1
|
Wu Y, Barbieri E, Kilgore RE, Moore BD, Chu W, Mollica GN, Daniele MA, Menegatti S. Peptide ligands for the affinity purification of adenovirus from HEK293 and vero cell lysates. J Chromatogr A 2024; 1736:465396. [PMID: 39342729 DOI: 10.1016/j.chroma.2024.465396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Adenovirus (AdVs) is the viral vector of choice in vaccines and oncolytic applications owing to its high transduction activity and inherent immunogenicity. For decades, AdV isolation has relied on ultracentrifugation and ion-exchange chromatography, which are not suitable to large-scale production and struggle to deliver sufficient purity. Immunoaffinity chromatography resins of recent introduction feature high binding capacity and selectivity, but mandate harsh elution conditions (pH 3.0), afford low yield (< 20%), and provide limited reusability. Seeking a more efficient and affordable alternative, this study introduces the first peptide affinity ligands for AdV purification. The peptides were identified via combinatorial selection and in silico design to target hexons, the most abundant proteins in the adenoviral capsid. Selected peptide ligands AEFFIWNA and TNDGPDYSSPLTGSG were conjugated on chromatographic resins and utilized to purify AdV serotype 5 from HEK293 and Vero cell lysates. The peptide-functionalized resins feature high binding capacity (> 1010 active virions per mL at the residence time of 2 min), provide high yield (> 50%) and up to 100-fold reduction of host cell proteins and DNA. Notably, the peptide ligands enable gentle elution conditions (pH 8) that prevent the "shedding" of penton and fiber proteins, thus affording intact adenovirus particles with high cell-transduction activity. The study of the peptide ligands by surface plasmon resonance and molecular docking and dynamics simulations confirmed the selective targeting of hexon proteins and elucidated the molecular-level mechanisms underlying binding and release. Collectively, these results demonstrate the strong promise of peptide ligands presented herein for the affinity purification of AdVs from cell lysates.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Gina N Mollica
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center (BTEC), 850 Oval Drive, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606.
| |
Collapse
|
2
|
Shastry S, Barbieri E, Minzoni A, Chu W, Johnson S, Stoops M, Pancorbo J, Gilleskie G, Ritola K, Crapanzano MS, Daniele MA, Menegatti S. Serotype-agnostic affinity purification of adeno-associated virus (AAV) via peptide-functionalized chromatographic resins. J Chromatogr A 2024; 1734:465320. [PMID: 39217737 DOI: 10.1016/j.chroma.2024.465320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Adeno-associated viruses (AAVs) have emerged as a prominent family of vectors for gene delivery, providing therapeutic options to diseases once deemed incurable. At the same time, they necessitate efficient and affordable purification methods that can be platformed to serve all AAV serotypes. Current chromatographic tools, while affording high product purity, fail to bind certain serotypes, provide limited yield and lifetime, and impose harsh elution conditions that can compromise the vector's activity and safety. Addressing these challenges, this work demonstrates the application of new peptide ligands as the first serotype-agnostic technology for AAV purification by affinity chromatography. Our study reveals a pH-dependent affinity interaction: AAV2, AAV3, AAV6, AAV9, and AAVrh.10 are effectively captured at neutral pH, while binding AAV1, AAV5, AAV7, and AAV8 is stronger in a slightly acidic environment. The elution of bound AAVs was achieved using magnesium chloride at neutral pH for all serotypes, consistently affording capsid yields above 50% and genome yields above 80%, together with a >100-fold reduction in host cell proteins and nucleic acids. In particular, peptide ligand A10 exhibited remarkable binding capacity (> 1014 vp per mL of resin) and purification performance for all AAV serotypes, demonstrating broad applicability for gene therapy manufacturing. Finally, this work introduces novel alkaline-stable variants of A10 and demonstrates their use as the first affinity ligands capable of performing multiple cycles of AAV2, AAV8, and AAV9 purification with intermediate caustic cleaning without loss of capacity or product quality. Collectively, these results demonstrate the promise of this technology to further the impact and affordability of gene therapy.
