1
|
Zhou DD, Cao YW, Chen M, Zhuang LY, Lv DZ, Wang MY, Yang ZH, Zeng YL. Determination of azole fungicide residues in fruits and vegetables by magnetic solid phase extraction based on magnetic MOF sorbent in combination with high performance liquid chromatography. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Baghaei PAM, Mogaddam MRA, Farajzadeh MA, Mohebbi A, Sorouraddin SM. Application of deep eutectic solvent functionalized cobalt ferrite nanoparticles in dispersive micro solid phase extraction of some heavy metals from aqueous samples prior to ICP-OES. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Roy S, Ahmaruzzaman M. Ionic liquid based composites: A versatile materials for remediation of aqueous environmental contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115089. [PMID: 35525038 DOI: 10.1016/j.jenvman.2022.115089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most aggravated problems threatening the sustainability of human race and other life forms due to the rapid pace of civilization and industrialization. A long history exists of release of hazardous pollutants into the water bodies due to selfish human activities since the Industrial Revolution, but no effort has been completely successful in curbing the activities that result in the degradation of our environment. These pollutants are harmful, carcinogenic and have adverse health effects to all forms of life. Thus, remarkable efforts have been geared up to obtain clean water by exploiting science and technology. The application of Ionic liquids (ILs) as sustainable materials have received widespread attention since the last decade. Their interesting properties, simplicity in operation and satisfactory binding capacities in elimination of the contaminants makes them a valuable prospect to be utilized in wastewater treatment. Immobilizing and grafting the solid supports with ILs have fetched efficient results to exploit their potential in the adsorptive removal processes. This review provides an understanding of the recent developments and outlines the possible utility of IL based nano adsorbents in the removal of organic compounds, dyes and heavy metal ions from aqueous medium. Effect of several parameters such as sorbent dosage, pH and temperature on the removal efficiency has also been discussed. Moreover, the adsorption isotherms, thermodynamics and mechanism are comprehensively studied. It is envisioned that the literature gathered in this article will guide the budding scientists to put their interest in this area of research in the days to come.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
4
|
Mohamed AH, Noorhisham NA, Bakar K, Yahaya N, Mohamad S, Kamaruzaman S, Osman H. Synthesis of imidazolium-based poly(ionic liquids) with diverse substituents and their applications in dispersive solid-phase extraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Ionic liquid-based magnetic nanoparticles for magnetic dispersive solid-phase extraction: A review. Anal Chim Acta 2022; 1201:339632. [PMID: 35300789 DOI: 10.1016/j.aca.2022.339632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Due to their highly tunable nature and outstanding physicochemical properties, ionic liquids (ILs) have been widely reported for use in the synthesis of multitudinous magnetic nanoparticles (MNPs). IL-based magnetic nanoparticles (IL-MNPs) have great potential in magnetic dispersive solid-phase extraction (MDSPE). At present, IL-MNPs have been successfully applied in the pretreatment of MDSPE samples from medicines, pesticides, veterinary drugs, heavy metals, dyes, additives, and proteins in agricultural products, foods and beverages, environmental water, and biological samples. In this review, the preparation of IL-MNPs and their application in MDSPE are comprehensively summarized. The structural characteristics of the introduced ILs used to prepare the IL-MNPs and the synthetic routes employed to obtain the IL-MNPs are described, including physical coating and chemical bonding methods. The IL-MNPs are then classified and described according to different modified materials, including silica-based materials, carbon-based materials, metal-organic frameworks, molecularly imprinted polymers and other interesting large/small molecules. Finally, the research prospects and development directions of IL-MNPs in the context of MDSPE are further identified.
Collapse
|
6
|
Hong K, Huang Y, Zheng L, Zheng X, Huang X. One-pot fabrication of poly (ionic liquid)s functionalized magnetic adsorbent for efficient enrichment of phenylurea herbicides in environmental waters. Anal Chim Acta 2022; 1198:339549. [DOI: 10.1016/j.aca.2022.339549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
|
7
|
Dal Bosco C, Bonoli F, Gentili A, Fanali C, D’Orazio G. Chiral Nano-Liquid Chromatography and Dispersive Liquid-Liquid Microextraction Applied to the Analysis of Antifungal Drugs in Milk. Molecules 2021; 26:molecules26237094. [PMID: 34885676 PMCID: PMC8659161 DOI: 10.3390/molecules26237094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
A novel chromatographic application in chiral separation by using the nano-LC technique is here reported. The chiral recognition of 12 antifungal drugs was obtained through a 75 µm I.D. fused-silica capillary, which was packed with a CSP-cellulose 3,5-dichlorophenylcarbamate (CDCPC), by means of a lab-made slurry packing procedure. The mobile phase composition and the experimental conditions were optimized in order to find the optimum chiral separation for some selected racemic mixtures of imidazole and triazole derivatives. Some important parameters, such as retention faction, enantioresolution, peak efficiency, and peak shape, were investigated as a function of the mobile phase (pH, water content, type and concentration of both the buffer and the organic modifier, and solvent dilution composition). Within one run lasting 25 min, at a flow rate of approximately 400 nL min-1, eight couples of enantiomers were baseline-resolved and four of them were separated in less than 25 min. The method was then applied to milk samples, which were pretreated using a classical dispersive liquid-liquid microextraction technique preceded by protein precipitation. Finally, the DLLME-nano-LC-UV method was validated in a matrix following the main FDA guidelines for bioanalytical methods.
