, Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, Leuven, Belgium
| | - Deirdre Cabooter
- KU Leuven, Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, Leuven, Belgium
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium.
| |
Collapse
|
13
|
Pattern-Type Separation of Triacylglycerols by Silver Thiolate×Non-Aqueous Reversed Phase Comprehensive Liquid Chromatography. SEPARATIONS 2021. [DOI: 10.3390/separations8060088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Triacylglycerols (TAGs), as the main components of edible oils and animal fats, are responsible for the nutritional value, organoleptic features and technological properties of foods; each lipid matrix shows a unique TAG profile which can serve as fingerprint to ensure the quality and authenticity of food products. The high complexity of many foodstuffs often makes untargeted elucidation of TAG components a challenging task; thus, more efficient separation techniques may be mandatory. In this research, the TAG profile of a borage (Borago officinalis) seed oil was obtained by two-dimensional comprehensive liquid chromatography (LC×LC), by the coupling of silver thiolate and octadecylsilica monodisperse materials. A total 94 TAG compounds were identified by ion trap-time of flight detection, using atmospheric pressure ionization, with the degree of unsaturation varying from 0 to 9, and partition values ranging from 36 to 56. The group-type separation afforded by this analytical approach may be useful to quickly fingerprint TAG components of oil samples.
Collapse
|
14
|
Felletti S, Catani M, Mazzoccanti G, De Luca C, Lievore G, Buratti A, Pasti L, Gasparrini F, Cavazzini A. Mass transfer kinetics on modern Whelk-O1 chiral stationary phases made on fully- and superficially-porous particles. J Chromatogr A 2020; 1637:461854. [PMID: 33387912 DOI: 10.1016/j.chroma.2020.461854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/26/2022]
Abstract
In this work, a detailed study of mass transfer properties of trans-stilbene oxide (TSO) enantiomers on two Whelk-O1 chiral stationary phases (CSPs) has been performed. The CSPs were prepared by using both fully-porous silica particles of 2.5 μm particle diameter and superficially-porous ones of 2.6 μm particle diameter as base materials. By combining stop-flow and dynamic measurements in normal-phase conditions, the different contributions to mass transfer have been estimated. The study of intraparticle diffusion has revealed that the adsorption of both enantiomers is localized (i.e., characterized by absence of surface diffusion). The determination of thermodynamic binding constants (measured through adsorption isotherms) supports this finding.
Collapse
Affiliation(s)
- Simona Felletti
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Martina Catani
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulia Mazzoccanti
- Dept. of Drug Chemistry and Technology, Sapienza Universita di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Chiara De Luca
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulio Lievore
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alessandro Buratti
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Pasti
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Francesco Gasparrini
- Dept. of Drug Chemistry and Technology, Sapienza Universita di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - Alberto Cavazzini
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
15
|
Matheuse F, Deridder S, Desmet G. An explicit expression for the retention factor and velocity dependency of the mobile zone mass transfer band broadening in packed spheres beds used in liquid chromatography. J Chromatogr A 2020; 1634:461710. [PMID: 33221656 DOI: 10.1016/j.chroma.2020.461710] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
The present study proposes a ready-to-use analytical expression to calculate the mobile zone mass transfer contribution (hCm) in packed bed columns. For this purpose, first high-accuracy computations of the band broadening in a perfectly ordered sphere array (fcc-arrangement, external porosity ε=0.40) were made using computational fluid dynamics (CFD), covering a broad range of zone retention factors (2≤k''≤18) and reduced velocities (0≤νi≤48). Subsequently, these data were used to determine the value of the geometrical constants in a number of possible analytical expressions for the hCm-contribution. This fitting exercise showed the traditional literature approach, using the Wilson-Geankoplis correlation to calculate the dimensionless Sherwood (Sh) number for the mass transfer, leads to fitting errors on the hCm-term as large as 150%. Instead, a new correlation for Sh is established. In addition, we also explored the difference in fitting accuracy between hCm-expressions based on either a plug-flow or a laminar flow profile assumption. Surprisingly, no significant difference in fitting accuracy between both assumptions was observed. Finally, a best-fit analytical expression is proposed that can represent the CFD-computed band broadening data with an average absolute fitting error of Δh=0.005, corresponding to a relative error of 2.5% on the hCm-term and of only 0.3% on the total plate height in a perfectly ordered sphere packing. Defining the presently investigated fcc-ordered sphere array with external porosity=40% as the reference geometry for a perfect sphere packing, the established expression can be used as a new yardstick expression against which the degree of eddy-dispersion can be measured.
