1
|
Choi MH, Hong L, Chamorro LP, Edwards B, Timperman AT. Measuring the electrophoretic mobility and size of single particles using microfluidic transverse AC electrophoresis (TrACE). LAB ON A CHIP 2023; 24:20-33. [PMID: 37937351 DOI: 10.1039/d3lc00413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability to measure the charge and size of single particles is essential to understanding particle adhesion and interaction with their environment. Characterizing the physical properties of biological particles, like cells, can be a powerful tool in studying the association between the changes in physical properties and disease development. Currently, measuring charge via the electrophoretic mobility (μep) of individual particles remains challenging, and there is only one prior report of simultaneously measuring μep and size. We introduce microfluidic transverse AC electrophoresis (TrACE), a novel technique that combines particle tracking velocimetry (PTV) and AC electrophoresis. In TrACE, electric waves with 0.75 to 1.5 V amplitude are applied transversely to the bulk flow and cause the particles to oscillate. PTV records the particles' oscillating trajectories as pressure drives bulk flow through the microchannel. A simple quasi-equilibrium model agrees well with experimental measurements of frequency, amplitude, and phase, indicating that particle motion is largely described by DC electrophoresis. The measured μep of polystyrene particles (0.53, 0.84, 1, and 2 μm diameter) are consistent with ELS measurements, and precision is enhanced by averaging ∼100 measurements per particle. Particle size is simultaneously measured from Brownian motion quantified from the trajectory for particles <2 μm or image analysis for particles ≥2 μm. Lastly, the ability to analyze intact mammalian cells is demonstrated with B cells. TrACE systems are expected to be highly suitable as fieldable tools to measure the μep and size of a broad range of individual particles.
Collapse
Affiliation(s)
- M Hannah Choi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Liu Hong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leonardo P Chamorro
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Boyd Edwards
- Department of Physics, Utah State University, Logan, UT 84322, USA
| | - Aaron T Timperman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Caprise MA, Quevedo AC, Riley KR. Quantitative separation of polystyrene nanoparticles in environmental matrices with picogram detection limits using capillary electrophoresis. Chem Commun (Camb) 2023; 60:63-66. [PMID: 38018288 DOI: 10.1039/d3cc04588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
We developed a capillary electrophoresis method to separate polystyrene particles (PSPs) with different sizes or different surface functionalities. Separations were performed in buffer and 100 mg L-1 clay or 100 mg L-1 Suwanee River humic acid. In all solutions, PSPs were baseline or near-baseline resolved in less than 15 minutes.
Collapse
Affiliation(s)
- Michael A Caprise
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA.
| | - Ana C Quevedo
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A0C5, Canada
| | - Kathryn R Riley
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA.
| |
Collapse
|
3
|
Ouahabi OE, Salim H, Pero-Gascon R, Benavente F. A simple method for the analysis of extracellular vesicles enriched for exosomes from human serum by capillary electrophoresis with ultraviolet diode array detection. J Chromatogr A 2020; 1635:461752. [PMID: 33333350 DOI: 10.1016/j.chroma.2020.461752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are membrane enclosed vesicles (<1 µm), such as exosomes (30-150 nm), involved in cell communication, which have important biological implications. In this study, EV preparations were enriched for exosomes from human serum by polyethylene glycol (PEG) precipitation. Different variables of the PEG precipitation method (i.e. concentration of PEG, filtration and centrifugation of the resuspended pellets) were evaluated by measuring the size of the isolated particles by dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). In addition, a novel capillary electrophoresis-ultraviolet diode array (CE-UV-DAD) method was developed to obtain characteristic multiwavelength electrophoretic profiles of the EV preparations. Using EV preparations precipitated with 10% m/v of PEG, a background electrolyte (BGE) of 0.1 M Tris and 0.25 M boric acid at pH 7.9 with 0.5% m/v of hydroxypropyl cellulose (HPC) allowed reducing the adsorption of the EVs to the inner wall of the fused silica separation capillary. Sodium dodecyl sulfate (SDS) at 0.1% m/v was also necessary to enhance dispersibility, while homogenizing the charge of the particles to improve the size-dependent separation induced by HPC. Under these optimized conditions, a characteristic electrophoretic multiwavelength profile of the EV preparation and a standard of exosomes was obtained, and separation showed excellent reproducibility and appropriate analysis times. The obtained electrophoretic fingerprints are a simple, effective and complementary tool for the quality control of EV preparations.
