1
|
He J, Wang L, Liu H, Sun B. Recent advances in molecularly imprinted polymers (MIPs) for visual recognition and inhibition of α-dicarbonyl compound-mediated Maillard reaction products. Food Chem 2024; 446:138839. [PMID: 38428083 DOI: 10.1016/j.foodchem.2024.138839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are important intermediates and precursors of harmful Maillard reaction products (e.g., acrylamide and late glycosylation end-products), and they exist widely in thermoprocessed sugar- or fat-rich foods. α-DCs and their end-products are prone to accumulation in the human body and lead to the development of various chronic diseases. Therefore, detection of α-DCs and their associated hazards in food samples is crucial. This paper reviews the preparation of molecularly imprinted polymers (MIPs) enabling visual intelligent responses and the strategies for recognition and capture of α-DCs and their associated hazards, and provides a comprehensive summary of the development of visual MIPs, including integration strategies and applications with real food samples. The visual signal responses as well as the mechanisms for hazard recognition and capture are highlighted. Current challenges and prospects for visual MIPs with advanced applications in food, agricultural and environmental samples are also discussed. This review will open new horizons regarding visual MIPs for recognition and inhibition of hazards in food safety.
Collapse
Affiliation(s)
- Jingbo He
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Lei Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
2
|
Ling J, Zhang W, Xiang P, Liao Y, Li J, Zhang Z, Ding Y. Trace detection of methcathinone in sewage using targeted extraction based on magnetic molecularly imprinted polymers coupled with liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4777-4784. [PMID: 37698227 DOI: 10.1039/d3ay01224g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Methcathinone, a new psychoactive substance (NPS), poses a serious threat to public health. Therefore, there is an urgent need to develop a reliable, selective, sensitive and simple analytical technique for monitoring trace amounts of this target NPS in complex matrices. For this purpose, magnetic molecularly imprinted polymers (MMIPs) based on MIPs combined with nano-sized magnetic Fe3O4 were developed for the specific enrichment of methcathinone in wastewater. The binding properties and selectivity of MMIPs toward methcathinone were evaluated and compared with non-imprinted polymer (MNIPs). For sensitive and selective extraction and determination of the target methcathinone, magnetic solid-phase extraction (MSPE) based on MMIPs was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Under optimized conditions, the proposed method was successfully used for the detection of methcathinone in wastewater, which provided a low limit of detection of 0.3 ng L-1 and a limit of quantification of 1.0 ng L-1 with relative standard deviations of less than 6.89% for intra- and inter-day analyses. Good linearity in the range of 1-2000 ng L-1 with a coefficient of determination (R2) greater than 0.98 was observed. Moreover, a certified reference material of water sample was successfully analyzed with satisfactory results and the recoveries of spike experiments ranged from 96.35-116.7%.
Collapse
Affiliation(s)
- Jiang Ling
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | - Wenqi Zhang
- Hebei Province Public Security Department Criminal Police Corps, Shijiazhuang, Hebei, China
| | - Ping Xiang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yingyuan Liao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | - Jiahao Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | | | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
3
|
Li Z, Mao Y, Yan X, Song Z, Liu C, Liu Z, Kang H, Yan X, Gu D, Zhang X, Huang Z. Design a flower-like magnetic graphite carbon microsphere for enhanced adsorption of 2,4-dichlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83138-83154. [PMID: 35763142 DOI: 10.1007/s11356-022-21364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a hazardous chlorinated organic chemical, so its removal is an important task to protect the whole ecosystem and human health. During the material preparation, the magnetic graphitic carbon adsorbent (HFMCM) with a sparse sheet-like stacking structure was formed by interlayer assembly of nickel hydroxide nanosheets and hydrothermal glucose carbon. The conditions for optimal performance of the adsorbent are 45 °C and pH 5. The maximum adsorption capacity of HFMCM-180 for 2,4-DCP is 147.06 mg·g-1. Adsorption behavior in accordance with Langmuir isothermal model and pseudo-second-order kinetic models. The adsorbent remains selective for 2,4-DCP in metal ion solutions. More than 75% of the adsorption capacity is maintained after five cycles of adsorption. Electrostatic interaction, hydrogen bonding, and π-π bonding play a major role in the adsorption of 2,4-DCP by HFMCM. The adsorbent was glucose as the carbon source, nickel sulfate as the magnetic source, and hexamethylenetetramine as the precipitant. Its carbonization after pretreatment with different hydrothermal temperatures resulted in the synthesis of flower-like graphitic carbon spheres with magnetic properties. The interconnected pore channels on the adsorbent surface conferred large specific surface area to the material. 2,4-DCP was efficiently adsorbed by π-π stacking, hydrogen bonding, and electrostatic attraction within the pore channels with low spatial potential resistance.
