1
|
Anderson BG, Hancock TA, Kennedy RT. Preparation of high-efficiency HILIC capillary columns utilizing slurry packing at 2100 bar. J Chromatogr A 2024; 1722:464856. [PMID: 38579610 DOI: 10.1016/j.chroma.2024.464856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Complex mixture analysis requires high-efficiency chromatography columns. Although reversed phase liquid chromatography (RPLC) is the dominant approach for such mixtures, hydrophilic interaction liquid chromatography (HILIC) is an important complement to RPLC by enabling the separation of polar compounds. Chromatography theory predicts that small particles and long columns will yield high efficiency; however, little work has been done to prepare HILIC columns longer than 25 cm packed with sub-2 μm particles. In this work, we tested the slurry packing of 75 cm long HILIC columns with 1.7 μm bridged-ethyl-hybrid amide HILIC particles at 2,100 bar (30,000 PSI). Acetonitrile, methanol, acetone, and water were tested as slurry solvents, with acetonitrile providing the best columns. Slurry concentrations of 50-200 mg/mL were assessed, and while 50-150 mg/mL provided comparable results, the 150 mg/mL columns provided the shortest packing times (9 min). Columns prepared using 150 mg/mL slurries in acetonitrile yielded a reduced minimum plate height (hmin) of 3.3 and an efficiency of 120,000 theoretical plates for acenaphthene, an unretained solute. Para-toluenesulfonic acid produced the lowest hmin of 1.9 and the highest efficiency of 210,000 theoretical plates. These results identify conditions for producing high-efficiency HILIC columns with potential applications to complex mixture analysis.
Collapse
Affiliation(s)
- Brady G Anderson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tate A Hancock
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
2
|
Perchepied S, Ritchie H, Desmet G, Eeltink S. Insights in column packing processes of narrow bore and capillary-scale columns: Methodologies, driving forces, and separation performance – A tutorial review. Anal Chim Acta 2022; 1235:340563. [DOI: 10.1016/j.aca.2022.340563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
3
|
Dembek M, Szumski M, Bocian S, Buszewski B. Optimization of the packing process of microcolumns with the embedded phosphodiester stationary phases. J Sep Sci 2022; 45:3310-3318. [PMID: 35665599 DOI: 10.1002/jssc.202200389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/07/2022]
Abstract
The development of new home-made stationary phases involves their packaging procedure and is crucial to obtain satisfactory working parameters. The parameter that illustrates the quality of the packed bed is its efficiency measured as the height equivalent to the theoretical plate. According to the Van Deemetr's equation, it depends on three factors, but only one of them, eddy diffusion, does not depend on the linear flow velocity. Therefore, in order to obtain it as low as possible, it is necessary to focus on a good filling of the column. Among many parameters affecting the quality of column packing, in our work we have focused on the choice of slurry solvent. Novel stationary phases with an embedded phosphodiester group were investigated. The suspensions in 16 solvents and solvent mixtures were studied for their stability, aggregation, sedimentation and viscosity comparison. The efficiency of the packed microcolumns and its comparison was determined by chromatographic analyses using a polar (thymidine) and a non-polar compound (naphthalene). The results obtained led to the conclusion that for these stationary phases, the best slurry solvent is the one that aggregates the phase while maintaining stability and having high viscosity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mikołaj Dembek
- Chair of Environmental Chemistry and Bioanalysis, Faculty of Chemistry
| | - Michał Szumski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University
| | - Szymon Bocian
- Chair of Environmental Chemistry and Bioanalysis, Faculty of Chemistry
| | - Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalysis, Faculty of Chemistry.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University
| |
Collapse
|
4
|
Liu Y, Wen H, Chen S, Wang X, Zhu X, Luo L, Wang X, Zhang B. Mass Fabrication of Capillary Columns Based on Centrifugal Packing. Anal Chem 2022; 94:8126-8131. [PMID: 35650662 DOI: 10.1021/acs.analchem.2c00442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Packed capillary columns have become the standard front-end separation device for mass spectrometry-based proteomics. The development of simple, fast, and robust capillary column technology, especially that with mass-fabrication capacity, can greatly improve analytical throughput and reproducibility in omics research. In this technical note, we report a centrifugal packing technology, which has the capability to mass fabricate high quality capillary columns with a 2886 columns/day fabrication throughput. The centrifugally packed columns presented significantly improved efficiency (reduced plate height hmin = 1.6, 37%-40% improvement compared with slurry packed columns), advanced kinetic performance limit, and excellent column-to-column reproducibility (2.0% RSD for retention time, 50 columns). Such columns enabled ∼5300 HeLa proteins identified in single-shot proteomic analysis, displaying both intercolumn and inter-run retention time stability (retention time RSD = 0.94% between nine replicates on three columns for probing peptide sequence). The mass-fabrication technology reported in this technical note may support disposable use of high quality chromatographic columns in large-scale bioanalysis.