Collapse
Affiliation(s)
- Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; LigaTrap Technologies LLC, Raleigh, NC 27606, USA
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA
| | - Stephanie Johnson
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Mark Stoops
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Kimberly Ritola
- Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA
| | | | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606, USA.
| |
Collapse
|
3
|
LeBarre JP, Chu W, Altern SH, Kocot AJ, Bhandari D, Barbieri E, Sly J, Crapanzano M, Cramer SM, Phillips M, Roush D, Carbonell R, Boi C, Menegatti S. Mixed-mode size-exclusion silica resin for polishing human antibodies in flow-through mode. J Chromatogr A 2024; 1720:464772. [PMID: 38452560 DOI: 10.1016/j.chroma.2024.464772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
The polishing step in the downstream processing of therapeutic antibodies removes residual impurities from Protein A eluates. Among the various classes of impurities, antibody fragments are especially challenging to remove due to the broad biomolecular diversity generated by a multitude of fragmentation patterns. The current approach to fragment removal relies on ion exchange or mixed-mode adsorbents operated in bind-and-gradient-elution mode. However, fragments that bear strong similarity to the intact product or whose biophysical features deviate from the ensemble average can elude these adsorbents, and the lack of a chromatographic technology enabling robust antibody polishing is recognized as a major gap in downstream bioprocessing. Responding to this challenge, this study introduces size-exclusion mixed-mode (SEMM) silica resins as a novel chromatographic adsorbent for the capture of antibody fragments irrespective of their biomolecular features. The pore diameter of the silica beads features a narrow distribution and is selected to exclude monomeric antibodies, while allowing their fragments to access the pores where they are captured by the mixed-mode ligands. The static and dynamic binding capacity of the adsorbent ranged respectively between 30-45 and 25-33 gs of antibody fragments per liter of resin. Selected SEMM-silica resins also demonstrated the ability to capture antibody aggregates, which adsorb on the outer layer of the beads. Optimization of the SEMM-silica design and operation conditions - namely, pore size (10 nm) and ligand composition (quaternary amine and alkyl chain) as well as the linear velocity (100 cm/h), ionic strength (5.7 mS/cm), and pH (7) of the mobile phase - afforded a significant reduction of both fragments and aggregates, resulting into a final antibody yield up to 80% and monomeric purity above 97%.
Collapse
Affiliation(s)
- Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Scott H Altern
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Andrew J Kocot
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Dipendra Bhandari
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Eduardo Barbieri
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Jae Sly
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Michael Crapanzano
- LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA
| | - Steven M Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | | | - David Roush
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, Roush Biopharma Panacea, 20 Squire Terrace, Colts Neck, NJ, 07033, USA
| | - Ruben Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; Department of Civil, Chemical Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; LigaTrap Technologies, Raleigh, 1791 Varsity Dr, Raleigh, NC, 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.
| |
Collapse
|
4
|
Barbieri E, Mollica GN, Moore BD, Sripada SA, Shastry S, Kilgore RE, Loudermilk CM, Whitacre ZH, Kilgour KM, Wuestenhagen E, Aldinger A, Graalfs H, Rammo O, Schulte MM, Johnson TF, Daniele MA, Menegatti S. Peptide ligands targeting the vesicular stomatitis virus G (VSV-G) protein for the affinity purification of lentivirus particles. Biotechnol Bioeng 2024; 121:618-639. [PMID: 37947118 DOI: 10.1002/bit.28594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The recent uptick in the approval of ex vivo cell therapies highlights the relevance of lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification-currently reliant on filtration and anion-exchange or size-exclusion chromatography-suffers from long process times and low yield of transducing particles, which translate into high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50%-60% of viral genomes; 40%-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·109 TU per mL of resin, or 5·1011 vp per mL of resin, at the residence time of 1 min) and clearance of host cell proteins (up to a 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.