Collapse
Affiliation(s)
- Oumaima El Ouahabi
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, 08028, Barcelona, Spain
| | - Hiba Salim
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, 08028, Barcelona, Spain
| | - Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, 08028, Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
4
|
Guzman NA, Guzman DE. A Two-Dimensional Affinity Capture and Separation Mini-Platform for the Isolation, Enrichment, and Quantification of Biomarkers and Its Potential Use for Liquid Biopsy. Biomedicines 2020; 8:biomedicines8080255. [PMID: 32751506 PMCID: PMC7459796 DOI: 10.3390/biomedicines8080255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Biomarker detection for disease diagnosis, prognosis, and therapeutic response is becoming increasingly reliable and accessible. Particularly, the identification of circulating cell-free chemical and biochemical substances, cellular and subcellular entities, and extracellular vesicles has demonstrated promising applications in understanding the physiologic and pathologic conditions of an individual. Traditionally, tissue biopsy has been the gold standard for the diagnosis of many diseases, especially cancer. More recently, liquid biopsy for biomarker detection has emerged as a non-invasive or minimally invasive and less costly method for diagnosis of both cancerous and non-cancerous diseases, while also offering information on the progression or improvement of disease. Unfortunately, the standardization of analytical methods to isolate and quantify circulating cells and extracellular vesicles, as well as their extracted biochemical constituents, is still cumbersome, time-consuming, and expensive. To address these limitations, we have developed a prototype of a portable, miniaturized instrument that uses immunoaffinity capillary electrophoresis (IACE) to isolate, concentrate, and analyze cell-free biomarkers and/or tissue or cell extracts present in biological fluids. Isolation and concentration of analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. When compared to other existing methods, the process of this affinity capture, enrichment, release, and separation of one or a panel of biomarkers can be carried out on-line with the advantages of being rapid, automated, and cost-effective. Additionally, it has the potential to demonstrate high analytical sensitivity, specificity, and selectivity. As the potential of liquid biopsy grows, so too does the demand for technical advances. In this review, we therefore discuss applications and limitations of liquid biopsy and hope to introduce the idea that our affinity capture-separation device could be used as a form of point-of-care (POC) diagnostic technology to isolate, concentrate, and analyze circulating cells, extracellular vesicles, and viruses.
Collapse
Affiliation(s)
- Norberto A. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08816, USA
- Correspondence: ; Tel.: +1-908-510-5258
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08816, USA
- Department of Internal Medicine, University of California at San Francisco, San Francisco, CA 94143, USA; or
| |
Collapse
|
5
|
Loughney JW, Minsker K, Ha S, Rustandi RR. Development of an imaged capillary isoelectric focusing method for characterizing the surface charge of mRNA lipid nanoparticle vaccines. Electrophoresis 2019; 40:2602-2609. [PMID: 31218707 PMCID: PMC6771570 DOI: 10.1002/elps.201900063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Lipid nanoparticles (LNPs) have been employed for drug delivery in small molecules, siRNA, mRNA, and pDNA for both therapeutics and vaccines. Characterization of LNPs is challenging because they are heterogeneous mixtures of large complex particles. Many tools for particle size characterization, such as dynamic and static light scattering, have been applied as well as morphology analysis using electron microscopy. CE has been applied for the characterization of many different large particles such as liposomes, polymer, and viruses. However, there have been limited efforts to characterize the surface charge of LNPs and CIEF has not been explored for this type of particle. Typically, LNPs for delivery of oligonucleotides contain at least four different lipids, with at least one being an ionizable cationic lipid. Here, we describe the development of an imaged capillary isoelectric focusing method used to measure the surface charge (i.e., pI) of an LNP-based mRNA vaccine. This method is capable of distinguishing the pI of LNPs manufactured with one or more different ionizable lipids for the purpose of confirming LNP identity in a manufacturing setting. Additionally, the method is quantitative and stability-indicating making it suitable for both process and formulation development.