Collapse
Affiliation(s)
- Ya Liu
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hanrong Wen
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyi Chen
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaojuan Wang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xudong Zhu
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | | | | | - Bo Zhang
- Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Misiura A, Shen H, Tauzin L, Dutta C, Bishop LDC, Carrejo NC, Zepeda O J, Ramezani S, Moringo NA, Marciel AB, Rossky PJ, Landes CF. Single-Molecule Dynamics Reflect IgG Conformational Changes Associated with Ion-Exchange Chromatography. Anal Chem 2021; 93:11200-11207. [PMID: 34346671 DOI: 10.1021/acs.analchem.1c01799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conformational changes of antibodies and other biologics can decrease the effectiveness of pharmaceutical separations. Hence, a detailed mechanistic picture of antibody-stationary phase interactions that occur during ion-exchange chromatography (IEX) can provide critical insights. This work examines antibody conformational changes and how they perturb antibody motion and affect ensemble elution profiles. We combine IEX, three-dimensional single-protein tracking, and circular dichroism spectroscopy to investigate conformational changes of a model antibody, immunoglobulin G (IgG), as it interacts with the stationary phase as a function of salt conditions. The results indicate that the absence of salt enhances electrostatic attraction between IgG and the stationary phase, promotes surface-induced unfolding, slows IgG motion, and decreases elution from the column. Our results reveal previously unreported details of antibody structural changes and their influence on macroscale elution profiles.
Collapse
Affiliation(s)
- Anastasiia Misiura
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, 800 E Summit Street, Kent, Ohio 44240, United States
| | - Lawrence Tauzin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chayan Dutta
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Logan D C Bishop
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Nicole C Carrejo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jorge Zepeda O
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Shahryar Ramezani
- Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Nicholas A Moringo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Amanda B Marciel
- Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Wang X, Zhu J, Yang C, Qin F, Zhang B. Segmented Microfluidics-Based Packing Technology for Chromatographic Columns. Anal Chem 2021; 93:8450-8458. [PMID: 34111926 DOI: 10.1021/acs.analchem.1c00545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoflow liquid chromatography-mass spectrometry (NanoLC-MS) has become the method of choice for the analysis of complex biological systems, especially when the available sample amount is limited. The preparation of high-performance capillary columns for nanoLC use is still a technical challenge. Here, we report a segmented microfluidic method for the preparation of packed capillary columns, where liquid segments were used as soft, dynamic, and well-dispersed slurry reservoirs for carrying and delivering micrometer packing particles. Based on this microfluidic packing technology, the column bed was assembled layer-by-layer at a 50 μm resolution, and ultralong capillary columns of 3, 5, and 10 m were fabricated in such a manner. The microfluidically packed columns demonstrated excellent separation efficiencies of 116 000 plates/m. The higher efficiencies obtained at higher slurry concentrations also indicate that a high-quality packed bed can be obtained without sacrificing the packing speed. Kinetic performance limit analysis shows that the microfluidic packed columns have higher peak capacity production efficiency in the high-resolution region, presenting an improved separation impedance of 2800, which is significantly better than columns packed with the conventional slurry packing method. In comparison with a commercial nanoLC column, a 5 m long microfluidic packed column was evaluated for proteomic analysis using a standard HeLa protein digest and presented 261% improvement in peptide identification capability, resulting in significantly enhanced protein identification confidence.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jue Zhu