Collapse
Affiliation(s)
- Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Gina N Mollica
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Casee M Loudermilk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary H Whitacre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Katie M Kilgour
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | - Thomas F Johnson
- Department of Biochemical Engineering, University College London, London, UK
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Chu W, Shastry S, Barbieri E, Prodromou R, Greback-Clarke P, Smith W, Moore B, Kilgore R, Cummings C, Pancorbo J, Gilleskie G, Daniele MA, Menegatti S. Peptide ligands for the affinity purification of adeno-associated viruses from HEK 293 cell lysates. Biotechnol Bioeng 2023; 120:2283-2300. [PMID: 37435968 PMCID: PMC10440015 DOI: 10.1002/bit.28495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Adeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands-typically camelid antibodies-that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1-VP2 and VP2-VP3 virion proteins with mild binding strength (KD ~ 10-5 -10- 6 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%-80%) on par with commercial adsorbents. The peptide-based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%-80%), 80- to 400-fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Greback-Clarke
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Will Smith
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher Cummings
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Prodromou R, Moore B, Chu W, Deal H, Miguel AS, Brown AC, Daniele MA, Pozdin V, Menegatti S. Molecular engineering of cyclic azobenzene-peptide hybrid ligands for the purification of human blood Factor VIII via photo-affinity chromatography. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2213881. [PMID: 37576949 PMCID: PMC10421628 DOI: 10.1002/adfm.202213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 08/15/2023]
Abstract
The use of benign stimuli to control the binding and release of labile biologics for their isolation from complex feedstocks is a key goal of modern biopharmaceutical technology. This study introduces cyclic azobenzene-peptide (CAP) hybrid ligands for the rapid and discrete photo-responsive capture and release of blood coagulation Factor VIII (FVIII). A predictive method - based on amino acid sequence and molecular architecture of CAPs - was developed to correlate the conformation of cis/trans CAP photo-isomers to FVIII binding and release. The combined in silico and in vitro analysis of FVIII:peptide interactions guided the design of a rational approach to optimize isomerization kinetics and biorecognition of CAPs. A photoaffinity adsorbent, prepared by conjugating selected CAP G-cycloAZOB[Lys-YYKHLYN-Lys]-G on translucent chromatographic beads, featured high binding capacity (> 6 mg of FVIII per mL of resin) and rapid photo-isomerization kinetics (τ < 30s) when exposed to 420-450 nm light at the intensity of 0.1 W·cm-2. The adsorbent purified FVIII from a recombinant harvest using a single mobile phase, affording high product yield (>90%), purity (>95%), and blood clotting activity. The CAPs introduced in this report demonstrate a novel route integrating gentle operational conditions in a rapid and efficient bioprocess for the purification of life-saving biotherapeutics.
Collapse
Affiliation(s)
- Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Brandyn Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Halston Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Adriana San Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, NC 27695, USA
| | - Vladimir Pozdin
- Department of Electrical and Computer Engineering, Florida International University, 10555 West Flagler St., Miami, FL 33174, USA
- Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler St., Miami, FL 33174, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
- Biomanufacturing Training and Education Center (BTEC), 850 Oval Drive, Raleigh, NC 27606, USA
| |
Collapse
|
7
|
Kilgore R, Chu W, Bhandari D, Fischler D, Carbonell RG, Crapanzano M, Menegatti S. Development of peptide affinity ligands for the purification of polyclonal and monoclonal Fabs from recombinant fluids. J Chromatogr A 2023; 1687:463701. [PMID: 36502645 DOI: 10.1016/j.chroma.2022.463701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Engineered multi-specific monoclonal antibodies (msAbs) and antibody fragments offer valuable therapeutic options against metabolic disorders, aggressive cancers, and viral infections. The advancement in molecular design and recombinant expression of these next-generation drugs, however, is not equaled by the progress in downstream bioprocess technology. The purification of msAbs and fragments requires affinity adsorbents with orthogonal biorecognition of different portions of the antibody structure, namely its Fc (fragment crystallizable) and Fab (fragment antigen-binding) regions or the CH1-3 and CL chains. Current adsorbents rely on protein ligands that, while featuring high binding capacity and selectivity, need harsh elution conditions and suffer from high cost, limited biochemical stability, and potential release of immunogenic fragments. Responding to these challenges, we undertook the de novo discovery of peptide ligands that target different regions of human Fab and enable product release under mild conditions. The ligands were discovered by screening a focused library of 12-mer peptides against a feedstock comprising human Fab and Chinese hamster ovary host cell proteins (CHO HCPs). The identified ligands were evaluated via binding studies as well as molecular docking simulations, returning excellent values of binding capacity (Qmax ∼ 20 mg of Fab per mL of resin) and dissociation constant (KD = 2.16·10-6 M). Selected ligand FRWNFHRNTFFP and commercial Protein L ligands were further characterized by measuring the dynamic binding capacity (DBC10%) at different residence times (RT) and performing the purification of polyclonal and monoclonal Fabs from CHO-K1 cell culture fluids. The peptide ligand featured DBC10% ∼ 6-16 mg/mL (RT of 2 min) and afforded values of yield (93-96%) and purity (89-96%) comparable to those provided by Protein L resins.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Dipendra Bhandari