Collapse
Affiliation(s)
- John W. Loughney
- Vaccine Analytical Research & DevelopmentMerck and Co. Inc.West PointPAUSA
| | - Kevin Minsker
- Vaccine Analytical Research & DevelopmentMerck and Co. Inc.West PointPAUSA
| | - Sha Ha
- Vaccine Analytical Research & DevelopmentMerck and Co. Inc.West PointPAUSA
| | | |
Collapse
|
6
|
Riley KR, El Hadri H, Tan J, Hackley VA, MacCrehan WA. High separation efficiency of gold nanomaterials of different aspect ratio and size using capillary transient isotachophoresis. J Chromatogr A 2019; 1598:216-222. [PMID: 30948041 DOI: 10.1016/j.chroma.2019.03.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 11/25/2022]
Abstract
Two modes of capillary electrophoresis (CE), capillary zone electrophoresis (CZE) and capillary transient isotachophoresis (ctITP), were compared for the detection and separation of spherical gold nanoparticles (AuNPs) and gold nanorods (AuNRs). The development of ctITP using two different leading ions is described. Overall, when compared to traditional capillary zone electrophoresis (CZE), ctITP resulted in improved peak shape and peak efficiency. Specifically, the number of theoretical plates for AuNR samples increased by a factor of 2-2.5 depending on the choice of leading ion. Further, using ctITP two AuNRs differing by aspect ratio were baseline resolved, whereas the same AuNRs could not be separated using CZE or other techniques like single particle inductively coupled plasma mass spectrometry (spICP-MS) and asymmetric flow field-flow fractionation (AF4). The results of this study demonstrate that ctITP is an efficient on-line technique for the improved detection and separation of gold nanomaterials in CE.
Collapse
Affiliation(s)
- Kathryn R Riley
- National Institute of Standards and Technology, Material Measurement Laboratory - Chemical Sciences Division, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Hind El Hadri
- National Institute of Standards and Technology, Material Measurement Laboratory - Materials Measurement Science Division, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Jiaojie Tan
- National Institute of Standards and Technology, Material Measurement Laboratory - Materials Measurement Science Division, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Vincent A Hackley
- National Institute of Standards and Technology, Material Measurement Laboratory - Materials Measurement Science Division, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - William A MacCrehan
- National Institute of Standards and Technology, Material Measurement Laboratory - Chemical Sciences Division, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| |
Collapse
|
7
|
Rabanel JM, Adibnia V, Tehrani SF, Sanche S, Hildgen P, Banquy X, Ramassamy C. Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media? NANOSCALE 2019; 11:383-406. [PMID: 30560970 DOI: 10.1039/c8nr04916e] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drug nanocarriers' surface chemistry is often presumed to be uniform. For instance, the polymer surface coverage and distribution of ligands on nanoparticles are described with averaged values obtained from quantification techniques based on particle populations. However, these averaged values may conceal heterogeneities at different levels, either because of the presence of particle sub-populations or because of surface inhomogeneities, such as patchy surfaces on individual particles. The characterization and quantification of chemical surface heterogeneities are tedious tasks, which are rather limited by the currently available instruments and research protocols. However, heterogeneities may contribute to some non-linear effects observed during the nanoformulation optimization process, cause problems related to nanocarrier production scale-up and correlate with unexpected biological outcomes. On the other hand, heterogeneities, while usually unintended and detrimental to nanocarrier performance, may, in some cases, be sought as adjustable properties that provide NPs with unique functionality. In this review, results and processes related to this issue are compiled, and perspectives and possible analytical developments are discussed.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- Centre INRS Institut Armand-Frappier, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Vahid Adibnia