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyuhu Yang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Qin
- Xiamen Medical College, Xiamen 361023, China
| | - Bo Zhang
- Department of Chemistry and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Through-pore polymerization in polar high-performance liquid chromatography columns allowing scanning electron microscopy based imaging of the packing order. J Chromatogr A 2020; 1638:461851. [PMID: 33434813 DOI: 10.1016/j.chroma.2020.461851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
Abstract
To allow an enhanced understanding of the order in packed HPLC columns, in this work a methodology for immobilizing native polar silica particles is developed based on the polymerization of a methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as a cross-linker in the interstitial pores of HPLC columns. Subsequent mechanical cutting then allows scanning electron microscopy (SEM) based imagery of cross-sections of the packed bed. In this way, the packing efficiency of home-made and commercial HPLC columns with 4.6 mm inner diameter and 150 mm length comprising the same packing material of 5 µm silica particles are compared. The methodology is developed for native silica used in e.g. hydrophilic interaction liquid chromatography (HILIC) and in normal phase LC. In order to confirm the feasibility of the developed methodology, the conventional methods for the evaluation of column, efficiency and porosity, are also employed. The obtained porosity information is compared and showed the same trend with the external porosity measurements obtained via inverse size exclusion approach, illustrating its potential application to study the micro-heterogeneity of packed HPLC columns and to guide the optimization of the packing process of HPLC columns.
Collapse
|
8
|
Gritti F. Theoretical performance of multiple size-exclusion chromatography columns connected in series. J Chromatogr A 2020; 1634:461673. [PMID: 33189963 DOI: 10.1016/j.chroma.2020.461673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
The fundamental relationships are derived for the retention, peak width, and peak capacity of non-retained polymers eluting from multiple standard size-exclusion chromatography (SEC) columns connected in series. The standard SEC columns may have different dimensions and are packed with particles having distinct average particle diameters (APDs) and average mesopore sizes (AMSs). The performances (peak capacity, local resolution power, and sensitivity) of three standard SEC columns connected in series (called a tri-SEC column) packed with bridged-ethylene-hybrid (BEH) fully porous particles (FPPs) having three different APDs (1.7, 2.5, and 3.5 μm) and AMSs (200, 450, and 900 Å, respectively) are calculated as a function of the applied flow rate and size of polystyrene standards. Irrespective of the APD and AMS, the present investigation assumes isomorphological materials relative to the mesopore space of the three different BEH particles. The advantage of a 15 cm long tri-SEC column over a single reference SEC column (APD=3.5 μm, AMS=900 Å), which generates the same back pressure and separation window as those of the tri-SEC column, is expected at flow rates larger than the optimum flow rate generating the maximum peak capacity. The calculations predict a significant relative increase of the peak capacity (from +25% to +85%), resolution of small molecules (from +75% to +225%), and of the detection limit of intermediate size (from +15% to +70%) and largest polymers (from +25 to +110%). This is explained by 1) the exclusion of the largest polymers from the internal volume of the particles having the smallest mesopores (restricted access media) and 2) the minimum dispersion along the columns packed with the smallest particle sizes in the tri-SEC column. The main benefit of multi-SEC columns is to easily adjust the desired pore size distribution by properly selecting the lengths of each individual SEC column. The user can then control the pore size distribution for any specific separation problem. A potential application is theoretically demonstrated for the fast purification of monoclonal antibodies from metabolites, host cell proteins, aggregated forms, and from virus-like particles.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, 34 Maple Street, Milford, MA, 01757, USA.