Collapse
Affiliation(s)
- Frederick Matheuse
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sander Deridder
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium; Department of Chemical Engineering, Process and Environmental Technology Lab (PETLab), KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
16
|
Column-in-valve designs to minimize extra-column volumes. J Chromatogr A 2020; 1637:461779. [PMID: 33385742 DOI: 10.1016/j.chroma.2020.461779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022]
Abstract
We report on the design and performance of in-house built column cartridges that can be directly screwed into the ports of a commercial rotor-stator valve to minimize extra-column band broadening and pressure-drop losses when pursuing ultra-fast separations such as those needed in 2D and 3D-LC separations. Two basic designs were evaluated and were compared with the results obtained with a commercial screw-in column cartridge. The system produces an extra-column band broadening as low as 0.05 to 0.1 μL2 for the employed UV-detector set-up. Despite these very low values, the obtained separation efficiency of the in-house fabricated cartridge columns was very low, corresponding to a reduced minimal plate height around h=7 at the very best, which, for the 1.7 μm particle and 26.4 mm long columns corresponds to a number of theoretical plates of N=2200 under isocratic conditions. A similar poor performance was obtained with a commercial column cartridge with similar dimensions using the same set-up. One possible explanation of the observed performance could be found in the inner diameter of the column cartridges (i.d. =0.75 mm and 1 mm) which, for the employed sub 2-μm particles, falls into a region of column diameters that, according to literature models, is most likely to suffer from inherent packing problems.
Collapse
|
17
|
Broeckhoven K, Desmet G. Advances and Innovations in Liquid Chromatography Stationary Phase Supports. Anal Chem 2020; 93:257-272. [DOI: 10.1021/acs.analchem.0c04466] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| | - G. Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
18
|
Fe–N-doped carbon nanoparticles from coal tar soot and its novel application as a high performance air-cathode catalyst for microbial fuel cells. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Felletti S, De Luca C, Lievore G, Chenet T, Chankvetadze B, Farkas T, Cavazzini A, Catani M. Shedding light on mechanisms leading to convex-upward van Deemter curves on a cellulose tris(4-chloro-3-methylphenylcarbamate)-based chiral stationary phase. J Chromatogr A 2020; 1630:461532. [PMID: 32950816 DOI: 10.1016/j.chroma.2020.461532] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
An unusual convex-upward van Deemter curve was observed for the more retained enantiomer of a chiral sulfoxide (2-(benzylsulfinyl)benzamide) on a cellulose tris(4-chloro-3-methylphenylcarbamate)-based chiral stationary phase (CSP), prepared on silica particles of 1000 Å pore size. In contrast, the firstly eluted enantiomer of the same molecule exhibited the traditional convex-downward van Deemter curve. A detailed kinetic and thermodynamic investigation has revealed that this unusual phenomenon, which however has already been observed in chiral chromatography, originates when the adsorption of the compound is very strong and the solid-phase diffusion negligible. Experimentally, the intraparticle diffusion of the more retained enantiomer of the sulfoxide was found to be one order of magnitude smaller than that of the first eluted one. Overall, this translates into very little longitudinal diffusion (b-term of van Deemter curve) accompanied by high solid-liquid mass transfer resistance (c-term). Finally the comparison with another, differently-substituted chiral sulfoxide (whose enantiomers both exhibit traditional van Deemter curve behavior) has allowed to correlate these findings to the specific characteristics of the molecule.
Collapse
Affiliation(s)
- Simona Felletti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Chiara De Luca
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulio Lievore
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Chenet
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance, CA 90501, United States
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy.