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - David Fischler
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Michael Crapanzano
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
8
|
Chu W, Prodromou R, Moore B, Elhanafi D, Kilgore R, Shastry S, Menegatti S. Development of Peptide Ligands for the Purification of α-1 Antitrypsin from Cell Culture Fluids. J Chromatogr A 2022; 1679:463363. [DOI: 10.1016/j.chroma.2022.463363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
|
9
|
Sripada SA, Chu W, Williams TI, Teten MA, Mosley BJ, Carbonell RG, Lenhoff AM, Cramer SM, Bill J, Yigzaw Y, Roush D, Menegatti S. Towards continuous mAb purification: clearance of host cell proteins from CHO cell culture harvests via "flow-through affinity chromatography" using peptide-based adsorbents. Biotechnol Bioeng 2022; 119:1873-1889. [PMID: 35377460 DOI: 10.1002/bit.28096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/12/2022]
Abstract
The growth of advanced analytics in manufacturing monoclonal antibodies (mAb) has highlighted the challenges associated with the clearance of host cell proteins (HCPs). Of special concern is the removal of "persistent" HCPs, including immunogenic and mAb-degrading proteins, that co-elute from the Protein A resin and can escape the polishing steps. Responding to this challenge, we introduced an ensemble of peptide ligands that target the HCPs in Chinese hamster ovary (CHO) cell culture fluids and enable mAb purification via flow-through affinity chromatography. This work describes their integration into LigaGuardTM, an affinity adsorbent featuring an equilibrium binding capacity of ~30 mg of HCPs per mL of resin as well as dynamic capacities up to 16 and 22 mg/mL at 1- and 2-minute residence times, respectively. When evaluated against cell culture harvests with different mAb and HCP titers and properties, LigaGuardTM afforded high HCP clearance, with logarithmic removal values (LRVs) up to 1.5, and mAb yield above 90%. Proteomic analysis of the effluents confirmed the removal of high-risk HCPs, including cathepsins, histones, glutathione-S transferase, and lipoprotein lipases. Finally, combining LigaGuardTM for HCP removal with affinity adsorbents for product capture afforded a global mAb yield of 85%, and HCP and DNA LRVs > 4. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Taufika Islam Williams
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27607, USA.,Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA
| | - Matthew A Teten
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC, 27606, USA
| | - Brian J Mosley
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC, 27606, USA
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.,Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC, 27606, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street Colburn Laboratory Newark, DE, 19716, USA
| | - Steven M Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Jerome Bill
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yinges Yigzaw
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - David Roush
- Merck & Co., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA.,Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC, 27606, USA
| |
Collapse
|
10
|
Day K, Schneible JD, Young AT, Pozdin VA, Van Den Driessche G, Gaffney LA, Prodromou R, Freytes DO, Fourches D, Daniele M, Menegatti S. Photoinduced reconfiguration to control the protein-binding affinity of azobenzene-cyclized peptides. J Mater Chem B 2021; 8:7413-7427. [PMID: 32661544 DOI: 10.1039/d0tb01189d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of next-generation biorecognition elements (ligands) will be determined by the ability to remotely control their binding activity for a target biomolecule in complex environments. Compared to conventional mechanisms for regulating binding affinity (pH, ionic strength, or chaotropic agents), light provides higher accuracy and rapidity, and is particularly suited for labile targets. In this study, we demonstrate a general method to develop azobenzene-cyclized peptide ligands with light-controlled affinity for target proteins. Light triggers a cis/trans isomerization of the azobenzene, which results in a major structural rearrangement of the cyclic peptide from a non-binding to a binding configuration. Critical to this goal are the ability to achieve efficient photo-isomerization under low light dosage and the temporal stability of both cis and trans isomers. We demonstrated our method by designing photo-switchable peptides targeting vascular cell adhesion marker 1 (VCAM1), a cell marker implicated in stem cell function. Starting from a known VCAM1-binding linear peptide, an ensemble of azobenzene-cyclized variants with selective light-controlled binding were identified by combining in silico design with experimental characterization via spectroscopy and surface plasmon resonance. Variant cycloAZOB[G-VHAKQHRN-K] featured rapid, light-controlled binding of VCAM1 (KD,trans/KD,cis ∼ 130). Biotin-cycloAZOB[G-VHAKQHRN-K] was utilized to label brain microvascular endothelial cells (BMECs), showing co-localization with anti-VCAM1 antibodies in cis configuration and negligible binding in trans configuration.
Collapse
Affiliation(s)
- Kevin Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
12
|
Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities. J Chromatogr A 2020; 1625:461237. [DOI: 10.1016/j.chroma.2020.461237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022]
|
13
|
Barozzi A, Lavoie RA, Day KN, Prodromou R, Menegatti S. Affibody-Binding Ligands. Int J Mol Sci 2020; 21:ijms21113769. [PMID: 32471034 PMCID: PMC7312911 DOI: 10.3390/ijms21113769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/03/2023] Open
Abstract
While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody-peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 μM), recovery and purity (64-71% and 86-91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes.