Collapse
Affiliation(s)
- Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Flavia Bonoli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.D.B.); (F.B.); (A.G.)
| | - Chiara Fanali
- Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Giovanni D’Orazio
- Istituto per i Sistemi Biologici (ISB), CNR-Consiglio Nazionale delle Ricerche, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-0690672256
| |
Collapse
|
8
|
In-situ preparation and properties of copper nanoparticles/poly(ionic liquid) composites by click chemistry within surfactant-free ionic liquid microemulsions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Seebunrueng K, Tamuang S, Ruangchai S, Sansuk S, Srijaranai S. In situ self-assembled coating of surfactant-mixed metal hydroxide on Fe3O4@SiO2 magnetic composite for dispersive solid phase microextraction prior to HPLC analysis of triazole fungicides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Mokhodoeva OB, Maksimova VV, Dzhenloda RK, Shkinev VM. Magnetic Nanoparticles Modified by Ionic Liquids in Environmental Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821060058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Yang F, Zhang X, Shao J, Xiong W, Ji Y, Liu S, Tang G, Deng H, Wang Y. A rapid method for the simultaneous stereoselective determination of the triazole fungicides in tobacco by supercritical fluid chromatography-tandem mass spectrometry combined with pass-through cleanup. J Chromatogr A 2021; 1642:462040. [PMID: 33721813 DOI: 10.1016/j.chroma.2021.462040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/19/2022]
Abstract
This work presents a simple, rapid and green chiral analysis method for five triazole fungicides (penconazole, tebuconazole, triadimefon, myclobutanil, and triadimenol) in tobacco, by which the samples were cleaned up by the novel pass-through solid phase extraction and subsequently the stereoisomers were separated and determined by the supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). Optimized separation of the stereoisomers was achieved on an ACQUITY UPC2 Trefoil AMY 1 column within 6 min. Under fortified concentration levels of 0.1, 0.5 and 2.0 mg/kg, the mean recoveries were 82.8-106.6%, the intra-day relative standard deviations (RSDs) were 1.1-6.6%, and the inter-day RSDs were 2.5-5.6%. The correlation coefficient was greater than 0.9926 for all studied analytes within the range of 10-500 ng/mL. The limits of detection (LODs) for all stereoisomers ranged from 0.26 μg/kg to 3.24 μg/kg. The established method was subsequently successfully applied to analyze authentic samples, confirming that this method is a novel, rapid and environmentally friendly method for the stereoselective separation of triazole fungicides in tobacco.
Collapse
Affiliation(s)
- Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Xiaotao Zhang
- China tobacco Guizhou Industrial Co. Ltd, Guiyang 550009, China
| | - Jimin Shao
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu 610041, China
| | - Wei Xiong
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu 610041, China
| | - Yuan Ji
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Zhang S, Hua Z, Zhao H, Yao W, Wu Y, Fu D, Sun J. Defective Zr-based metal-organic frameworks as sorbent for the determination of fungicides in environmental water samples by rapid dispersive micro-solid-phase extraction coupled to liquid chromatography/mass spectrometry. J Sep Sci 2021; 44:2113-2120. [PMID: 33721403 DOI: 10.1002/jssc.202001240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/22/2022]
Abstract
In this work, defective Zr-based metal-organic framework was successfully synthesized and evaluated as a dispersive micro-solid-phase extraction sorbent for efficient preconcentration and determination of fungicides in complex water samples. The defective Zr-based metal-organic framework crystal with increased adsorption capacity was successfully synthesized by employing formic acid as the modulator. The extraction conditions, including the pH, extraction time, desorption solvent and desorption time, were comprehensively investigated. Under optimum conditions, it was found that dispersive micro-solid-phase extraction method, coupled with liquid chromatography/mass spectrometry, exhibited a good linear relationship with correlation coefficients greater than 0.9980. The relative standard deviations of inter-day and intra-day precisions ranged from 2.6 to 9.2% and the limits of detection ranged from 0.004 to 0.036 μg/L. These merits, combined with their satisfactory recoveries (>80%), suggested the great potential of defective Zr-based metal-organic framework as a new adsorbent for efficient extraction of trace fungicides. This method exhibits good application potential for the pretreatment of fungicides from environmental water samples.