Collapse
Affiliation(s)
- Zhaoyang Li
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yanli Mao
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China.
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
| | - Xiaole Yan
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Zhongxian Song
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Chaopeng Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Zuwen Liu
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Haiyan Kang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Xu Yan
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Deming Gu
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Xia Zhang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
| | - Zhenzhen Huang
- Henan University of Urban Construction, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, 467000, China
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Zehu Wang, Li Z, Yan R, Fu X. Facile Fabrication of Hollow Molecularly Imprinted Polymer Particles with Multicore Structure via Miniemulsion Polymerization. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
High-sensitivity detection for cantharidin by ratiometric fluorescent sensor based on molecularly imprinted nanoparticles of quantum dots. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Lie KR, Samuel AO, Hasanah AN. Molecularly imprinted mesoporous silica: potential of the materials, synthesis and application in the active compound separation from natural product. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02074-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Xu Y, Huang T, Hu B, Meng M, Yan Y. Molecularly imprinted polydopamine coated CdTe@SiO2 as a ratiometric fluorescent probe for ultrafast and visual p-nitrophenol monitoring. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Recent progress on hollow porous molecular imprinted polymers as sorbents of environmental samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Bhogal S, Kaur K, Mohiuddin I, Kumar S, Lee J, Brown RJC, Kim KH, Malik AK. Hollow porous molecularly imprinted polymers as emerging adsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117775. [PMID: 34329047 DOI: 10.1016/j.envpol.2021.117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Hollow porous molecularly imprinted polymers (HPMIPs) are identified as promising adsorbents with many advantageous properties (e.g., large number of imprinted cavities, highly accessible binding sites, controllable pore structure, and fast mass transfer). Because of such properties, HPMIPs can exhibit improved binding capacity and kinetics to make analyte molecules readily interact with a greater number of recognition sites on the imprinted shell. This review highlights the synthesis and utility of HPMIPs as adsorbents to cover diverse targets of interest (e.g., endocrine disrupting chemicals, pharmaceuticals, pesticides, and heavy metal ions). The overall potential of HPMIPs is thus discussed in the context of analytical chemistry with particular focus on the efficient extraction of trace-level targets from complex matrices.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, 140406, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
10
|
Chang R, Ma C, Yu C, Zhang Q, Li Y, You J, Zhang S. Analysis of estrogens in milk samples using ionic liquid-modified covalent organic framework and stable isotope labeling technique. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Wang X, Pei K, Sun H, Wang Q. A magnetic relaxation switch sensor for determination of 17β-estradiol in milk and eggs based on aptamer-functionalized Fe 3 O 4 @Au nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5697-5706. [PMID: 33786831 DOI: 10.1002/jsfa.11224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/08/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A simple and rapid detection method for 17β-estradiol (E2 ) in complex food matrix is greatly desirable. A magnetic relaxation switch (MRS) sensor for detecting E2 based on the aptamer-functionalized gold-coated iron oxide (Fe3 O4 @Au) nanocomposite was designed in this study. Fe3 O4 @Au nanoparticles (NPs) played as a 'switch' between dispersed and aggregated states, while aptamer served as the recognition unit. RESULTS According to the sensing effect of monocomponent relaxation time (T2W ) for E2 , the volume ratio of aptamers to Fe3 O4 @Au, the sodium chloride (NaCl) concentration, the concentration of Fe3 O4 @Au@Apt, and reaction time were optimized to be 4:1, 0.03 mol L-1 , 4 μmol L-1 and 15 min, respectively. For the analysis of food sample, the E2 was quantified over a concentration range of 1 to 100 nmol L-1 with a detection limit of 7.6 nmol L-1 for milk samples, while a linearity range of 20 to 100 nmol L-1 and a detection limit of 8.57 nmol L-1 for egg samples. CONCLUSION These results exhibited that the MRS sensor could be a promising platform for the rapid detecting of E2 in food sample. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kaili Pei