Collapse
Affiliation(s)
- Annalisa Barozzi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - R. Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Kevin N. Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
- Correspondence: ; Tel.: +1-919-753-3276
| |
Collapse
|
14
|
Matos MJB, Pina AS, Roque ACA. Rational design of affinity ligands for bioseparation. J Chromatogr A 2020; 1619:460871. [PMID: 32044126 DOI: 10.1016/j.chroma.2020.460871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
Affinity adsorbents have been the cornerstone in protein purification. The selective nature of the molecular recognition interactions established between an affinity ligands and its target provide the basis for efficient capture and isolation of proteins. The plethora of affinity adsorbents available in the market reflects the importance of affinity chromatography in the bioseparation industry. Ligand discovery relies on the implementation of rational design techniques, which provides the foundation for the engineering of novel affinity ligands. The main goal for the design of affinity ligands is to discover or improve functionality, such as increased stability or selectivity. However, the methodologies must adapt to the current needs, namely to the number and diversity of biologicals being developed, and the availability of new tools for big data analysis and artificial intelligence. In this review, we offer an overview on the development of affinity ligands for bioseparation, including the evolution of rational design techniques, dating back to the years of early discovery up to the current and future trends in the field.
Collapse
Affiliation(s)
- Manuel J B Matos
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana S Pina
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - A C A Roque
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
15
|
Chromatographic assay to probe the binding energy and mechanisms of homologous proteins to surface-bound ligands. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121927. [DOI: 10.1016/j.jchromb.2019.121927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
|
16
|
Day K, Prodromou R, Saberi Bosari S, Lavoie A, Omary M, Market C, San Miguel A, Menegatti S. Discovery and Evaluation of Peptide Ligands for Selective Adsorption and Release of Cas9 Nuclease on Solid Substrates. Bioconjug Chem 2019; 30:3057-3068. [DOI: 10.1021/acs.bioconjchem.9b00703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kevin Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building 1, 911 Partners Way, Raleigh 27695-7905, United States
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building 1, 911 Partners Way, Raleigh 27695-7905, United States
| | - Sahand Saberi Bosari
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building 1, 911 Partners Way, Raleigh 27695-7905, United States
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building 1, 911 Partners Way, Raleigh 27695-7905, United States
| | - Mohammad Omary
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building 1, 911 Partners Way, Raleigh 27695-7905, United States
| | - Connor Market
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building 1, 911 Partners Way, Raleigh 27695-7905, United States
| | - Adriana San Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building 1, 911 Partners Way, Raleigh 27695-7905, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building 1, 911 Partners Way, Raleigh 27695-7905, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
17
|
Multiplexed Competitive Screening of One-Bead-One-Component Combinatorial Libraries Using a ClonePix 2 Colony Sorter. Int J Mol Sci 2019; 20:ijms20205119. [PMID: 31623061 PMCID: PMC6830312 DOI: 10.3390/ijms20205119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022] Open
Abstract
Screening solid-phase combinatorial libraries of bioactive compounds against fluorescently labeled target biomolecules is an established technology in ligand and drug discovery. Rarely, however, do screening methods include comprehensive strategies-beyond mere library blocking and competitive screening-to ensure binding selectivity of selected leads. This work presents a method for multiplexed solid-phase peptide library screening using a ClonePix 2 Colony Picker that integrates (i) orthogonal fluorescent labeling for positive selection against a target protein and negative selection against competitor species with (ii) semi-quantitative tracking of target vs. competitor binding for every library bead. The ClonePix 2 technology enables global at-a-glance evaluation and customization of the parameters for bead selection to ensure high affinity and selectivity of the isolated leads. A case study is presented by screening a peptide library against green-labeled human immunoglobulin G (IgG) and red-labeled host cell proteins (HCPs) using ClonePix 2 to select HCP-binding ligands for flow-through chromatography applications. Using this approach, 79 peptide ligand candidates (6.6% of the total number of ligands screened) were identified as potential HCP-selective ligands, enabling a potential rate of >3,000 library beads screened per hour.
