1
|
Wrobel SA, Bury D, Belov VN, Klenk JM, Hauer B, Hayen H, Martino-Andrade AJ, Koch HM, Brüning T, Käfferlein HU. Rapid quantification of seven major neonicotinoids and neonicotinoid-like compounds and their key metabolites in human urine. Anal Chim Acta 2023; 1239:340680. [PMID: 36628758 DOI: 10.1016/j.aca.2022.340680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Neonicotinoids and neonicotinoid-like compounds (NNIs) are frequently used insecticides worldwide and exposure scenarios can vary widely between countries and continents. We have developed a specific and robust analytical method based on liquid chromatography-electrospray tandem mass spectrometry coupled to online-SPE (online-SPE-LC-ESI-MS-MS) to analyze the seven most important NNIs from a global perspective together with nine of their key metabolites in human urine. The method also includes the neonicotinoid-like flupyradifurone (FLUP), an important future substitute for classical neonicotinoids, and two of its major human metabolites, 5-hydroxy- and N-desfluoroethyl-FLUP. Validation of the method was carried out using pooled urine samples from low-dose human metabolism studies and spiked urine samples with a wide range of creatinine concentrations. Depending on the analyte, the limits of quantitation were between 0.06 and 2.1 µg L-1, the inter-day and intra-day imprecisions ≤6%, and the mean relative recoveries between 89% and 112%. The method enabled us to successfully quantify NNIs and their metabolites at current environmental exposures in 34 individuals of the German general population and 43 pregnant women from Brazil with no known occupational exposures to NNIs.
Collapse
Affiliation(s)
- Sonja A Wrobel
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Vladimir N Belov
- Max Planck Institute for Multidisciplinary Natural Sciences (MPI NAT), Facility for Synthetic Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Jan M Klenk
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | | | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| |
Collapse
|
2
|
Du X, Yuan J, Cao H, Ye L, Ma A, Du J, Pan J. Ultrasound-assisted micellar cleanup coupled with large-volume-injection enrichment for the analysis of polar drugs in blood and zebrafish samples. ULTRASONICS SONOCHEMISTRY 2022; 85:105998. [PMID: 35378462 PMCID: PMC8980499 DOI: 10.1016/j.ultsonch.2022.105998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 05/30/2023]
Abstract
A novel ultrasound-assisted micellar cleanup strategy (UAMC) coupled with large volume injection (LVI) high performance liquid chromatography (HPLC) method was proposed and successfully applied to the analysis of cefathiamidine in complex biological samples such as whole blood, plasma, serum and even zebrafish, a challenging positive real sample. Based on the micelle-biomacromolecule interaction, the phase-separation feature of surfactant micelles and ultrasound cavitation, UAMC possessed an impressive matrix cleanup capability and could rapidly reach distribution equilibrium (approximately 2 min), which enabled simultaneous sample cleanup and analyte extraction within 8 min. Due to the high cleanup efficiency of UAMC, large volume of pretreated samples could be injected for analysis without peak broadening, impurity interference and column degradation. Thus, online analyte enrichment could be automatically performed to significantly improve method sensitivity by the column-switching LVI-HPLC system, a commercial HPLC system with small modifications. The UAMC-LVI-HPLC method creatively integrated sample cleanup, analyte extraction and on-column enrichment into simple operation. In addition, the UAMC-LVI-HPLC method enabled non-matrix-matched analysis of cefathiamidine in complex biological samples. This feature was helpful to address the problems caused by conventional matrix-matched or internal standard calibration methods, such as matrix bias, increased workload, limited availability of suitable blank matrices and the use of expensive internal standards. The method had low limits of detections (e.g., 0.0051 mg/L and 0.038 μg/g), wide linear ranges (0.030-100 mg/L and 0.15-489 μg/g), good linear correlation (R2 = 0.9999), satisfactory accuracy (97.6-109.7%) and excellent intra- and interday precision (0.5-4.9%). Thus, UAMC-LVI-HPLC is expected to be a promising candidate for bioanalysis in therapeutic drug monitoring or pharmacokinetic and toxicology studies in the future.