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hanying Sun
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Qi Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Fan H, Wang J, Xu X, Jin Z, Wang J. A comparative study of photoresponsive molecularly imprinted polymers with different shell thicknesses: Effects on 6-O-α-maltosyl-β-cyclodextrin separation. J Food Sci 2021; 86:4060-4069. [PMID: 34458994 DOI: 10.1111/1750-3841.15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/28/2022]
Abstract
Photoresponsive surface molecularly imprinted polymers (PSMIPs) with controlled nanoshell thicknesses were synthesized using different amounts of precursor materials to determine the effects of polymer shell layer thickness on the separation and purification of 6-O-alpha-maltosyl-beta-cyclodextrin (Mal-β-CD). The physicochemical properties and adsorption and desorption capacities of PSMIPs with different shell thicknesses were studied. Interestingly, the uniform thickness of the imprinted polymer shell layer could be adjusted from 10 to 60 nm by varying the amount of polymerization precursors, and the average mesopore diameter of PSMIPs was not significantly affected by shell thickness. However, the removal efficiency and selective capacity of PSMIPs on Mal-β-CD were strongly correlated to their shell thickness. The adsorption behavior of PSMIPs on Mal-β-CD fitted well with the Langmuir adsorption model and pseudo-second-order kinetic model. Based on the obtained results, PSMIPs with a 30-nm imprinted layer were found to be an excellent adsorbent for Mal-β-CD separation, with an adsorption capacity of 18.12 mg/g. They can therefore be used for industrial chromatographic separations of Mal-β-CD in the future. PRACTICAL APPLICATION: This article clearly demonstrated that the shell thickness of core-shell molecularly imprinted materials affected the degree and rate of cyclodextrin separation. Determining the optimal thickness is of great significance for the material in the separation and purification of cyclodextrin.
Collapse
Affiliation(s)
- Haoran Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, P. R. China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, P. R. China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, P. R. China
| |
Collapse
|
13
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Janczura M, Luliński P, Sobiech M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. MATERIALS 2021; 14:ma14081850. [PMID: 33917896 PMCID: PMC8068262 DOI: 10.3390/ma14081850] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
In the last 10 years, we have witnessed an extensive development of instrumental techniques in analytical methods for determination of various molecules and ions at very low concentrations. Nevertheless, the presence of interfering components of complex samples hampered the applicability of new analytical strategies. Thus, additional sample pre-treatment steps were proposed to overcome the problem. Solid sorbents were used for clean-up samples but insufficient selectivity of commercial materials limited their utility. Here, the application of molecularly imprinted polymers (MIPs) or ion-imprinted polymers (IIPs) in the separation processes have recently attracted attention due to their many advantages, such as high selectivity, robustness, and low costs of the fabrication process. Bulk or monoliths, microspheres and core-shell materials, magnetically susceptible and stir-bar imprinted materials are applicable to different modes of solid-phase extraction to determine target analytes and ions in a very complex environment such as blood, urine, soil, or food. The capability to perform a specific separation of enantiomers is a substantial advantage in clinical analysis. The ion-imprinted sorbents gained interest in trace analysis of pollutants in environmental samples. In this review, the current synthetic approaches for the preparation of MIPs and IIPs are comprehensively discussed together with a detailed characterization of respective materials. Furthermore, the use of sorbents in environmental, food, and biomedical analyses will be emphasized to point out current limits and highlight the future prospects for further development in the field.