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
20
|
Desmet G, Huygens B, Smits W, Deridder S. The checkerboard model for the eddy-dispersion in laminar flows through porous media. Part I: Theory and velocity field properties. J Chromatogr A 2020; 1624:461195. [PMID: 32540062 DOI: 10.1016/j.chroma.2020.461195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/25/2022]
Abstract
The additivity assumption underlying Giddings' coupling model for the eddy-dispersion in laminar flows through heterogeneous media is critically analyzed and a potential solution for its non-additivity in the high velocity limit is presented. Whereas the unit cell in Giddings' model only consists of a single velocity bias step, the unit dispersion cell of the newly proposed model comprises two consecutive velocity bias steps. Consequently, the unit cell of this new model allows to account for the occurrence of an internal velocity bias rectification at high reduced velocities and is therefore additive in both the low and high velocity limit. First, a mathematical expression for the velocity- and diffusion-dependency of the model's dispersion characteristics has been established. Subsequently, the physical behavior of the model is discussed. It is shown the relation between the eddy-dispersion plate height h and the reduced velocity ν can be expected to display a local maximum in systems where the transversal dispersion purely occurs by molecular diffusion, as is the case in perfectly ordered flow-through media. In disordered media, where the transversal dispersion also contains a significant advective component, the model predicts a velocity-dependency that is qualitatively similar to that described by Giddings' coupling model but, all other conditions being equal, converges to a significantly smaller horizontal asymptote at high reduced velocity. The latter might shed new light on earlier eddy-dispersion studies pursuing a quantitative agreement between experimental data and the Giddings model.
Collapse
Affiliation(s)
- Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Bram Huygens
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Wim Smits
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander Deridder
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
21
|
The checkerboard model for the Eddy-dispersion in Laminar flows through porous media. Part II: Application to ordered and disordered 2-D flow systems. J Chromatogr A 2020; 1624:461196. [DOI: 10.1016/j.chroma.2020.461196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/24/2022]
|
22
|
Experimental investigation of the retention factor dependency of eddy dispersion in packed bed columns and relation to knox's empirical model parameters. J Chromatogr A 2020; 1626:461339. [DOI: 10.1016/j.chroma.2020.461339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022]
|
23
|
Felletti S, De Luca C, Lievore G, Pasti L, Chenet T, Mazzoccanti G, Gasparrini F, Cavazzini A, Catani M. Investigation of mass transfer properties and kinetic performance of high‐efficiency columns packed with C
18
sub‐2 μm fully and superficially porous particles. J Sep Sci 2020; 43:1737-1745. [DOI: 10.1002/jssc.202000041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Simona Felletti
- Department of Chemistry and Pharmaceutical SciencesUniversity of Ferrara Ferrara Italy
| | - Chiara De Luca
- Department of Chemistry and Pharmaceutical SciencesUniversity of Ferrara Ferrara Italy
| | - Giulio Lievore
- Department of Chemistry and Pharmaceutical SciencesUniversity of Ferrara Ferrara Italy
| | - Luisa Pasti
- Department of Chemistry and Pharmaceutical SciencesUniversity of Ferrara Ferrara Italy
| | - Tatiana Chenet
- Department of Chemistry and Pharmaceutical SciencesUniversity of Ferrara Ferrara Italy
| | - Giulia Mazzoccanti
- Department of Drug Chemistry and Technology“Sapienza” University of Rome Rome Italy
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology“Sapienza” University of Rome Rome Italy
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical SciencesUniversity of Ferrara Ferrara Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical SciencesUniversity of Ferrara Ferrara Italy
| |
Collapse
|
24
|
Chankvetadze B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115709] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
An annular-flow, hollow-fiber membrane chromatography device for fast, high-resolution protein separation at low pressure. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Codesido S, Rudaz S, Veuthey JL, Guillarme D, Desmet G, Fekete S. Impact of particle size gradients on the apparent efficiency of chromatographic columns. J Chromatogr A 2019; 1603:208-215. [DOI: 10.1016/j.chroma.2019.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