Collapse
|
18
|
Bordelon T, Bobay B, Murphy A, Reese H, Shanahan C, Odeh F, Broussard A, Kormos C, Menegatti S. Translating antibody-binding peptides into peptoid ligands with improved affinity and stability. J Chromatogr A 2019; 1602:284-299. [DOI: 10.1016/j.chroma.2019.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
|
19
|
Saberi-Bosari S, Omary M, Lavoie A, Prodromou R, Day K, Menegatti S, San-Miguel A. Affordable Microfluidic Bead-Sorting Platform for Automated Selection of Porous Particles Functionalized with Bioactive Compounds. Sci Rep 2019; 9:7210. [PMID: 31076584 PMCID: PMC6510793 DOI: 10.1038/s41598-019-42869-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/01/2019] [Indexed: 11/09/2022] Open
Abstract
The ability to rapidly and accurately evaluate bioactive compounds immobilized on porous particles is crucial in the discovery of drugs, diagnostic reagents, ligands, and catalysts. Existing options for solid phase screening of bioactive compounds, while highly effective and well established, can be cost-prohibitive for proof-of-concept and early stage work, limiting its applicability and flexibility in new research areas. Here, we present a low-cost microfluidics-based platform enabling automated screening of small porous beads from solid-phase peptide libraries with high sensitivity and specificity, to identify leads with high binding affinity for a biological target. The integration of unbiased computer assisted image processing and analysis tools, provided the platform with the flexibility of sorting through beads with distinct fluorescence patterns. The customized design of the microfluidic device helped with handling beads with different diameters (~100-300 µm). As a microfluidic device, this portable novel platform can be integrated with a variety of analytical instruments to perform screening. In this study, the system utilizes fluorescence microscopy and unsupervised image analysis, and can operate at a sorting speed of up to 125 beads/hr (~3.5 times faster than a trained operator) providing >90% yield and >90% bead sorting accuracy. Notably, the device has proven successful in screening a model solid-phase peptide library by showing the ability to select beads carrying peptides binding a target protein (human IgG).
Collapse
Affiliation(s)
- Sahand Saberi-Bosari
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Mohammad Omary
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Kevin Day
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA. .,Biomanufacturing Training and Education Center (BTEC), NC State University, Raleigh, NC, 27695, USA.
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
20
|
Silica resins and peptide ligands to develop disposable affinity adsorbents for antibody purification. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lavoie RA, di Fazio A, Blackburn RK, Goshe MB, Carbonell RG, Menegatti S. Targeted Capture of Chinese Hamster Ovary Host Cell Proteins: Peptide Ligand Discovery. Int J Mol Sci 2019; 20:ijms20071729. [PMID: 30965558 PMCID: PMC6479451 DOI: 10.3390/ijms20071729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
The growing integration of quality-by-design (QbD) concepts in biomanufacturing calls for a detailed and quantitative knowledge of the profile of impurities and their impact on the product safety and efficacy. Particularly valuable is the determination of the residual level of host cell proteins (HCPs) secreted, together with the product of interest, by the recombinant cells utilized for production. Though often referred to as a single impurity, HCPs comprise a variety of species with diverse abundance, size, function, and composition. The clearance of these impurities is a complex issue due to their cell line to cell line, product-to-product, and batch-to-batch variations. Improvements in HCP monitoring through proteomic-based methods have led to identification of a subset of “problematic” HCPs that are particularly challenging to remove, both at the product capture and product polishing steps, and compromise product stability and safety even at trace concentrations. This paper describes the development of synthetic peptide ligands capable of capturing a broad spectrum of Chinese hamster ovary (CHO) HCPs with a combination of peptide species that allow for advanced mixed-mode binding. Solid phase peptide libraries were screened for identification and characterization of peptides that capture CHO HCPs while showing minimal binding of human IgG, utilized here as a model product. Tetrameric and hexameric ligands featuring either multipolar or hydrophobic/positive amino acid compositions were found to be the most effective. Tetrameric multipolar ligands exhibited the highest targeted binding ratio (ratio of HCP clearance over IgG loss), more than double that of commercial mixed-mode and anion exchange resins utilized by industry for IgG polishing. All peptide resins tested showed preferential binding to HCPs compared to IgG, indicating potential uses in flow-through mode or weak-partitioning-mode chromatography.
Collapse
Affiliation(s)
- R Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Alice di Fazio
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - R Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE 19711, USA.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
22
|
Fang YM, Lin DQ, Yao SJ. Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A 2018; 1571:1-15. [DOI: 10.1016/j.chroma.2018.07.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|
23
|
Kish WS, Roach MK, Sachi H, Naik AD, Menegatti S, Carbonell RG. Purification of human erythropoietin by affinity chromatography using cyclic peptide ligands. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:1-12. [DOI: 10.1016/j.jchromb.2018.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/12/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
|