Collapse
|
15
|
Susanti I, Hasanah AN. How to develop molecularly imprinted mesoporous silica for selective recognition of analytes in pharmaceutical, environmental, and food samples. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ike Susanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
| | - Aliya N. Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
- Pharmaceutical Dosage Development Study Center, Faculty of Pharmacy Universitas Padjadjaran Sumedang Indonesia
| |
Collapse
|
16
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Xiong X, Li D, Du Z, Xiong C, Jiang H. Magnetic solid-phase extraction modified Quick, Easy, Cheap, Effective, Rugged and Safe method combined with pre-column derivatization and ultra-high performance liquid chromatography-tandem mass spectrometry for determination of estrogens and estrogen mimics in pork and chicken samples. J Chromatogr A 2020; 1622:461137. [DOI: 10.1016/j.chroma.2020.461137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/01/2023]
|
18
|
Zhang JW, He JY, Wang CZ, Yang FQ, Zhou LD, Zhang QH, Xia ZN, Yuan CS. Simultaneous extraction of several targets by using non-toxic dual template molecularly imprinted polymers in vivo and in vitro. Talanta 2020; 219:121283. [PMID: 32887173 DOI: 10.1016/j.talanta.2020.121283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/14/2023]
Abstract
In this report, a non-toxic Dual Template Molecularly Imprinted Polymers (DMIPs) was synthesized with quercetin and schisandrin b as template molecules, using deep-eutectic solvents as functional monomers for the first time. The DMIPs were used to efficiently and simultaneously enrich quercetin and schisandrin b from the mixed crude extracts of penthorum and schisandra. The results indicated that the DMIPs exhibited rapid adsorption kinetics (80 min for adsorption equilibrium) and high selectivity. The largest adsorbing capacities to quercetin and schisandrin b were 23.58 mg/g and 41.64 mg/g, respectively. After presaturation with quercetin and schisandrin b, the nontoxic saturated DMIPs were fed to the mice. Blood samples of the mice were taken and both quercetin and schisandrin b were successfully detected. The pharmacokinetics of quercetin and schisandrin b were similar to reports in the literature where mice were directly fed with botanicals. Our study provides a reliable protocol such that DMIPs can be used to separate and enrich several target molecules simultaneously from complex biological systems. Our findings suggested that the DMIPs have potential application as a drug delivery system of compound herbal formulas.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Jia-Yuan He
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China; Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
19
|
Xu L, Li J, Zhang J, Sun J, Gan T, Liu Y. A disposable molecularly imprinted electrochemical sensor for the ultra-trace detection of the organophosphorus insecticide phosalone employing monodisperse Pt-doped UiO-66 for signal amplification. Analyst 2020; 145:3245-3256. [PMID: 32211645 DOI: 10.1039/d0an00278j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, a disposable molecularly imprinted electrochemical sensor was developed towards the highly sensitive and selective detection of the organophosphorus insecticide phosalone (PAS), employing a home-made carbon paste microelectrode (CPME) modified with a Zr-based metal-organic framework catalyst (Pt-UiO-66) and a mesoporous structured conductive molecularly imprinted polymer (MIP). Pt-UiO-66 octahedra with isolated dispersed Pt nanoparticle active sites were firstly incorporated into the CPME to provide a remarkably amplified signal for voltammetric determination. The mesoporous MIP was then synthesized onto the Pt-UiO-66/CPME via electropolymerization and a subsequent sol-gel process, which could bind the PAS template molecules through hydrogen bond, coordinate bonding, hydrophobic interaction, and π-π stacking interaction. Morphological, structural, and electrochemical characterization studies revealed that this nano-sized MIP provided excellent features for PAS detection, including high porosity, large surface area, enhanced electron-transport ability, greatly improved diffusion capacity, and strong recognition specificity. Therefore, the resulting sensor exhibited an outstanding linearly proportional concentration domain of 0.50 nM-20 μM, low detection limit of 0.078 nM, marked selectivity over certain interferences with similar configurations, considerable repeatability, reproducibility, and stability for the analysis of PAS. Moreover, the sensor was successfully applied for the determination of PAS in agricultural products and environmental samples with results in good compatibility with a chromatographic method, indicative of the high reliability and practicability. Such an electrochemical sensor might open a novel window for the investigation of selective sensing of small organic species from their analogues coupled with the molecular imprinting technique.
Collapse
Affiliation(s)
- Liping Xu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China.