Collapse
Affiliation(s)
- Suling Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Ziluo Hua
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hongting Zhao
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.,School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528011, P. R. China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310053, P. R. China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310053, P. R. China
| | - Defeng Fu
- Institute of Forensic Science of Zhejiang Public provincial Security Bureau, Hangzhou, 310019, P. R. China
| | - Jiancong Sun
- Institute of Forensic Science of Zhejiang Public provincial Security Bureau, Hangzhou, 310019, P. R. China
| |
Collapse
|
13
|
Wang Y, Liu L. [Research progress in application of immobilized ionic liquid materials to separation by solid-phase extraction]. Se Pu 2021; 39:241-259. [PMID: 34227306 PMCID: PMC9403816 DOI: 10.3724/sp.j.1123.2020.08002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
Ionic liquids are low-temperature molten salts with almost no vapor pressure, and they are composed of organic cations and inorganic anions. Ionic liquids are characterized by the properties of good chemical stability, high solubility, designable structure, high conductivity and so on. The physicochemical properties of an ionic liquid depend on the nature and size of the cation and anion, which confer unique characteristics; hence, these reagents are also termed "designed extractants." As a new class of green solvents, ionic liquids are potential replacements to traditional volatile organic solvents used for extraction; for this reason, ionic liquids have attracted the attention of scientists. Research on the methods of preparation and applications of ionic liquids is being diversified, and they are extensively used in catalytic chemistry, photoelectron chemistry, materials chemistry, analytical chemistry, etc. By functional guiding design, the structures of ionic liquids, especially the imidazole ring cations, can be easily grafted with active groups such as hydroxyl, amino, carboxyl, and cyano groups, so that interactions between the ionic liquids and target molecules can be promoted via the formation of π-π bonds, hydrogen bonds, ionic bonds, and van der Waals forces. In addition, ionic liquids can be readily immobilized on solid carriers by physical or chemical means in order to obtain a new solid material with ionic liquids embedded internally or decorated on the surface. Furthermore, ionic liquids could be converted into ionic liquid-immobilized composite materials by impregnation, grafting, etc. The resulting composites not only suffer minimal loss of ionic liquids but also retain the typical characteristics of the ionic liquids and solid materials, thus showing improved mass transfer performance and better adsorption performance. Immobilized materials are characterized by high enrichment efficiency, high adsorption capacity, good stability, and strong extraction selectivity, as well as the presence of numerous recognition sites and high utilization rate of ionic liquids. In recent years, they have been widely used as solid-phase extraction adsorption materials for the separation of small organic molecules. This review introduces common immobilization methods and the characteristics of ionic liquid-immobilized materials, as well as their application in solid-phase extraction. In this paper, methods for the immobilization of ionic liquids with solid carriers such as silica gel, molecular sieves, molecularly imprinted polymers, graphene oxide, and magnetic nanomaterials are summarized, and the application of ionic liquid-immobilized materials in solid-phase extraction is reviewed. The target substances include alkaloids, flavonoids, polyphenols, and other natural active components as well as common drug molecules, organic pesticides, and other organic small molecular compounds. The properties, applications, and separation mechanisms of ionic liquids immobilized with various carriers are systematically introduced. Literature survey shows that the distribution of the binding active sites of ionic liquid-immobilized materials to the target molecules is more uniform, which increases the adsorption capacity of the materials. The adsorption efficiency of ionic liquid-immobilized materials is related to the type of ionic liquid, amount of adsorption material, concentration of the sample solution, adsorption temperature, solution pH, flow rate of the eluent, and type and amount of the eluting solvent. The existing disadvantages of ionic liquids, such as simple structures, insufficient basic theoretical research, and unsatisfactory extraction degree in complex matrixes would also be discussed. The corresponding solutions would be presented with the aim of providing guidance for the application of ionic liquid-immobilized materials in the separation and analysis of targets in complex matrices, thus paving the way for a new direction in the field of extraction and separation.