| |
Collapse
|
9
|
Sorensen MJ, Kennedy RT. Capillary ultrahigh-pressure liquid chromatography-mass spectrometry for fast and high resolution metabolomics separations. J Chromatogr A 2020; 1635:461706. [PMID: 33229007 DOI: 10.1016/j.chroma.2020.461706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
LC-MS is an important tool for metabolomics due its high sensitivity and broad metabolite coverage. The goal of improving resolution and decreasing analysis time in HPLC has led to the use of 5 - 15 cm long columns packed with 1.7 - 1.9 µm particles requiring pressures of 8 - 12 kpsi. We report on the potential for capillary LC-MS based metabolomics utilizing porous C18 particles down to 1.1 µm diameter and columns up to 50 cm long with an operating pressure of 35 kpsi. Our experiments show that it is possible to pack columns with 1.1 µm porous particles to provide predicted improvements in separation time and efficiency. Using kinetic plots to guide the choice of column length and particle size, we packed 50 cm long columns with 1.7 µm particles and 20 cm long columns with 1.1 µm particles, which should produce equivalent performance in shorter times. Columns were tested by performing isocratic and gradient LC-MS analyses of small molecule metabolites and extracts from plasma. These columns provided approximately 100,000 theoretical plates for metabolite standards and peak capacities over 500 in 100 min for a complex plasma extract with robust interfacing to MS. To generate a given peak capacity, the 1.1 µm particles in 20 cm columns required roughly 75% of the time as 1.7 µm particles in 50 cm columns with both operated at 35 kpsi. The 1.1 µm particle packed columns generated a given peak capacity nearly 3 times faster than 1.7 µm particles in 15 cm columns operated at ~10 kpsi. This latter condition represents commercial state of the art for capillary LC. To consider practical benefits for metabolomics, the effect of different LC-MS variables on mass spectral feature detection was evaluated. Lower flow rates (down to 700 nL/min) and larger injection volumes (up to 1 µL) increased the features detected with modest loss in separation performance. The results demonstrate the potential for fast and high resolution separations for metabolomics using 1.1 µm particles operated at 35 kpsi for capillary LC-MS.
Collapse
Affiliation(s)
- Matthew J Sorensen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Ghosh R, Chen G, Roshankhah R, Umatheva U, Gatt P. A z2 laterally-fed membrane chromatography device for fast high-resolution purification of biopharmaceuticals. J Chromatogr A 2020; 1629:461453. [DOI: 10.1016/j.chroma.2020.461453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
|
11
|
Gritti F, Hochstrasser J, Svidrytski A, Hlushkou D, Tallarek U. Morphology-transport relationships in liquid chromatography: Application to method development in size exclusion chromatography. J Chromatogr A 2020; 1620:460991. [DOI: 10.1016/j.chroma.2020.460991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
|
12
|
Abstract
Continued improvements in HPLC have led to faster and more efficient separations than previously possible. One important aspect of these improvements has been the increase in instrument operating pressure and the advent of ultrahigh pressure LC (UHPLC). Commercial instrumentation is now capable of up to ~20 kpsi, allowing fast and efficient separations with 5-15 cm columns packed with sub-2 μm particles. Home-built instruments have demonstrated the benefits of even further increases in instrument pressure. The focus of this review is on recent advancements and applications in liquid chromatography above 20 kpsi. We outline the theory and advantages of higher pressure and discuss instrument hardware and design capable of withstanding 20 kpsi or greater. We also overview column packing procedures and stationary phase considerations for HPLC above 20 kpsi, and lastly highlight a few recent applicatioob pressure instruments for the analysis of complex mixtures.
Collapse
Affiliation(s)
- Matthew J Sorensen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brady G Anderson
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Martinez A, Knaub K, Monter M, Hekmat D, Weuster-Botz D. Improved packing of preparative biochromatography columns by mechanical vibration. Biotechnol Prog 2019; 36:e2950. [PMID: 31845490 DOI: 10.1002/btpr.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/12/2022]
Abstract
The bioprocessing industry relies on packed-bed column chromatography as its primary separation process to attain the required high product purities and fulfill the strict requirements from regulatory bodies. Conventional column packing methods rely on flow packing and/or mechanical compression. In this work, the application of ultrasound and mechanical vibration during packing was studied with respect to packing density and homogeneity. We investigated two widely used biochromatography media, incompressible ceramic hydroxyapatite, and compressible polymethacrylate-based particles, packed in a laboratory-scale column with an inner diameter of 50 mm. It was shown that ultrasonic irradiation led to reduced particle segregation during sedimentation of a homogenized slurry of polymethacrylate particles. However, the application of ultrasound did not lead to an improved microstructure of already packed columns due to the low volumetric energy input (~152 W/L) caused by high acoustic reflection losses. In contrast, the application of pneumatic mechanical vibration led to considerable improvements. Flow-decoupled axial linear vibration was most suitable at a volumetric force output of ~1,190 N/L. In the case of the ceramic hydroxyapatite particles, a 13% further decrease of the packing height was achieved and the reduced height equivalent to a theoretical plate (rHETP) was decreased by 44%. For the polymethacrylate particles, a 18% further packing consolidation was achieved and the rHETP was reduced by 25%. Hence, it was shown that applying mechanical vibration resulted in more efficiently packed columns. The application of vibration furthermore is potentially suitable for in situ elimination of flow channels near the column wall.
