1
|
Aly AA, Górecki T. Two-dimensional liquid chromatography with reversed phase in both dimensions: A review. J Chromatogr A 2024; 1721:464824. [PMID: 38522405 DOI: 10.1016/j.chroma.2024.464824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Two-dimensional liquid chromatography (2D-LC), and in particular comprehensive two-dimensional liquid chromatography (LC×LC), offers increased peak capacity, resolution and selectivity compared to one-dimensional liquid chromatography. It is commonly accepted that the technique produces the best results when the separation mechanisms in the two dimensions are completely orthogonal; however, the use of similar separation mechanisms in both dimensions has been gaining popularity as it helps avoid difficulties related to mobile phase incompatibility and poor column efficiency. The remarkable advantages of using reversed phase in both dimensions (RPLC×RPLC) over other separation mechanisms made it a promising technique in the separation of complex samples. This review discusses some physical and practical considerations in method development for 2D-LC involving the use of RP in both dimensions. In addition, an extensive overview is presented of different applications that relied on RPLC×RPLC and 2D-LC with reversed phase column combinations to separate components of complex samples in different fields including food analysis, natural product analysis, environmental analysis, proteomics, lipidomics and metabolomics.
Collapse
Affiliation(s)
- Alshymaa A Aly
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate, Arab Republic of Egypt; Department of Chemistry, University of Waterloo, ON, Canada
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, ON, Canada.
| |
Collapse
|
2
|
Thomas R, Song D, Pourmohamad T, Kurita K, Chin S, Dai L, Goyon A, Medley CD, Gruenhagen JA, Chen T. Automated online deconjugation of antibody-drug conjugate for small molecule drug profiling. J Chromatogr A 2024; 1715:464575. [PMID: 38150875 DOI: 10.1016/j.chroma.2023.464575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Antibody-drug conjugates (ADCs) are designed by chemically linking highly potent cytotoxic small molecule drugs to monoclonal antibodies of unique specificity for targeted destruction of cancer cells. This innovative class of molecules incurs unique developmental challenges due to its structural complexity of having both small molecule and protein components. The stability of the small molecule payload on the ADC is a critical attribute as it directly relates to product efficacy and patient safety. This study describes the use of an end-to-end automated workflow for effective and robust characterization of the small molecule drug while it is conjugated to the antibody. In this approach, online deconjugation was accomplished by an autosampler user defined program and 1D size exclusion chromatography was utilized to provide separation between small molecule and protein species. The small molecule portion was then trapped and sent to the 2D for separation and quantification by reversed-phase liquid chromatography with identification of impurities and degradants by mass spectrometry. The feasibility of this system was demonstrated on an ADC with a disulfide-based linker. This fully automated approach avoids tedious sample preparation that may lead to sample loss and large assay variability. Under optimized conditions, the method was shown to have excellent specificity, sensitivity (LOD of 0.036 µg/mL and LOQ of 0.144 µg/mL), linearity (0.04-72.1 µg/mL), precision (system precision %RSD of 1.7 and method precision %RSD of 3.4), accuracy (97.4 % recovery), stability-indicating nature, and was successfully exploited to analyze the small molecule drug on a panel of stressed ADC samples. Overall, the workflow established here offers a powerful analytical tool for profiling the in-situ properties of small molecule drugs conjugated to antibodies and the obtained information could be of great significance for guiding process/formulation development and understanding pharmacokinetic/pharmacodynamic behavior of ADCs.
Collapse
Affiliation(s)
- Rekha Thomas
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dong Song
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tony Pourmohamad
- Nonclinical Biostatistics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kenji Kurita
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven Chin
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Colin D Medley
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Gruenhagen
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tao Chen
- Synthetic Molecule Analytical Chemistry, Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
3
|
Parallel gradients in comprehensive multidimensional liquid chromatography enhance utilization of the separation space and the degree of orthogonality when the separation mechanisms are correlated. J Chromatogr A 2020; 1628:461452. [PMID: 32822990 DOI: 10.1016/j.chroma.2020.461452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022]
Abstract
Comprehensive two-dimensional liquid chromatography (LC×LC) offers increased peak capacity, resolution and selectivity compared to one-dimensional liquid chromatography. It is commonly accepted that the technique produces the best results when the separation mechanisms in the two dimensions are completely orthogonal, which necessitates the use of gradient elution for each second-dimension fraction. Recently, the use of similar separation mechanisms in both dimensions has been gaining popularity, but full or shifted gradients are still used for each second dimension fraction. Herein, we argue that when the separation mechanisms are correlated in the two dimensions, the best results can be obtained with the use of parallel gradients in the second dimension, which makes the technique nearly as user-friendly as comprehensive two-dimensional gas chromatography. This has been illustrated through the separation of a mixture of 39 pharmaceutical compounds using reversed phase in both dimensions. Different selectivity in the second dimension was obtained through the use of different stationary phase chemistries and/or mobile phase organic modifiers. The best coverage of the separation space was obtained when parallel gradients were applied in both dimensions, and the same was true for practical peak capacity.