Collapse
Affiliation(s)
- Yicong Wang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China
| | - Leilei Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China
| |
Collapse
|
14
|
Senosy IA, Zhang XZ, Lu ZH, Guan XY, Yang ZH, Li JH, Guo HM, Abdelrahman TM, Mmby M, Gbiliy A. Magnetic metal-organic framework MIL-100 (Fe)/polyethyleneimine composite as an adsorbent for the magnetic solid-phase extraction of fungicides and their determination using HPLC-UV. Mikrochim Acta 2021; 188:33. [DOI: 10.1007/s00604-020-04648-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023]
|
15
|
Wang Y, He M, Chen B, Hu B. Hydroxyl-containing porous organic framework coated stir bar sorption extraction combined with high performance liquid chromatography-diode array detector for analysis of triazole fungicides in grape and cabbage samples. J Chromatogr A 2020; 1633:461628. [PMID: 33128975 DOI: 10.1016/j.chroma.2020.461628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/13/2023]
Abstract
In this work, a hydroxyl-containing porous organic framework (HC-POF) was prepared by a simple solvothermal reaction with 1,4-phthalaldehyde and phloroglucinol as monomers. Sol-gel method was used to coat HC-POF on the glass stir bar. The prepared HC-POF coated stir bar shows better extraction performance for six triazole fungicides (TFs) compared to commercial polydimethylsiloxane and ethylene glycol-silicone coated stir bars. Fourier transform infrared Spectrometry and X-ray photoelectron Spectrometry were used to explore interactions between HC-POF coating and TFs. It is assumed that the coating mainly adsorbs TFs through π-π interactions, hydrogen bonding and hydrophobic interactions. Based on this fact, a new method of HC-POF coated stir bar sorptive extraction combined with high performance liquid chromatography-diode array detector was developed for the determination of six TFs in grape and cabbage samples. A series of extraction and desorption conditions were carefully optimized, including salt concentration, sample solution pH, stirring rate and desorption solvent. Under the optimized experimental conditions, the proposed method displayed limits of detection in the range of 0.022 -0.071 μg L-1, which is the lowest among the reported SBSE methods for target TFs analysis. The linear range for six TFs was 0.1/0.2-500 μg L-1 and the recoveries for the spiked grape and cabbage were 81.0-109% and 80.7-111%, respectively.
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Magnetic solid-phase extraction of triazole fungicides based on magnetic porous carbon prepared by combustion combined with solvothermal method. Anal Chim Acta 2020; 1129:85-97. [DOI: 10.1016/j.aca.2020.06.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/05/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022]
|
17
|
Abstract
Ionic liquids (ILs) are a group of non-conventional salts with melting points below 100 °C. Apart from their negligible vapor pressure at room temperature, high thermal stability, and impressive solvation properties, ILs are characterized by their tunability. Given such nearly infinite combinations of cations and anions, and the easy modification of their structures, ILs with specific properties can be synthesized. These characteristics have attracted attention regarding their use as extraction phases in analytical sample preparation methods, particularly in liquid-phase extraction methods. Given the liquid nature of most common ILs, their incorporation in analytical sample preparation methods using solid sorbents requires the preparation of solid derivatives, such as polymeric ILs, or the combination of ILs with other materials to prepare solid IL-based composites. In this sense, many solid composites based on ILs have been prepared with improved features, including magnetic particles, carbonaceous materials, polymers, silica materials, and metal-organic frameworks, as additional materials forming the composites. This review aims to give an overview on the preparation and applications of IL-based composites in analytical sample preparation in the period 2017–2020, paying attention to the role of the IL material in those composites to understand the effect of the individual components in the sorbent.
Collapse
|
18
|
Xiang JJ, Zha Xi CD, Liao QG, Yuan LJ, Zhang DW. Detection of azithromycin residue in broiler feathers by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122225. [PMID: 32531642 DOI: 10.1016/j.jchromb.2020.122225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
In the study, a sensitive and reproducible method for the quantitative analysis of azithromycin in broiler feather samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Feather samples were rinsed after being wrapped in medical gauze, then chopped and then added to 5% (v/v) ammonia in methanol solution for ultrasonic extraction. The extract was purified by the combination of commercial polymeric microparticles (Oasis MCX) and Fe3O4 nanoparticles. The LC separation was performed on an Agilent Eclipse plus C18 column. Multiple reaction monitoring was used for the selective detection of azithromycin. The good linearity curve of azithromycin in feather sample was in the range from 1.0 μg kg-1 to 100.0 μg kg-1 with 0.9935 of correlation coefficient. And the limit detection and limit of quantification was 0.5 μg kg-1 and 2.0 μg kg-1 in spiked feather samples. The recoveries of azithromycin were 85.2-94.7% with the relative standard deviation less than 10%. The established method is simple, rapid, sensitive and specific, and could meet the need of government and enterprises to monitor the illegal use of azithromycin in livestock and poultry breeding.