| | | | | | | | | | | |
Collapse
|
20
|
Liang T, Chen L, Ma Y. Mesoporous structured molecularly imprinted polymer with restricted access function for highly selective extraction of chlorpyrifos from soil. J Chromatogr A 2020; 1609:460453. [DOI: 10.1016/j.chroma.2019.460453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 02/03/2023]
|
21
|
Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Mikrochim Acta 2019; 186:686. [DOI: 10.1007/s00604-019-3801-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/07/2019] [Indexed: 12/26/2022]
|
22
|
Chen W, Fu M, Zhu X, Liu Q. Protein recognition by polydopamine-based molecularly imprinted hollow spheres. Biosens Bioelectron 2019; 142:111492. [DOI: 10.1016/j.bios.2019.111492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023]
|
23
|
Li J, Si C, Zhao H, Meng Q, Chang B, Li M, Liu H. Dyes Adsorption Behavior of Fe 3O 4 Nanoparticles Functionalized Polyoxometalate Hybrid. Molecules 2019; 24:molecules24173128. [PMID: 31466314 PMCID: PMC6749234 DOI: 10.3390/molecules24173128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/04/2022] Open
Abstract
The magnetic adsorbent, Fe3O4@[Ni(HL)2]2H2[P2Mo5O23]·2H2O (Fe3O4@1), is synthesized by employing the nanoparticles Fe3O4 and polyoxometalate hybrid 1. Zero-field-cooled (ZFC) and field-cooled (FC) curves show that the blocking temperature of Fe3O4@1 was at 120 K. Studies of Fe3O4@1 removing cationic and anionic dyes from water have been explored. The characterization of Fe3O4@1, effects of critical factors such as dosage, the concentration of methylene blue (MB), pH, adsorption kinetics, isotherm, the removal selectivity of substrate and the reusability of Fe3O4@1 were assessed. The magnetic adsorbent displayed an outstanding removal activity for the cationic dye at a broad range of pH. The adsorption kinetics and isotherm models revealed that the adsorption process of Fe3O4@1 was mainly governed via chemisorption. The maximum capacity of Fe3O4@1 adsorbing substance was 41.91 mg g−1. Furthermore, Fe3O4@1 showed its high stability by remaining for seven runs of the adsorption-desorption process with an effective MB removal rate, and could also be developed as a valuable adsorbent for dyes elimination from aqueous system.
Collapse
Affiliation(s)
- Jie Li
- Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Chen Si
- Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Haiyan Zhao
- Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Qingxi Meng
- Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Bowen Chang
- Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Hongling Liu
- Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
24
|
Wathudura PD, Kavinda T, Gunatilake SR. Determination of steroidal estrogens in food matrices: current status and future perspectives. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Wei Y, Huang J. Role of estrogen and its receptors mediated-autophagy in cell fate and human diseases. J Steroid Biochem Mol Biol 2019; 191:105380. [PMID: 31078693 DOI: 10.1016/j.jsbmb.2019.105380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Studies have shown that morbidity of several diseases varies between males and females. This difference likely arises due to sex-related hormones. Estrogen, a primary female sex steroid hormone, plays a critical role in mediating many of the physiological functions like growth, differentiation, metabolism, and cell death. Recently, it has been demonstrated that estrogen mediates autophagy through its receptors (ERs) namely ERα, ERβ, and G-protein coupled estrogen receptor (GPER). However, the specific role of estrogen and its receptors mediated-autophagy in cell fate and human diseases such as cancers, cardiovascular disease and nervous system disease remains unclear. In this review, we comprehensively summarize the complex role of estrogen and its receptors-mediated autophagy in different cell lines and human diseases. In addition, we further discuss the key signaling molecules governing the role of ERs in autophagy. This review will serve as the basis for a proposed model of autophagy constituting a new frontier in estrogen-related human diseases. Here, we discuss the dual role of ERα in classical and non-classical autophagy through B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). Next, we review the role of ERβ in pro-survival pathways through the promotion of autophagy under stress conditions. We further discuss activation of GPER via estrogen often mediates autophagy or mitophagy suppression, respectively. In summary, we believe that understanding the relationship between estrogen and its receptors mediated-autophagy on cell fate and human diseases will provide insightful knowledge for future therapeutic implications.
Collapse
Affiliation(s)
- Yong Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
26
|
Determination of Sulfonylurea Herbicides in Grain Samples by Matrix Solid-Phase Dispersion with Mesoporous Structured Molecularly Imprinted Polymer. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01539-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Fan H, Wang J, Meng Q, Jin Z. Monodisperse hollow-shell structured molecularly imprinted polymers for photocontrolled extraction α-cyclodextrin from complex samples. Food Chem 2019; 281:1-7. [DOI: 10.1016/j.foodchem.2018.12.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/09/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022]
|
28
|
New trends in molecular imprinting techniques. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-12-814178-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
V. Soares Maciel E, de Toffoli AL, Lanças FM. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis. Electrophoresis 2018; 39:1582-1596. [DOI: 10.1002/elps.201800009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ana Lúcia de Toffoli
- Institute of Chemistry of São Carlos; University of São Paulo; São Carlos SP Brazil
| | | |
Collapse
|
30
|
|