1
|
Wu D, Fu L. Recent findings and advancements in the detection of designer benzodiazepines: a brief review. Arh Hig Rada Toksikol 2023; 74:224-231. [PMID: 38146763 PMCID: PMC10750316 DOI: 10.2478/aiht-2023-74-3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 12/27/2023] Open
Abstract
This review article takes a closer look at a new class of psychoactive substances called designer benzodiazepines (DBZs) and the challenges of their detection. These are adinazolam, clonazolam, deschloroetizolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam, phenazepam, and pyrazolam. They are central nervous system depressants and sedatives that can cause psychomotor impairment and increase the overdose risk when combined with other sedatives. DBZs undergo phase I and II metabolism similar to traditional benzodiazepines, but their specific metabolic pathways and the influence of genetic polymorphisms are yet to be clarified. Advances in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enhanced the method's sensitivity for DBZs and their metabolites in biological samples and coupled with improved blood sampling methods require less blood for drug monitoring. Further research should focus on elucidating their pharmacokinetic properties and metabolism in humans, especially in view of genetic polymorphisms and drug interactions that could inform clinical treatment choices. Even though we have witnessed important advances in DBZ detection and measurement, further refinements are needed to expand the scope of detectable DBZs and their metabolites. All this should help toxicological research to better identify and characterise the risks of chronic and polydrug abuse and facilitate clinical, forensic, and regulatory responses to this growing issue.
Collapse
Affiliation(s)
- Dihua Wu
- Hangzhou Dianzi University College of Materials and Environmental Engineering, Hangzhou, China
| | - Li Fu
- Hangzhou Dianzi University College of Materials and Environmental Engineering, Hangzhou, China
| |
Collapse
|
2
|
Zhang YX, Zhang Y, Bian Y, Liu YJ, Ren A, Zhou Y, Shi D, Feng XS. Benzodiazepines in complex biological matrices: Recent updates on pretreatment and detection methods. J Pharm Anal 2023; 13:442-462. [PMID: 37305786 PMCID: PMC10257149 DOI: 10.1016/j.jpha.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Benzodiazepines (BDZs) are used in clinics for anxiolysis, anticonvulsants, sedative hypnosis, and muscle relaxation. They have high consumptions worldwide because of their easy availability and potential addiction. They are often used for suicide or criminal practices such as abduction and drug-facilitated sexual assault. The pharmacological effects of using small doses of BDZs and their detections from complex biological matrices are challenging. Efficient pretreatment methods followed by accurate and sensitive detections are necessary. Herein, pretreatment methods for the extraction, enrichment, and preconcentration of BDZs as well as the strategies for their screening, identification, and quantitation developed in the past five years have been reviewed. Moreover, recent advances in various methods are summarized. Characteristics and advantages of each method are encompassed. Future directions of the pretreatment and detection methods for BDZs are also reviewed.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
3
|
Wang S, Zhang C, Liu Q, Tan B. Unprecedented processable hypercrosslinked polymers with controlled knitting. Macromol Rapid Commun 2021; 43:e2100449. [PMID: 34624165 DOI: 10.1002/marc.202100449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Indexed: 11/07/2022]
Abstract
Processable microporous organic polymers (MOPs) attract incomparable research interests becuase their vairous types such as monoliths and membranes are for practical application. Most of processable MOPs usually need the harsh conditions such as the use of expensive metal catalysts, specialized stereospecific monomers etc., which restrict the sustainable and real applications of processable MOPs. Therefore, the economical mass production of processable MOPs remains a formidable challenge. Herein, we report that a novel strategy for constructing processable hypercrosslinked polymers (HCPs) need two steps synthesis of pre-crosslinking and deep-crosslinking using divinylbenzene (DVB) as self-crosslinking monomer under the catalysis of a small amount of FeCl3 . The resulting HCPs monoliths possess high BET surface area of 1033-1056 m2 g-1 with hierarchical porosity, and show excellent mechanical strength up to 65 MPa. It is, to the best of our knowledge, the first report of using aromatic vinyl monomers as self-crosslinking monomers to generate HCPs monoliths with high surface area, yielding no by-products and high mechanical strength. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shaolei Wang
- Key Laboratory for Materials Chemistry for Energy Conversion Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengxin Zhang
- Key Laboratory for Materials Chemistry for Energy Conversion Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingsong Liu
- Key Laboratory for Materials Chemistry for Energy Conversion Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bien Tan
- Key Laboratory for Materials Chemistry for Energy Conversion Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
4
|
Grecco CF, Souza ID, Queiroz MEC. Novel materials as capillary coatings for in‐tube solid‐phase microextraction for bioanalysis. J Sep Sci 2021; 44:1662-1693. [DOI: 10.1002/jssc.202001070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Caroline Fernandes Grecco
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| | - Israel Donizeti Souza
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| | - Maria Eugênia Costa Queiroz
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
5
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
6
|
Zhao T, Du L, Zhang Z, Li N, Wang M, Ren Q. A poly(N,N-dimethylaminoethyl methacrylate-co-ethylene glycol dimethacrylate) monolith for direct solid-phase extraction of benzodiazepines from undiluted human urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3924-3932. [PMID: 32720657 DOI: 10.1039/d0ay01025a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel polymeric monolith using N,N-dimethylaminoethyl methacrylate as the monomer and ethylene glycol dimethacrylate as the crosslinker was successfully synthesized in a syringe and applied for direct solid-phase extraction of four benzodiazepines (bromazepam, triazolam, midazolam and diazepam) from undiluted urine samples prior to high performance liquid chromatography. The monolith was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption-desorption experiments. Moreover, extraction parameters, including loading, washing and eluting conditions were optimized. Under the optimized conditions, the proposed method obtained linear ranges of 2.0-500 ng mL-1 with correlation coefficients (r) higher than 0.9997. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were 0.4-0.6 ng mL-1 and 1.4-2.0 ng mL-1, respectively. The recoveries at three spiked levels ranged from 83.7% to 103% with the intra- and inter-day precisions from 0.6-7.6% to 2.7-9.8%. The present monolith allowed direct loading of crude urine samples without any filtration or dilution step. Besides, the sorbent offered an enhancement factor of 16.7-20.6 and was stable enough for ten replicate cycles of extraction/desorption of urine samples. The developed method presented an alternative strategy for the accurate and convenient determination of benzodiazepines in urine samples.