Collapse
Affiliation(s)
- Jian Jun Xiang
- Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Ci Dan Zha Xi
- Institute of Agricultural Quality Standards and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Qie Gen Liao
- Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Li Juan Yuan
- Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Da Wen Zhang
- Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
19
|
Wang J, Tang Y, Chu H, Shen J, Wang C, Wei Y. Adjusting the chromatographic properties of poly(ionic liquid)-modified stationary phases by substitution on the imidazolium cation. J Sep Sci 2020; 43:2766-2772. [PMID: 32419326 DOI: 10.1002/jssc.202000189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 01/25/2023]
Abstract
Poly(ionic liquid)-modified stationary phases can have multiple interactions with solutes. However, in most stationary phases, separation selectivity is adjusted by changing the poly(ionic liquid) anions. In this work, two poly(ionic liquid)-modified silica stationary phases were prepared by introducing the cyano or tetrazolyl group on the pendant imidazolium cation on the polymer chains. Various analytes were selected to investigate their mechanism of retention in the stationary phases using different mobile phases. Two poly(ionic liquid)-modified stationary phases can provide various interactions toward solutes. Compared to the cyano-functionalized poly(ionic liquid) stationary phase, the tetrazolyl-functionalized poly(ionic liquid) stationary phase provides additional cation-exchange and π-π interactions, resulting in different separation selectivity toward analytes. Finally, applicability of the developed stationary phases was demonstrated by the efficient separation of nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Yuqi Tang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Huiyuan Chu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| |
Collapse
|
20
|
Recent advances and applications of magnetic nanomaterials in environmental sample analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115864] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Senosy IA, Guo HM, Ouyang MN, Lu ZH, Yang ZH, Li JH. Magnetic solid-phase extraction based on nano-zeolite imidazolate framework-8-functionalized magnetic graphene oxide for the quantification of residual fungicides in water, honey and fruit juices. Food Chem 2020; 325:126944. [PMID: 32387930 DOI: 10.1016/j.foodchem.2020.126944] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
In this work, zeolite imidazolate framework-8 (ZIF-8) functionalized magnetic graphene oxide (Fe3O4@APTES-GO/ZIF-8) was successfully synthesized and used as a novel adsorbent in magnetic solid-phase extraction (MSPE) for the determination of four triazole fungicides in water, honey and fruit juices. The main parameters such as extraction time, amount of adsorbent, the pH value of the sample, ionic strength, and desorption solvent which could affect the experiment results were optimization. Under the optimum condition, the obtained linearity of this method ranged from 1 to 1000 µg L-1 for all analytes, with correlation coefficients (R2) ≥ 0.9914. Limit of detections (LODs) and limit of qualifications (LOQs) of four triazole fungicides were ranged from 0.014 to 0.109 µg L-1 and from 0.047 to 0.365 µg L-1, respectively. Based on comparison with outcomes from other studies, Fe3O4@APTES-GO/ZIF-8-MSPE could provide high performance and achieve satisfied results for the analysis of trace triazole fungicides in complicated matrices.
Collapse
Affiliation(s)
- Ibrahim Abdelhai Senosy
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Agriculture, Department of Plant Protection, Fayoum University, Fayoum 63514, Egypt
| | - Hao-Ming Guo
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei-Nan Ouyang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi-Heng Lu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian-Hong Li
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Liu Z, Qi P, Wang J, Wang Z, Di S, Xu H, Zhao H, Wang Q, Wang X, Wang X. Development, validation, comparison, and implementation of a highly efficient and effective method using magnetic solid-phase extraction with hydrophilic-lipophilic-balanced materials for LC-MS/MS analysis of pesticides in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135221. [PMID: 31806340 DOI: 10.1016/j.scitotenv.2019.135221] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
To achieve multi-pesticides residue analysis in seawater, hydrophilic-lipophilic-balanced magnetic particles were designed and fabricated by swelling polymerization of divinyl benzene (DVB) and N-vinyl pyrrolidone (NVP) on the surface of Fe3O4@SiO2 magnetic particles. The ratio of DVB to NVP was adjusted to achieve a proper balance in hydrophilicity and lipophilicity. The obtained magnetic particles were systematically characterized by TEM, SEM, FT-IR and vibrating sample magnetization. Based on the optimized magnetic nanoparticles, a sensitive magnetic solid-phase extraction method was developed for the simultaneous pre-concentration and determination of 96-pesticide residues from large-volume seawater samples prior to being detected by liquid chromatography-tandem mass spectrometry. Recoveries of pesticides in spiked seawater samples (0.001, 0.01, 0.1, 1.0 μg L-1) ranged from 62% to 112% with RSDs less than 21%. The method limits of detection of 96 pesticides ranged from 0.13 to 0.42 ng L-1, the method limits of quantification of 96 pesticides ranged from 1.0 to 10 ng L-1. The method was successfully applied to pesticide residue analysis in water samples from Jiulong River Estuary of China, demonstrating the prospects of this technique as a potential method for the rapid determination of trace levels of multi-pesticide residues in seawater.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, PR China
| | - Peipei Qi
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; State Key Laboratory for Quality and Safety of Agro-products, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China
| | - Jiao Wang
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China
| | - Zhiwei Wang
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Shanshan Di
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Qiang Wang
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; State Key Laboratory for Quality and Safety of Agro-products, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; State Key Laboratory for Quality and Safety of Agro-products, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
23
|
