1
|
Thormann W, Mosher RA. Dynamic computer simulations of electrophoresis: 2010-2020. Electrophoresis 2021; 43:10-36. [PMID: 34287996 PMCID: PMC9292373 DOI: 10.1002/elps.202100191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023]
Abstract
The transport of components in liquid media under the influence of an applied electric field can be described with the continuity equation. It represents a nonlinear conservation law that is based upon the balance laws of continuous transport processes and can be solved in time and space numerically. This procedure is referred to as dynamic computer simulation. Since its inception four decades ago, the state of dynamic computer simulation software and its use has progressed significantly. Dynamic models are the most versatile tools to explore the fundamentals of electrokinetic separations and provide insights into the behavior of buffer systems and sample components of all electrophoretic separation methods, including moving boundary electrophoresis, CZE, CGE, ITP, IEF, EKC, ACE, and CEC. This article is a continuation of previous reviews (Electrophoresis 2009, 30, S16–S26 and Electrophoresis 2010, 31, 726–754) and summarizes the progress and achievements made during the 2010 to 2020 time period in which some of the existing dynamic simulators were extended and new simulation packages were developed. This review presents the basics and extensions of the three most used one‐dimensional simulators, provides a survey of new one‐dimensional simulators, outlines an overview of multi‐dimensional models, and mentions models that were briefly reported in the literature. A comprehensive discussion of simulation applications and achievements of the 2010 to 2020 time period is also included.
Collapse
Affiliation(s)
- Wolfgang Thormann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | |
Collapse
|
3
|
Zhang CX, Meagher MM. Highly Sensitive SDS Capillary Gel Electrophoresis with Sample Stacking Requiring Only Nanograms of Adeno-Associated Virus Capsid Proteins. Methods Mol Biol 2019; 1972:263-270. [PMID: 30847798 DOI: 10.1007/978-1-4939-9213-3_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has been the method of choice in the past decades for size-based protein analysis. However, in general it requires the protein concentration in mg/mL level and thus is not practical for trace level protein analysis, not to mention the lengthy labor-intensive procedures. The SDS capillary gel electrophoresis (SDS CGE) method reported herein requires only nanogram-sized proteins loaded onto the autosampler. A sample stacking technique (e.g., head-column field-amplified sample stacking (HC FASS)) was employed, providing three orders of magnitude sensitivity enhancement compared to conventional SDS CGE. This method has been used routinely in purity analysis and characterization of adeno-associated virus (AAV) intermediates and finished gene therapeutics of AAV vectors. The sensitivity achieved is comparable to the currently most sensitive size-based protein assay silver-stained SDS PAGE. The highly sensitive sample stacking SDS CGE can be used for other types of proteins as well.
Collapse
Affiliation(s)
- Chao-Xuan Zhang
- Department of Therapeutics Production and Quality, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Michael M Meagher
- Department of Therapeutics Production and Quality, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wuethrich A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 2018; 40:17-39. [PMID: 30362581 DOI: 10.1002/elps.201800384] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Wojciech Grochocki
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Umme Kalsoom
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Mónica N Alves
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Sui Ching Phung
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Joan M Cabot
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Feng Li
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Aliaa I Shallan
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, Australia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Aemi S Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 2018; 40:40-54. [PMID: 30073675 DOI: 10.1002/elps.201800261] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Electrophoretic sample stacking comprises a group of capillary electrophoretic techniques where trace analytes from the sample are concentrated into a short zone (stack). This paper is a continuation of our previous reviews on the topic and brings a survey of more than 120 papers published approximately since the second quarter of 2016 till the first quarter of 2018. It is organized according to the particular stacking principles and includes chapters on concentration adjustment (Kohlrausch) stacking, on stacking techniques based on pH changes, on stacking in electrokinetic chromatography and on other stacking techniques. Where available, explicit information is given about the procedure, electrolyte(s) used, detector employed and sensitivity reached. Not reviewed are papers on transient isotachophoresis which are covered by another review in this issue.
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|