Collapse
Affiliation(s)
- Andrés Martinez
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Konstantin Knaub
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Marc Monter
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Dariusch Hekmat
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| |
Collapse
|
14
|
Svidrytski A, Hlushkou D, Tallarek U. Relationship between bed heterogeneity, chord length distribution, and longitudinal dispersion in particulate beds. J Chromatogr A 2019; 1600:167-173. [DOI: 10.1016/j.chroma.2019.04.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 10/27/2022]
|
15
|
Kovalchuk SI, Jensen ON, Rogowska-Wrzesinska A. FlashPack: Fast and Simple Preparation of Ultrahigh-performance Capillary Columns for LC-MS. Mol Cell Proteomics 2019; 18:383-390. [PMID: 30373789 PMCID: PMC6356079 DOI: 10.1074/mcp.tir118.000953] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
Capillary ultrahigh-pressure liquid chromatography (cUHPLC) is essential for in-depth characterization of complex biomolecule mixtures by LC-MS. We developed a simple and fast method called FlashPack for custom packing of capillary columns of 50-100 cm length with sub- 2 μm sorbent particles. FlashPack uses high sorbent concentrations of 500-1,000 mg/ml for packing at relatively low pressure of 100 bar. Column blocking by sorbent aggregation is avoided during the packing by gentle mechanical tapping of the capillary proximal end by a slowly rotating magnet bar. Utilizing a standard 100-bar pressure bomb, Flashpack allows for production of 15-25 cm cUHPLC columns within a few minutes and of 50 cm cUHPLC columns in less than an hour. Columns exhibit excellent reproducibility of back-pressure, retention time, and resolution (CV 8.7%). FlashPack cUHPLC columns are inexpensive, robust and deliver performance comparable to commercially available cUHPLC columns. The FlashPack method is versatile and enables production of cUHPLC columns using a variety of sorbent materials.
Collapse
Affiliation(s)
- Sergey I Kovalchuk
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
16
|
Hlushkou D, Tallarek U. Analysis of microstructure–effective diffusivity relationships for the interparticle pore space in physically reconstructed packed beds. J Chromatogr A 2018; 1581-1582:173-179. [DOI: 10.1016/j.chroma.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
|
17
|
Dams M, Dores-Sousa JL, Lamers RJ, Treumann A, Eeltink S. High-Resolution Nano-Liquid Chromatography with Tandem Mass Spectrometric Detection for the Bottom-Up Analysis of Complex Proteomic Samples. Chromatographia 2018. [DOI: 10.1007/s10337-018-3647-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Characterization of radial and axial heterogeneities of chromatographic columns by flow reversal. J Chromatogr A 2018; 1567:164-176. [DOI: 10.1016/j.chroma.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/05/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
|
19
|
Axial heterogeneities in capillary ultrahigh pressure liquid chromatography columns: Chromatographic and bed morphological characterization. J Chromatogr A 2018; 1569:44-52. [DOI: 10.1016/j.chroma.2018.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022]
|
20
|
Reising AE, Schlabach S, Baranau V, Stoeckel D, Tallarek U. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. J Chromatogr A 2017; 1513:172-182. [DOI: 10.1016/j.chroma.2017.07.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
21
|
Wahab MF, Patel DC, Wimalasinghe RM, Armstrong DW. Fundamental and Practical Insights on the Packing of Modern High-Efficiency Analytical and Capillary Columns. Anal Chem 2017; 89:8177-8191. [DOI: 10.1021/acs.analchem.7b00931] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- M. Farooq Wahab
- Department of Chemistry and
Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Darshan C. Patel
- Department of Chemistry and
Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Rasangi M. Wimalasinghe
- Department of Chemistry and
Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Daniel W. Armstrong
- Department of Chemistry and
Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|