Nasiri M, Ahmadzadeh H, Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115772] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Wang A, Liu Z, Xu L, Lou N, Li M, Liu L. Controllable click synthesis of poly(ionic liquid)s by surfactant-free ionic liquid microemulsions for selective dyes reduction. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Chen C, Fu Z, Zhou W, Chen Q, Wang C, Xu L, Wang Z, Zhang H. Ionic liquid-immobilized NaY zeolite-based matrix solid phase dispersion for the extraction of active constituents in Rheum palmatum L. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Zeng H, Xie X, Huang Y, Chen J, Liu Y, Zhang Y, Mai X, Deng J, Fan H, Zhang W. Enantioseparation and determination of triazole fungicides in vegetables and fruits by aqueous two-phase extraction coupled with online heart-cutting two-dimensional liquid chromatography. Food Chem 2019; 301:125265. [DOI: 10.1016/j.foodchem.2019.125265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
|
27
|
Xiong YB, Lu ZH, Wang DD, Yang MNO, Guo HM, Yang ZH. Application of polydopamine functionalized magnetic graphene in triazole fungicides residue analysis. J Chromatogr A 2019; 1614:460725. [PMID: 31767260 DOI: 10.1016/j.chroma.2019.460725] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/30/2019] [Accepted: 11/17/2019] [Indexed: 12/31/2022]
Abstract
In this work, a new analytical method based on polydopamine functionalized magnetic graphene (PDA@MG) adsorbent material has been developed to determine three triazole fungicides in water samples. As previous step, a novel polydopamine functionalized PDA@MG adsorbent material has been successfully prepared, which was characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). Based on this novel material, a new magnetic solid phase extraction (MSPE) method coupled with high performance liquid chromatography (HPLC) has been established for the determination of triazole fungicides in water samples. The main factors which could affect the experimental results were optimized. Under the optimal conditions, good linarites has been achieved in the range of 0.2-50 µg L-1, with the correlation coefficients (R2) were between 0.9962 and 0.9996. The limits of detections (LODs) were 0.0048-0.0084 µg L-1, and the relative standard deviations (RSDs) were between 1.7% and 4.8%. In addition, enrichment factors (EFs) were 572-916 times, which showed triazole fungicides residues could be accurately extracted and analyzed in this way. In the final experiment, the established method was applied to the detection of target analyzes in water samples. Satisfied results could be obtained for tebuconazole, propiconazole, and flusilazole. The recoveries of five water samples were between 69.4% and 106.4%, and the RSD were between 1.0% and 6.5%. The development method is more easy, effective, green and environmental-friendly, and has potential for application.
Collapse
Affiliation(s)
- Ya-Bing Xiong
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China.
| | - Zhi-Heng Lu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China
| | - Dan-Dan Wang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China
| | - Mei-Nan Ou Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China
| | - Hao-Ming Guo
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
28
|
Pirdadeh-Beiranvand M, Afkhami A, Madrakian T. Ionic liquid-coated magnetic SiO2@Fe3O4 nanocomposite for temperature-assisted solid-phase extraction of venlafaxine. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01679-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Li D, He M, Chen B, Hu B. Magnetic porous organic polymers for magnetic solid-phase extraction of triazole fungicides in vegetables prior to their determination by gas chromatography-flame ionization detection. J Chromatogr A 2019; 1601:1-8. [DOI: 10.1016/j.chroma.2019.04.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
30
|
Sheng X, Gao H, Zhou Y, Wang B, Sha X. Stable poly (ionic liquids) with unique cross‐linked mesoporous‐macroporous structure as efficient catalyst for alkylation of
o
‐xylene and styrene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoli Sheng
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Huaying Gao
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Beibei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Xiao Sha
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| |
Collapse
|
31
|
Combination of QuEChERS extraction with magnetic solid phase extraction followed by dispersive liquid–liquid microextraction as an efficient procedure for the extraction of pesticides from vegetable, fruit, and nectar samples having high content of solids. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Li Y, Liao Y, Huang Y, Ye Z, Huang X. Dual functional monomers modified magnetic adsorbent for the enrichment of non-steroidal anti-inflammatory drugs in water and urine samples. Talanta 2019; 201:496-502. [PMID: 31122456 DOI: 10.1016/j.talanta.2019.04.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
Abstract
According to the molecular properties of non-steroidal anti-inflammatory drugs (NSADs), a new adsorbent for magnetic solid phase extraction (MSPE) was designed and synthesized. Triethyl-(4-vinylbenzyl)aminium chloride and 4-vinylbenzeneboronic acid were utilized as dual functional monomers to copolymerize with divinylbenzene on the surface of pre-modified Fe3O4 nanoparticles. The prepared magnetic adsorbent (Fe3O4@TCVA) was characterized by elemental analysis, Fourier transform infrared, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer. Due to the abundant boronic acid, quaternary amine and phenyl groups, the Fe3O4@TCVA displayed satisfactory extraction performance for target NSADs (diclofenac acid, ibuprofen and mefenamic acid) by means of B-N coordination, anion-exchange, π-π and hydrophobic interactions. Under the optimized conditions, the Fe3O4@TCVA/MSPE was combined with high-performance liquid chromatography with diode array detection (HPLC-DAD) to sensitively analyze NSADs in water and human urine samples. Results indicated that the limits of detection for water and urine samples were in the ranges of 0.014-0.031 μg/L and 0.029-0.11 μg/L, respectively. The relative standard deviations for the intra-day and inter-day assay variability were below 10%. The applicability of the proposed Fe3O4@TCVA/MSPE-HPLC-DAD method was demonstrated by the successful extraction and quantification of trace levels of NSADs in real water and human urine samples. Satisfactory spiked recovery and reproducibility were achieved.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yingmin Liao
- Department of Environmental Science & Engineering, Tan Kah Kee College, Zhangzhou 363105, China.