Collapse
Affiliation(s)
- Xiaotong Du
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Jiahao Yuan
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Hongjie Cao
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Li Ye
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Ande Ma
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Juan Du
- Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| | - Jialiang Pan
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Pérez-Mayán L, Ramil M, Cela R, Rodríguez I. Determination of pesticide residues in wine by solid-phase extraction on-line combined with liquid chromatography tandem mass spectrometry. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Schusterova D, Hajslova J, Kocourek V, Pulkrabova J. Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods 2021; 10:307. [PMID: 33540835 PMCID: PMC7913069 DOI: 10.3390/foods10020307] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, the occurrence of pesticide residues and their metabolites in grapes and wines was investigated. A targeted analysis of 406 pesticide residues in 49 wine and grape samples from organic and conventional production were performed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction method, followed by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Multiple residues (>4 residues/sample) were detected in 22 tested samples. The most commonly detected residues were fungicides (e.g., boscalid) and insecticides (e.g., methoxyfenozide). An ultra-high-performance liquid chromatography-high resolution mass spectrometry method (UHPLC-(HR)MS) was used for screening of pesticide metabolites. We also provide a method and database for detecting pesticide metabolites (extending our previously published database to 49 metabolites originating from 25 pesticides). An introduced strategy of targeted screening of pesticide metabolites was applied for authentication of 27 organic grapes and wines. In total, 23 samples were free of quantifiable residues/detected metabolites or contained residues approved for organic production.
Collapse
Affiliation(s)
| | | | | | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic; (D.S.); (J.H.); (V.K.)
| |
Collapse
|
5
|
Morawska K, Ciesielski W, Smarzewska S. First electroanalytical studies of methoxyfenozide and its interactions with dsDNA. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Cevallos-Cedeño RE, Agulló C, Abad-Fuentes A, Abad-Somovilla A, Mercader JV. Enzyme and lateral flow monoclonal antibody-based immunoassays to simultaneously determine spirotetramat and spirotetramat-enol in foodstuffs. Sci Rep 2021; 11:1809. [PMID: 33469120 PMCID: PMC7815808 DOI: 10.1038/s41598-021-81432-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
Spirotetramat is employed worldwide to fight insect pests due to its high efficiency. This chemical is quickly metabolized by plants into spirotetramat-enol, so current regulations establish that both compounds must be determined in foodstuffs for monitoring purposes. Nowadays, immunochemical methods constitute rapid and cost-effective strategies for chemical contaminant analysis at trace levels. However, high-affinity binders and suitable bioconjugates are required. In this study, haptens with opposite functionalisation sites were synthesized in order to generate high-affinity monoclonal antibodies. A direct competitive enzyme-linked immunosorbent assay with an IC50 value for the sum of spirotetramat and spirotetramat-enol of 0.1 μg/L was developed using selected antibodies and a novel heterologous bioconjugate carrying a rationally-designed hapten. Studies with fortified grape, grape juice, and wine samples showed good precision and accuracy values, with limits of quantification well below the maximum residue limits. Excellent correlation of results was observed with a standard reference chromatographic method. As a step forward, a lateral flow immunoassay was developed for onsite screening analysis of spirotetramat in wine. This assay was successfully validated according to Regulation 519/2014/EU for semi-quantitative methods at concentrations in line with the legal levels of spirotetramat and spirotetramat-enol in grapes, with a satisfactory false suspect rate below 2%.