|
27
|
Online comprehensive hydrophilic interaction chromatography × reversed phase liquid chromatography coupled to mass spectrometry for in depth peptidomic profile of microalgae gastro-intestinal digests. J Pharm Biomed Anal 2019; 175:112783. [DOI: 10.1016/j.jpba.2019.112783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
|
28
|
Borges-Muñoz AC, Miller DP, Zurek E, Colón LA. Silanization of superficially porous silica particles with p-aminophenyltrimethoxysilane. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Vanderlinden K, Desmet G, Bell DS, Broeckhoven K. Detailed efficiency analysis of columns with a different packing quality and confirmation via total pore blocking. J Chromatogr A 2018; 1581-1582:55-62. [PMID: 30446265 DOI: 10.1016/j.chroma.2018.10.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022]
Abstract
We report on a systematic study involving columns with a clearly different efficiency (4 distinct quality groups) obtained by packing the columns that were C18 bonded and endcapped with a different carbon loading. Using B-term analysis (via peak parking) and theoretical models to estimate the magnitude of the Cm- and Cs-term contributions, it could be concluded that the difference in efficiency among the groups was entirely due to a difference in eddy dispersion. As such, the columns provided an ideal testing ground to verify how well the total pore blocking (TPB)-method can be used to probe differences in packing heterogeneity. In agreement with earlier literature observations, it turns out the TPB-method is much more sensitive to packing heterogeneities than the eddy dispersion (Heddy)-contribution measured under open-pore conditions via B- and C- term subtraction. Typically, differences in Heddy on the order of 0.1-0.5μm translate into a difference on the order of 0.5-2μm in the TPB mode. This confirms the TPB as a powerful technique to make very sensitive measurements of the homogeneity of packed beds.
Collapse
Affiliation(s)
- Kim Vanderlinden
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| | - David S Bell
- MilliporeSigma/Supelco, 595 North Harrison Road, Bellefonte, PA 16823, USA
| | - Ken Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
30
|
Felletti S, De Luca C, Ismail OH, Pasti L, Costa V, Gasparrini F, Cavazzini A, Catani M. On the effect of chiral selector loading and mobile phase composition on adsorption properties of latest generation fully- and superficially-porous Whelk-O1 particles for high-efficient ultrafast enantioseparations. J Chromatogr A 2018; 1579:41-48. [DOI: 10.1016/j.chroma.2018.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022]
|
31
|
The Way to Ultrafast, High-Throughput Enantioseparations of Bioactive Compounds in Liquid and Supercritical Fluid Chromatography. Molecules 2018; 23:molecules23102709. [PMID: 30347852 PMCID: PMC6222346 DOI: 10.3390/molecules23102709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/15/2023] Open
Abstract
Until less than 10 years ago, chiral separations were carried out with columns packed with 5 or 3 μm fully porous particles (FPPs). Times to resolve enantiomeric mixtures were easily larger than 30 min, or so. Pushed especially by stringent requirements from medicinal and pharmaceutical industries, during the last years the field of chiral separations by liquid chromatography has undergone what can be defined a “true revolution”. With the purpose of developing ever faster and efficient method of separations, indeed, very efficient particle formats, such as superficially porous particles (SPPs) or sub-2 μm FPPs, have been functionalized with chiral selectors and employed in ultrafast applications. Thanks to the use of short column (1–2 cm long), packed with these extremely efficient chiral stationary phases (CSPs), operated at very high flow rates (5–8 mL/min), resolution of racemates could be accomplished in very short time, in many cases less than 1 s in normal-, reversed-phase and HILIC conditions. These CSPs have been found to be particularly promising also to carry out high-throughput separations under supercritical fluid chromatography (SFC) conditions. The most important results that have been recently achieved in terms of ultrafast, high-throughput enantioseparations both in liquid and supercritical fluid chromatography with particular attention to the very important field of bioactive chiral compounds will be reviewed in this manuscript. Attention will be focused not only on the latest introduced CSPs and their applications, but also on instrumental modifications which are required in some cases in order to fully exploit the intrinsic potential of new generation chiral columns.