| | - Youfang Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Ziwen Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiaojia Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
33
|
Zhao B, Wu D, Chu H, Wang C, Wei Y. Magnetic mesoporous nanoparticles modified with poly(ionic liquids) with multi-functional groups for enrichment and determination of pyrethroid residues in apples. J Sep Sci 2019; 42:1896-1904. [PMID: 30828963 DOI: 10.1002/jssc.201900038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Considering that the determination of pyrethroid residues is of value for the safety of food, a new poly(ionic liquid)-functionalized magnetic mesoporous nanoparticle was designed and used as an adsorbent in magnetic solid-phase extraction for the enrichment of eight pyrethroids. The porous structure and large surface area of the mesoporous silica shell endow the adsorbent with abundant binding sites. In contrast to the reported poly(ionic liquids) with only one kind of functional group in the cationic part, the new poly(ionic liquids) with mixed cyano and phenyl groups in cationic part matched the chemical structure of the analytes to improve extraction efficiency. Under the optimum conditions, an effective method was established for the determination of eight pyrethroids in apples. Adsorption equilibrium can be quickly reached in 1 min, greatly decreasing the extraction time. The linearity range was found to be 10-200 ng/g, and the detection limits ranged from 0.24 to 1.99 ng/g. Recoveries of analytes in apple samples ranged from 87.3 to 119.0%, with relative standard deviations varying in the range of 3-21.2% (intraday) and 0.3-15.2% (interday). The results indicate that the proposed method is a good candidate for pyrethroid residues in apple samples.
Collapse
Affiliation(s)
- Bihong Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Dan Wu
- Sunresin New Materials, Xi'an, P. R. China
| | - Huiyuan Chu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| |
Collapse
|
34
|
Wang A, Li S, Chen H, Liu Y, Peng X. Construction of Novel Polymerizable Ionic Liquid Microemulsions and the In Situ Synthesis of Poly(Ionic Liquid) Adsorbents. NANOMATERIALS 2019; 9:nano9030454. [PMID: 30889871 PMCID: PMC6474080 DOI: 10.3390/nano9030454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
This paper reports the successful construction of novel polymerizable ionic liquid microemulsions and the in situ synthesis of poly(ionic liquid) adsorbents for the removal of Zn2+ from aqueous solution. Dynamic light-scattering data were used to confirm the polymerization media and to illustrate the effect of the crosslinker dosage on the droplet size of the microemulsion. FTIR and thermal analysis were employed to confirm the successful preparation of the designed polymers and characterize their thermostability and glass transition-temperature value. The optimization of the adsorption process indicates that the initial concentration of Zn2+, pH, adsorbent dosage and contact time affected the adsorption performance of poly(ionic liquid)s toward Zn2+. Furthermore, our research revealed that the adsorption process can be effectively described by the pseudo second-order kinetic model and the Freundlich isotherm model.
Collapse
Affiliation(s)
- Aili Wang
- School of Chemistry and Material Science, Ludong University, Yantai 264025, China.
- Guangdong Provincial Key Lab of Green Chemical Product Technology, Guangzhou 510640, China.
| | - Shuhui Li
- School of Chemistry and Material Science, Ludong University, Yantai 264025, China.
| | - Hou Chen
- School of Chemistry and Material Science, Ludong University, Yantai 264025, China.
| | - Ying Liu
- School of Chemistry and Material Science, Ludong University, Yantai 264025, China.
| | - Xiong Peng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, Guangzhou 510640, China.