Collapse
Affiliation(s)
- Ramón E Cevallos-Cedeño
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980, Paterna, Valencia, Spain
- Department of Chemical Processes, Technical University of Manabi (UTM), Avenue José María Urbina y Che Guevara, 130105, Portoviejo, Ecuador
| | - Consuelo Agulló
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Antonio Abad-Fuentes
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980, Paterna, Valencia, Spain
| | - Antonio Abad-Somovilla
- Department of Organic Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Josep V Mercader
- Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Agustí Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
7
|
Dinh QT, Munoz G, Vo Duy S, Tien Do D, Bayen S, Sauvé S. Analysis of sulfonamides, fluoroquinolones, tetracyclines, triphenylmethane dyes and other veterinary drug residues in cultured and wild seafood sold in Montreal, Canada. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Castro G, Pérez-Mayán L, Carpinteiro I, Ramil M, Cela R, Rodríguez I. Residues of anilinopyrimidine fungicides and suspected metabolites in wine samples. J Chromatogr A 2020; 1622:461104. [DOI: 10.1016/j.chroma.2020.461104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
|
9
|
Pérez-Mayán L, Cobo-Golpe M, Ramil M, Cela R, Rodríguez I. Evaluation of supercritical fluid chromatography accurate mass spectrometry for neonicotinoid compounds determination in wine samples. J Chromatogr A 2020; 1620:460963. [DOI: 10.1016/j.chroma.2020.460963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
|
10
|
Martin D, Munoz G, Mejia-Avendaño S, Duy SV, Yao Y, Volchek K, Brown CE, Liu J, Sauvé S. Zwitterionic, cationic, and anionic perfluoroalkyl and polyfluoroalkyl substances integrated into total oxidizable precursor assay of contaminated groundwater. Talanta 2019; 195:533-542. [DOI: 10.1016/j.talanta.2018.11.093] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/26/2022]
|
11
|
Wu J, Mei M, Huang X. Fabrication of boron-rich multiple monolithic fibers for the solid-phase microextraction of carbamate pesticide residues in complex samples. J Sep Sci 2019; 42:878-887. [DOI: 10.1002/jssc.201800996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jiangyi Wu
- State Key Laboratory of Marine Environmental Science; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems; College of the Environment and Ecology; Xiamen University; Xiamen P. R. China
| | - Meng Mei
- State Key Laboratory of Marine Environmental Science; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems; College of the Environment and Ecology; Xiamen University; Xiamen P. R. China
| | - Xiaojia Huang
- State Key Laboratory of Marine Environmental Science; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems; College of the Environment and Ecology; Xiamen University; Xiamen P. R. China
| |
Collapse
|
12
|
Pérez-Mayán L, Rodríguez I, Ramil M, Kabir A, Furton KG, Cela R. Fabric phase sorptive extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry for the determination of fungicides and insecticides in wine. J Chromatogr A 2018; 1584:13-23. [PMID: 30502037 DOI: 10.1016/j.chroma.2018.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
In this work, fabric phase sorptive extraction (FPSE) is investigated for the extraction and preconcentration of ultra-trace level residues of fungicides (19 compounds) and insecticides (3 species) in wine samples. Subsequently, the preconcentrated analytes are selectively determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Parameters affecting the efficiency and repeatability of the extraction are evaluated in depth; moreover, the proposed method is characterized in terms of linear response range, trueness, precision and limits of quantification (LOQs). The set-up of the extraction process and the type of coating were the variables exerting the most prominent effects in the repeatability and the yield of the extraction, respectively. Under optimized conditions, samples (10 mL of wine diluted with the same volume of ultrapure water) were extracted with a small amount of cellulose fabric (3 discs with 4 mm of diameter: total surface 0.38 cm2) coated with a sol-gel polyethylene glycol sorbent (sorbent amount 3.3 mg), immersed in the diluted sample, without being in direct contact with the PTFE covered magnetic stir bar. Following the overnight extraction step, analytes were quantitatively recovered using only 0.3 mL of an ACN-MeOH (80:20) mixture. Under equilibrium sampling conditions, the linear response range of the method varied from 0.2 to 200 ng mL-1, with limits of quantification (LOQs) between 0.03 and 0.3 ng mL-1. Relative recoveries ranged from 77 ± 6% to 118 ± 4%, and from 87 ± 4% to 121 ± 6% for red and white wines, respectively. Application of the optimized method to commercial wines demonstrated the existence of up to 9 out of 22 investigated compounds in the same wine sample. The compound identified at the highest concentration was iprovalicarb (IPR), with a value of 130 ± 9 ng mL-1 in a commercial white wine.