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Soudeh F Tehrani
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Steven Sanche
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Patrice Hildgen
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Xavier Banquy
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Charles Ramassamy
- Centre INRS Institut Armand-Frappier, 531, boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
8
|
Ren Y, Song C, Liu W, Jiang T, Song J, Wu Q, Jiang H. On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array. Electrophoresis 2018; 40:979-992. [DOI: 10.1002/elps.201800325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/09/2018] [Accepted: 09/22/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yukun Ren
- State Key Laboratory of Robotics and System; Harbin Institute of Technology; Harbin Heilongjiang P. R. China
- The State Key Laboratory of Nonlinear Mechanics (LNM); Institute of Mechanics; Chinese Academy of Sciences; Beijing P. R. China
| | - Chunlei Song
- State Key Laboratory of Robotics and System; Harbin Institute of Technology; Harbin Heilongjiang P. R. China
| | - Weiyu Liu
- School of Electronics and Control Engineering, and School of Highway; Chang'an University; Xi'an Shaanxi P. R. China
| | - Tianyi Jiang
- State Key Laboratory of Robotics and System; Harbin Institute of Technology; Harbin Heilongjiang P. R. China
| | - Jingni Song
- School of Electronics and Control Engineering, and School of Highway; Chang'an University; Xi'an Shaanxi P. R. China
| | - Qisheng Wu
- School of Electronics and Control Engineering, and School of Highway; Chang'an University; Xi'an Shaanxi P. R. China
| | - Hongyuan Jiang
- State Key Laboratory of Robotics and System; Harbin Institute of Technology; Harbin Heilongjiang P. R. China
| |
Collapse
|
9
|
Olabi M, Stein M, Wätzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods 2018; 146:76-92. [PMID: 29753786 DOI: 10.1016/j.ymeth.2018.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Affinity capillary electrophoresis (ACE) analyzes noncovalent interactions between ligands and analytes based on changes in their electrophoretic mobility. This technique has been widely used to investigate various biomolecules, mainly proteins, polysaccharides and hormones. ACE is becoming a technique of choice to validate high throughput screening results, since it is very predictively working in realistic and relevant media, e.g. in body fluids. It is highly recommended to incorporate ACE as a powerful analytical tool to properly prepare animal testing and preclinical studies. The interacting molecules can be found free in solution or can be immobilized to a solid support. Thus, ACE is classified in two modes, free solution ACE and immobilized ACE. Every ACE mode has advantages and disadvantages. Each can be used for a variety of applications. This review covers literature of scopus and SciFinder data base in the period from 2016 until beginning 2018, including the keywords "affinity capillary electrophoresis", "immunoaffinity capillary electrophoresis", "immunoassay capillary electrophoresis" and "immunosorbent capillary electrophoresis". More than 200 articles have been found and 112 have been selected and thoroughly discussed. During this period, the data processing and the underlying calculations in mobility shift ACE (ms ACE), frontal analysis ACE (FA ACE) and plug-plug kinetic capillary electrophoresis (ppKCE) as mostly applied free solution techniques have substantially improved. The range of applications in diverse free solution and immobilized ACE techniques has been considerably broadened.
Collapse
Affiliation(s)
- Mais Olabi
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany.
| | - Matthias Stein
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany.