| |
Collapse
|
35
|
Mei M, Huang X, Chen L. Recent development and applications of poly (ionic liquid)s in microextraction techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Wang A, Li S, Zhang L, Chen H, Li Y, Hu L, Peng X. Ionic liquid microemulsion‐mediated
in situ
thermosynthesis of poly(ionic liquid)s and their adsorption properties for Zn(II). POLYM ENG SCI 2019. [DOI: 10.1002/pen.25060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aili Wang
- School of Chemistry and Material ScienceLudong University Yantai, 264025 China
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou, 510640 China
- Guangdong Provincial Key Lab of Green Chemical Product Technology Guangzhou, 510640 China
| | - Shuhui Li
- School of Chemistry and Material ScienceLudong University Yantai, 264025 China
| | - Liya Zhang
- School of Chemistry and Material ScienceLudong University Yantai, 264025 China
| | - Hou Chen
- School of Chemistry and Material ScienceLudong University Yantai, 264025 China
| | - Yanan Li
- School of Chemistry and Material ScienceLudong University Yantai, 264025 China
| | - Lihua Hu
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou, 510640 China
| | - Xiong Peng
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou, 510640 China
| |
Collapse
|
37
|
Feng J, Han S, Ji X, Li C, Wang X, Tian Y, Sun M. A green extraction material — natural cotton fiber for in‐tube solid‐phase microextraction. J Sep Sci 2019; 42:1051-1057. [DOI: 10.1002/jssc.201801233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
38
|
A sensitive and accurate vortex-assisted liquid-liquid microextraction-gas chromatography-mass spectrometry method for urinary triazoles. J Chromatogr A 2019; 1586:9-17. [DOI: 10.1016/j.chroma.2018.11.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
|
39
|
Jing X, Cao C, Wu W, Zhao W, Wang Y. Deep Eutectic Solvent-based Vortex-assisted Dispersive Liquid–liquid Microextraction Combined with High Performance Liquid Chromatography for the Determination of Phenolic Acids in Vegetable Oils. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University
- Shanxi Functional Food Research Institute
| | - Chenyang Cao
- College of Food Science and Engineering, Shanxi Agricultural University
| | - Wenying Wu
- College of Resources and Environment, Shanxi Agricultural University
| | - Wenfei Zhao
- College of Food Science and Engineering, Shanxi Agricultural University
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University
- Shanxi Functional Food Research Institute
| |
Collapse
|
40
|
Huang X, Liu Y, Liu G, Li L, Xu X, Zheng S, Xu D, Gao H. Preparation of a magnetic multiwalled carbon nanotube@polydopamine/zeolitic imidazolate framework-8 composite for magnetic solid-phase extraction of triazole fungicides from environmental water samples. RSC Adv 2018; 8:25351-25360. [PMID: 35539810 PMCID: PMC9082652 DOI: 10.1039/c8ra05064c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023] Open
Abstract
A novel magnetic zinc-based zeolitic imidazolate framework (MMP/ZIF-8) has been prepared using a magnetic multiwalled carbon nanotube@polydopamine nanocomposite as the magnetic core and support. It was then used as an adsorbent for magnetic solid-phase extraction of triazole fungicides from environmental water samples. Successful synthesis of MMP/ZIF-8 was confirmed by material characterization, and the results showed that the synthetic composite has a high Brunauer-Emmett-Teller surface area (141.56 m2 g-1), large total pore volume (0.636 mL g-1), and high superparamagnetism with a saturation magnetization of 44.1 emu g-1. To evaluate the extraction performance of MMP/ZIF-8, the main parameters that affect the extraction efficiency were optimized. Under the optimal conditions, the developed method shows good linearity (R 2 ≥ 0.9915) in the concentration range 1-400 μg L-1. Low limits of detection (0.08-0.27 μg L-1, signal/noise = 3 : 1) and good precision (intraday relative standard deviation ≤ 7.73%, interday relative standard deviation ≤ 9.65%) are also achieved. The developed method was applied for analysis of triazole fungicides in environmental water samples.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Applied Chemistry, China Agricultural University Beijing 100193 P. R. China +86 1062731991
| | - Yanan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China Beijing 100081 P. R. China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China Beijing 100081 P. R. China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China Beijing 100081 P. R. China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China Beijing 100081 P. R. China
| | - Shuning Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China Beijing 100081 P. R. China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China Beijing 100081 P. R. China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University Beijing 100193 P. R. China +86 1062731991
| |
Collapse
|
41
|
Feng J, Wang X, Tian Y, Luo C, Sun M. Basalt fibers grafted with a poly(ionic liquids) coating for in-tube solid-phase microextraction. J Sep Sci 2018; 41:3267-3274. [DOI: 10.1002/jssc.201800477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
42
|
Feng J, Mao H, Wang X, Tian Y, Luo C, Sun M. Ionic liquid chemically bonded basalt fibers for in-tube solid-phase microextraction. J Sep Sci 2018; 41:1839-1846. [DOI: 10.1002/jssc.201701314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Huijun Mao
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|