Collapse
Affiliation(s)
- L Pérez-Mayán
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain.
| | - A Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8thStreet, Miami, FL, 33199, USA.
| | - K G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8thStreet, Miami, FL, 33199, USA
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Vargas TDS, Salustriano NDA, Klein B, Romão W, Silva SRCD, Wagner R, Scherer R. Fungicides in red wines produced in South America. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2135-2144. [DOI: 10.1080/19440049.2018.1529439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Thais de Souza Vargas
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Espírito Santo, Brazil
| | | | - Bruna Klein
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Wanderson Romão
- Chemistry Department, Federal Institute of Espírito Santo (IFES), Vila Velha, ES, Brazil
- Chemistry Department, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Roger Wagner
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rodrigo Scherer
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Espírito Santo, Brazil
| |
Collapse
|
14
|
Lachat L, Glauser G. Development and Validation of an Ultra-Sensitive UHPLC-MS/MS Method for Neonicotinoid Analysis in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8639-8646. [PMID: 30025459 DOI: 10.1021/acs.jafc.8b03005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A very sensitive ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the quantitation of the most common neonicotinoids (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid) at trace levels in milk. Using fast and selective liquid-liquid extraction (LLE) starting from 0.5 mL of milk, lowest limits of quantitation (LLOQ) equal or lower than 10 pg/mL for all analytes were achieved. Precision and accuracy were evaluated at four different concentrations (5, 10, 500, and 10000 pg/mL) and ranged between 2 and 16% (RSD) and 77-125%, respectively. Extraction recoveries and matrix effects ranged between 64 and 76% and 88-98%, respectively. The method was applied to measure neonicotinoid levels in a series of conventional and organic Swiss milks as well as in human breast milk and commercial powdered milk. More than 90% of the samples tested positive for at least one neonicotinoid. However, all animal samples were far below the maximum residue limits authorized for human consumption with average total neonicotinoid levels of 16.1 ± 13.1 pg/mL. Human breast milks and powdered milks contained similar amounts of neonicotinoids. Taken together, our results demonstrate the high prevalence of neonicotinoids in milk from all origins, albeit at levels considered to be safe for human consumption.
Collapse
Affiliation(s)
- Laurence Lachat
- Neuchâtel Platform of Analytical Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| |
Collapse
|
15
|
Chen C, Xue Y, Li QM, Wu Y, Liang J, Qing LS. Neutral Loss Scan - Based Strategy for Integrated Identification of Amorfrutin Derivatives, New Peroxisome Proliferator-Activated Receptor Gamma Agonists, from Amorpha Fruticosa by UPLC-QqQ-MS/MS and UPLC-Q-TOF-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:685-693. [PMID: 29404969 DOI: 10.1007/s13361-018-1891-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
Amorfrutins with a 2-hydroxybenzoic acid core structure are promising natural PPARγ agonists with potent antidiabetic activity. Owing to the complex matrix and low concentration in botanical material, the identification of unknown amorfrutins remains a challenge. In the present study, a combined application of UPLC-Q-TOF-MS and UPLC-QqQ-MS was developed to discover unknown amorfrutins from fruits of Amorpha fruticosa. First, reference compounds of amorfrutin A (AA), amorfrutin B (AB), and 2-carboxy-3,5-dihydroxy-4-geranylbibenzyl (AC) were analyzed using UPLC-Q-TOF-MS to reveal the characteristic fragment ions and the possible neutral loss. Second, the extract of A. fruticosa was separated and screened by UPLC-QqQ-MS using neutral loss scan to find out suspect compounds associated with the specified neutral fragment Δm/z 44. Third, the extract was re-analyzed by UPLC-Q-TOF-MS to obtain the exact mass of quasi-molecular ion and fragment ions of each suspect compound, and to subsequently calculate their corresponding molecular formulas. Finally, according to the molecular formula of suspect compound and its fragment ions and comparing with literature data, structure elucidation of four unidentified amorfrutins was achieved. The results indicated that the combination of QqQ-MS neutral loss scan and Q-TOF-MS molecular formula calculation was proven to be a powerful tool for unknown natural product identification, and this strategy provides an effective solution to discover natural products or metabolites of trace content. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Chu Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Ying Xue
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Qing-Miao Li
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yan Wu
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Jian Liang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Lin-Sen Qing
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|