Collapse
|
32
|
Ismail OH, Antonelli M, Ciogli A, De Martino M, Catani M, Villani C, Cavazzini A, Ye M, Bell DS, Gasparrini F. Direct analysis of chiral active pharmaceutical ingredients and their counterions by ultra high performance liquid chromatography with macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A 2018; 1576:42-50. [PMID: 30266236 DOI: 10.1016/j.chroma.2018.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Abstract
In this work the simultaneous separation of chiral active pharmaceutical ingredients (API) in salt form from their counterions has been performed by using different high-efficiency macrocyclic glycopeptide-based chiral stationary phases (CSPs). Not only a new zwitterionic vancomycin-based CSP has been prepared (similarly to what was done for teicoplanin) but macrocyclic selectors have also been bonded to sub-2 μm fully porous silica particles through traditional ureidic linkage to obtain versions of CSPs suitable for ultra-high performance applications. The direct separation of chiral APIs and counterions is particularly attracting since it simplifies the workflow traditionally used with reduction of analysis time and costs. The wide selection of macrocyclic antibiotics CSPs now available has allowed to manage different cases that can happen in the simultaneous separation of APIs and their counterions (either cations or anions). Indeed, while inorganic cations are retained on traditional vancomycin- and teicoplanin-based CSPs, inorganic anions are almost unretained (due to Donnan's effect). On the other hand, cations and anions can be both retained on the zwitterionic versions of these CSPs. Afterwards, zwitterionic CSPs allowed the separation of other compounds including N-derivative amino-acids, profens, polyols, sugar anomers, oligosaccharides and inorganic anions/cations opening new perspectives in the use of this family of CSPs.
Collapse
Affiliation(s)
- Omar H Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Michela Antonelli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy.
| | - Michela De Martino
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Martina Catani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Alberto Cavazzini
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Michael Ye
- Sigma-Aldrich/Supelco, 595 North Harrison Road, Bellefonte, PA, 16823, United States
| | - David S Bell
- Sigma-Aldrich/Supelco, 595 North Harrison Road, Bellefonte, PA, 16823, United States
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
33
|
Ismail OH, Losacco GL, Mazzoccanti G, Ciogli A, Villani C, Catani M, Pasti L, Anderson S, Cavazzini A, Gasparrini F. Unmatched Kinetic Performance in Enantioselective Supercritical Fluid Chromatography by Combining Latest Generation Whelk-O1 Chiral Stationary Phases with a Low-Dispersion in-House Modified Equipment. Anal Chem 2018; 90:10828-10836. [DOI: 10.1021/acs.analchem.8b01907] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Omar H. Ismail
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Gioacchino L. Losacco
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel Servet, 1, 1211 Geneva, 4, Switzerland
| | - Giulia Mazzoccanti
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Alessia Ciogli
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Claudio Villani
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Pasti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Scott Anderson
- Regis Technologies, Inc., 8210 Austin Avenue, Morton Grove, Illinois 60053, United States
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
34
|
Khundadze N, Pantsulaia S, Fanali C, Farkas T, Chankvetadze B. On our way to sub-second separations of enantiomers in high-performance liquid chromatography. J Chromatogr A 2018; 1572:37-43. [PMID: 30139619 DOI: 10.1016/j.chroma.2018.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 11/17/2022]
Abstract
In this study our preliminary attempt for obtaining fast and highly efficient separations of enantiomers in high-performance liquid chromatography with slightly modified state-of-the-art commercial instrumentation is described. In order to reach this goal after careful selection of chiral analytes, the preparation of chiral stationary phase (CSP), mobile phase composition and column dimensions were optimized. The concept of segmented chiral-achiral column was introduced. As the result of these optimizations baseline separation of enantiomers was achieved with the analysis time between 1-2 s.