Collapse
Affiliation(s)
- Tengwen Zhao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China.
| | | | | | | | | | | |
Collapse
|
7
|
Manousi N, Tzanavaras PD, Zacharis CK. Bioanalytical HPLC Applications of In-Tube Solid Phase Microextraction: A Two-Decade Overview. Molecules 2020; 25:molecules25092096. [PMID: 32365828 PMCID: PMC7248733 DOI: 10.3390/molecules25092096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
In-tube solid phase microextraction is a cutting-edge sample treatment technique offering significant advantages in terms of miniaturization, green character, automation, and preconcentration prior to analysis. During the past years, there has been a considerable increase in the reported publications, as well as in the research groups focusing their activities on this technique. In the present review article, HPLC bioanalytical applications of in-tube SPME are discussed, covering a wide time frame of twenty years of research reports. Instrumental aspects towards the coupling of in-tube SPME and HPLC are also discussed, and detailed information on materials/coatings and applications in biological samples are provided.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Paraskevas D. Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (N.M.); (P.D.T.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-099-7663
| |
Collapse
|
8
|
Sun T, Ali MM, Wang D, Du Z. On-site rapid screening of benzodiazepines in dietary supplements using pipette-tip micro-solid phase extraction coupled to ion mobility spectrometry. J Chromatogr A 2020; 1610:460547. [DOI: 10.1016/j.chroma.2019.460547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/20/2022]
|
9
|
Shahraki S, Ahmar H, Nejati-Yazdinejad M. Electrochemical determination of nitrazepam by switchable solvent based liquid-liquid microextraction combined with differential pulse voltammetry. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Zhang S, Yao W, Fu D, Zhang C, Zhao H. Fabrication of magnetic zinc adeninate metal-organic frameworks for the extraction of benzodiazepines from urine and wastewater. J Sep Sci 2018; 41:1864-1870. [DOI: 10.1002/jssc.201701226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Suling Zhang
- College of Materials and Environmental Engineering; Hangzhou Dianzi University; Hangzhou China
| | - Weixuan Yao
- Department of Criminal Science and Technology; Zhejiang Police College; Hangzhou China
| | - Defeng Fu
- Zhejiang Key Laboratory of Forensic Science and Technology; Hangzhou China
| | - Chunxiao Zhang
- College of Materials and Environmental Engineering; Hangzhou Dianzi University; Hangzhou China
| | - Hongting Zhao
- College of Materials and Environmental Engineering; Hangzhou Dianzi University; Hangzhou China
| |
Collapse
|
11
|
Yao W, Fan Z, Zhang S. Graphene-modified Monolithic Capillary Column for the Microextraction of Trace Benzodiazepines in Biological Samples. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Weixuan Yao
- College of Chemistry and Materials, Shanxi Normal University, Linfen, China
- Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, China
| | - Zhefeng Fan
- College of Chemistry and Materials, Shanxi Normal University, Linfen, China
| | - Suling Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
12
|
Bu Y, Feng J, Tian Y, Wang X, Sun M, Luo C. An organically modified silica aerogel for online in-tube solid-phase microextraction. J Chromatogr A 2017; 1517:203-208. [PMID: 28843602 DOI: 10.1016/j.chroma.2017.07.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
Abstract
Aerogels have received considerable attentions because of its porous, high specific surface, unique properties and environmental friendliness. In this work, an organically modified silica aerogel was functionalized on the basalt fibers (BFs) and filled into a poly(ether ether ketone) (PEEK) tube, which was coupled with high performance liquid chromatography (HPLC) for in-tube solid-phase microextraction (IT-SPME). The aerogel was characterized by scanning electron microscopy (SEM) and fourier transform infrared spectrometry (FT-IR). The extraction efficiency of the tube was systematically investigated and shown enrichment factors from 2346 to 3132. An automated, sensitive and selective method was developed for the determination of five estrogens. The linear range was from 0.03 to 100μgL-1 with correlation coefficients (r) higher than 0.9989, and low detection limits (LODs) were 0.01-0.05μgL-1. The relative standard deviations (RSDs) for intra-day and inter-day were less than 4.5% and 6.7% (n=6), respectively. Finally, the analysis method was successfully applied to detect estrogens in sewage and emollient water samples.
Collapse
Affiliation(s)
- Yanan Bu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|