Collapse
|
4
|
Moussa A, Lauer T, Stoll D, Desmet G, Broeckhoven K. Numerical and experimental investigation of analyte breakthrough from sampling loops used for multi-dimensional liquid chromatography. J Chromatogr A 2020; 1626:461283. [DOI: 10.1016/j.chroma.2020.461283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
|
5
|
Wang H, Herderschee HR, Bennett R, Potapenko M, Pickens CJ, Mann BF, Haidar Ahmad IA, Regalado EL. Introducing online multicolumn two-dimensional liquid chromatography screening for facile selection of stationary and mobile phase conditions in both dimensions. J Chromatogr A 2020; 1622:460895. [DOI: 10.1016/j.chroma.2020.460895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023]
|
6
|
Groeneveld G, Pirok BWJ, Schoenmakers PJ. Perspectives on the future of multi-dimensional platforms. Faraday Discuss 2020; 218:72-100. [PMID: 31140485 DOI: 10.1039/c8fd00233a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-dimensional liquid chromatography (2D-LC) formats have emerged to help address separation problems that are too complex for conventional one-dimensional LC. There are a number of obstacles to the proliferation of 2D-LC that are gradually being removed. Reliable commercial instrumentation has become available and data analysis software is being improved. Detector-sensitivity and phase-system compatibility issues can largely be solved by using active-modulation strategies. The remaining challenge, developing good and fast 2D-LC methods within a reasonable time, may be solved with smart algorithms. The technology platform that has been developed for 2D-LC also creates a number of other possibilities. Between the two separation stages, all kinds of physical (e.g. dissolution) or chemical (e.g. enzymatic or light-induced degradation) processes can be made to take place, allowing a wide variety of experiments to be performed within a single, efficient and automated analysis. All these developments are discussed in this paper and a number of critical issues are identified. A practical example, the characterization of polysorbates by high-resolution comprehensive two-dimensional liquid chromatography in combination with high-resolution mass spectrometry, is described as a culmination of recent developments in 2D-LC and as an illustration of the current state of the art.
Collapse
Affiliation(s)
- Gino Groeneveld
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | | |
Collapse
|
7
|
Two-Dimensional Liquid Chromatography Coupled to High-Resolution Mass Spectrometry for the Analysis of ADCs. Methods Mol Biol 2019. [PMID: 31643056 DOI: 10.1007/978-1-4939-9929-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
From a structural point of view, the complete characterization of ADCs is a challenging task due to their high complexity. ADCs combine the heterogeneity of the initial antibody to the variability associated with the conjugation strategy, the manufacturing process, and the storage. Given the inherent complexity of these biomolecules, online comprehensive two-dimensional liquid chromatography (LC × LC) is an attractive technique to address the challenges associated with ADC characterization. Compared to conventional one-dimensional liquid chromatography techniques (1D-LC), LC × LC combines two different and complementary separation systems. In the context of ADC analysis, LC × LC has been proven to be a rapid and efficient analytical tool: (1) to provide a higher resolving power by increasing the overall peak capacity and thus allowing to gain more information within a single run and (2) to allow mass spectrometry (MS) coupling with some chromatographic techniques that are not MS-compatible and hence to facilitate the structural elucidation of ADCs. In this chapter, we present the coupling of different chromatographic techniques including hydrophobic interaction chromatography (HIC), reversed phase liquid chromatography (RPLC), size exclusion chromatography (SEC), ion exchange chromatography (IEX), and hydrophilic liquid chromatography (HILIC). The interest of HIC × SEC, SEC × SEC, HIC × RPLC, IEX × RPLC, RPLC × RPLC, and HILIC × RPLC, all hyphenated to high-resolution mass spectrometry (HRMS), is discussed in the context of the characterization of ADCs.
Collapse
|
8
|
Pirok BWJ, Stoll DR, Schoenmakers PJ. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal Chem 2019; 91:240-263. [PMID: 30380827 PMCID: PMC6322149 DOI: 10.1021/acs.analchem.8b04841] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bob W. J. Pirok
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Peter J. Schoenmakers
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
9
|
D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal Chem 2018; 91:210-239. [DOI: 10.1021/acs.analchem.8b05026] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Adrian Clarke
- Novartis Pharma AG, Technical Research and Development, Chemical and Analytical Development (CHAD), Basel, CH4056, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|