Collapse
Affiliation(s)
- Nana Khundadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave. 3, 0179 Tbilisi, Georgia
| | - Salome Pantsulaia
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave. 3, 0179 Tbilisi, Georgia
| | - Chiara Fanali
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance, 90501 CA, USA
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave. 3, 0179 Tbilisi, Georgia.
| |
Collapse
|
35
|
Bezhitashvili L, Bardavelidze A, Mskhiladze A, Gumustas M, Ozkan SA, Volonterio A, Farkas T, Chankvetadze B. Application of cellulose 3,5-dichlorophenylcarbamate covalently immobilized on superficially porous silica for the separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 2018; 1571:132-139. [PMID: 30098733 DOI: 10.1016/j.chroma.2018.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 02/01/2023]
Abstract
Our earlier studies have demonstrated the applicability of polysaccharide-based chiral selectors in combination with superficially porous (or core-shell) silica (SPS) particles for the preparation of highly efficient chiral stationary phases (CSP). In earlier studies, CSPs were prepared by coating (adsorption) of the chiral selector onto the surface of silica. In this study we report for the first time the CSP obtained by covalent immobilization of a chiral selector onto the surface of SPS particles. The applicability of this CSP for the separation of enantiomers in pure methanol and acetonitrile, as well as in n-hexane/2-propanol mobile phases is shown. The effect of the injected sample amount, mobile phase flow rate and detection frequency on separation performance were studied, as well as high efficiency separation of enantiomers with the analysis time less than 30 s was attempted.
Collapse
Affiliation(s)
- Lia Bezhitashvili
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| | - Anna Bardavelidze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| | - Antonina Mskhiladze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia; Faculty of Natural Sciences and Healthcare, Sokhumi State University, Polytkovskaya 9, 0186 Tbilisi, Georgia
| | - Mehmet Gumustas
- Ankara University, Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Anadolu Ave, 06100 Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Anadolu Ave, 06100 Ankara, Turkey
| | - Alessandro Volonterio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta" Politecnico di Milano, Via Mancinelli 7-20131, Milano, Italy; C.N.R. Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mancinelli 7, 20131 Milano, Italy
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance, 90501 CA, USA
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia.
| |
Collapse
|
36
|
Gritti F. A stochastic view on column efficiency. J Chromatogr A 2018; 1540:55-67. [DOI: 10.1016/j.chroma.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 12/20/2022]
|
37
|
Catani M, Felletti S, Ismail OH, Gasparrini F, Pasti L, Marchetti N, De Luca C, Costa V, Cavazzini A. New frontiers and cutting edge applications in ultra high performance liquid chromatography through latest generation superficially porous particles with particular emphasis to the field of chiral separations. Anal Bioanal Chem 2018; 410:2457-2465. [DOI: 10.1007/s00216-017-0842-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 11/28/2022]
|
38
|
Methodologies to determine b-term coefficients revisited. J Chromatogr A 2018; 1532:124-135. [DOI: 10.1016/j.chroma.2017.11.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/16/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022]
|
39
|
Song H, Desmet G, Cabooter D. Assessment of intra-particle diffusion in hydrophilic interaction liquid chromatography and reversed-phase liquid chromatography under conditions of identical packing structure. J Chromatogr A 2017; 1523:204-214. [DOI: 10.1016/j.chroma.2017.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
|
40
|
Wahab MF, Patel DC, Wimalasinghe RM, Armstrong DW. Fundamental and Practical Insights on the Packing of Modern High-Efficiency Analytical and Capillary Columns. Anal Chem 2017; 89:8177-8191. [DOI: 10.1021/acs.analchem.7b00931] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M. Farooq Wahab
- Department of Chemistry and
Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Darshan C. Patel
- Department of Chemistry and
Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Rasangi M. Wimalasinghe
- Department of Chemistry and
Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Daniel W. Armstrong
- Department of Chemistry and
Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
41
|
Sommella E, Ismail OH, Pagano F, Pepe G, Ostacolo C, Mazzoccanti G, Russo M, Novellino E, Gasparrini F, Campiglia P. Development of an improved online comprehensive hydrophilic interaction chromatography × reversed-phase ultra-high-pressure liquid chromatography platform for complex multiclass polyphenolic sample analysis. J Sep Sci 2017; 40:2188-2197. [DOI: 10.1002/jssc.201700134] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Eduardo Sommella