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany.
| |
Collapse
|
10
|
Alves MN, Nesterenko PN, Paull B, Haddad PR, Macka M. Separation of superparamagnetic magnetite nanoparticles by capillary zone electrophoresis using non-complexing and complexing electrolyte anions and tetramethylammonium as dispersing additive. Electrophoresis 2018; 39:1429-1436. [DOI: 10.1002/elps.201800095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Monica N. Alves
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
| | - Pavel N. Nesterenko
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
| | - Brett Paull
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
| | - Paul R. Haddad
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
| | - Mirek Macka
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS); University of Tasmania; Hobart Australia
- Department of Chemistry and Biochemistry; Mendel University; Brno Czech Republic
| |
Collapse
|
11
|
Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A. Int J Mol Sci 2018; 19:ijms19020642. [PMID: 29495282 PMCID: PMC5855864 DOI: 10.3390/ijms19020642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
New, as yet undiscovered aptamers for Protein A were identified by applying next generation sequencing (NGS) to a previously selected aptamer pool. This pool was obtained in a classical SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiment using the FluMag-SELEX procedure followed by cloning and Sanger sequencing. PA#2/8 was identified as the only Protein A-binding aptamer from the Sanger sequence pool, and was shown to be able to bind intact cells of Staphylococcus aureus. In this study, we show the extension of the SELEX results by re-sequencing of the same aptamer pool using a medium throughput NGS approach and data analysis. Both data pools were compared. They confirm the selection of a highly complex and heterogeneous oligonucleotide pool and show consistently a high content of orphans as well as a similar relative frequency of certain sequence groups. But in contrast to the Sanger data pool, the NGS pool was clearly dominated by one sequence group containing the known Protein A-binding aptamer PA#2/8 as the most frequent sequence in this group. In addition, we found two new sequence groups in the NGS pool represented by PA-C10 and PA-C8, respectively, which also have high specificity for Protein A. Comparative affinity studies reveal differences between the aptamers and confirm that PA#2/8 remains the most potent sequence within the selected aptamer pool reaching affinities in the low nanomolar range of KD = 20 ± 1 nM.
Collapse
|
12
|
Riley KR, Sims CM, Wood IT, Vanderah DJ, Walker ML. Short-chained oligo(ethylene oxide)-functionalized gold nanoparticles: realization of significant protein resistance. Anal Bioanal Chem 2018; 410:145-154. [PMID: 29085987 PMCID: PMC5763551 DOI: 10.1007/s00216-017-0704-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022]
Abstract
Protein corona formed on nanomaterial surfaces play an important role in the bioavailability and cellular uptake of nanomaterials. Modification of surfaces with oligoethylene glycols (OEG) are a common way to improve the resistivity of nanomaterials to protein adsorption. Short-chain ethylene oxide (EO) oligomers have been shown to improve the protein resistance of planar Au surfaces. We describe the application of these EO oligomers for improved protein resistance of 30 nm spherical gold nanoparticles (AuNPs). Functionalized AuNPs were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), and zeta potential measurements. Capillary electrophoresis (CE) was used for separation and quantitation of AuNPs and AuNP-protein mixtures. Specifically, nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was employed for the determination of equilibrium and rate constants for binding between citrate-stabilized AuNPs and two model proteins, lysozyme and fibrinogen. Semi-quantitative CE analysis was carried out for mixtures of EO-functionalized AuNPs and proteins, and results demonstrated a 2.5-fold to 10-fold increase in protein binding resistance to lysozyme depending on the AuNP surface functionalization and a 15-fold increase in protein binding resistance to fibrinogen for both EO oligomers examined in this study. Graphical abstract Using capillary electrophoresis, the addition of short-chained oligo(ethylene oxide) ligands to gold nanoparticles was shown to improve protein binding resistance up to 15-fold.
Collapse
Affiliation(s)
- Kathryn R Riley
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA.
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, 19081, USA.
| | - Christopher M Sims
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA.
| | - Imani T Wood
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
- University of Georgia College of Veterinary Medicine, 501 D. W. Brooks Drive, Athens, GA, 30602, USA
| | - David J Vanderah
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, 20850, USA
| | - Marlon L Walker
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA.
- Hollings Manufacturing Extension Partnership, NIST, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
13
|
Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials. Electrophoresis 2017; 38:2389-2404. [DOI: 10.1002/elps.201700097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|