- Laboratory of Food Chemistry, Dipartimento di Agraria (QuaSic. A. Tec.); Università Mediterranea di Reggio Calabria; Reggio Calabria Italy
- Department of Pharmacy; University of Salerno; Salerno Italy
| | - Omar H. Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco; Sapienza Università di Roma; Roma Italy
| | - Francesco Pagano
- Laboratory of Food Chemistry, Dipartimento di Agraria (QuaSic. A. Tec.); Università Mediterranea di Reggio Calabria; Reggio Calabria Italy
- Department of Pharmacy; University of Salerno; Salerno Italy
| | - Giacomo Pepe
- Laboratory of Food Chemistry, Dipartimento di Agraria (QuaSic. A. Tec.); Università Mediterranea di Reggio Calabria; Reggio Calabria Italy
- Department of Pharmacy; University of Salerno; Salerno Italy
| | - Carmine Ostacolo
- Department of Pharmacy; University of Naples Federico II; Napoli Italy
| | - Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco; Sapienza Università di Roma; Roma Italy
| | - Mariateresa Russo
- Laboratory of Food Chemistry, Dipartimento di Agraria (QuaSic. A. Tec.); Università Mediterranea di Reggio Calabria; Reggio Calabria Italy
| | - Ettore Novellino
- Department of Pharmacy; University of Naples Federico II; Napoli Italy
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco; Sapienza Università di Roma; Roma Italy
| | - Pietro Campiglia
- Department of Pharmacy; University of Salerno; Salerno Italy
- European Biomedical Research Institute of Salerno; Salerno Italy
| |
Collapse
|
42
|
Catani M, Ismail OH, Gasparrini F, Antonelli M, Pasti L, Marchetti N, Felletti S, Cavazzini A. Recent advancements and future directions of superficially porous chiral stationary phases for ultrafast high-performance enantioseparations. Analyst 2017; 142:555-566. [DOI: 10.1039/c6an02530g] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the use of superficially porous particles (SPPs) as chiral stationary phases for ultra-high performance liquid enantioseparations.
Collapse
Affiliation(s)
- Martina Catani
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Omar H. Ismail
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Michela Antonelli
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Luisa Pasti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Nicola Marchetti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Simona Felletti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Alberto Cavazzini
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| |
Collapse
|
43
|
Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 2016; 1482:32-38. [PMID: 28049582 DOI: 10.1016/j.chroma.2016.12.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Our earlier studies on the preparation of chiral stationary phases (CSP) based on superficially porous (or core-shell) silica (SPS) particles for the separation of enantiomers in HPLC have provided proof to the advantages of such sorbents. In particular, higher enantioselectivity was observed with the columns packed with superficially porous CSP compared to the columns packed with fully-porous (FP) silica-based CSPs at comparable content of chiral selector (polysaccharide derivative) in CSP. Also, less dependence of plate height on mobile phase flow rate and higher plate numbers and resolution calculated per unit time (i.e. speed of separation) were observed with SPS-based CSPs. Thirty years of CSP development have demonstrated that wide-pore silica has to be used as a support for large molecular weight chiral selectors such as the ones based on polysaccharides. In this study the effect of pore size of the core-shell silica support and of other experimental factors on column performance is demonstrated. Reduced plate heights in the range 1.4-1.5 were obtained, as well as highly effective baseline separations of enantiomers were observed with analysis times of less than 15s.
Collapse
|
44
|
Ismail OH, Pasti L, Ciogli A, Villani C, Kocergin J, Anderson S, Gasparrini F, Cavazzini A, Catani M. Pirkle-type chiral stationary phase on core–shell and fully porous particles: Are superficially porous particles always the better choice toward ultrafast high-performance enantioseparations? J Chromatogr A 2016; 1466:96-104. [DOI: 10.1016/j.chroma.2016.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/22/2023]
|
45
|
Deridder S, Catani M, Cavazzini A, Desmet G. A theoretical study on the advantage of core-shell particles with radially-oriented mesopores. J Chromatogr A 2016; 1456:137-44. [DOI: 10.1016/j.chroma.2016.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
|
46
|
Experimental evidence of the kinetic performance achievable with columns packed with new 1.9μm fully porous particles of narrow particle size distribution. J Chromatogr A 2016; 1454:86-92. [DOI: 10.1016/j.chroma.2016.05.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
|