Poole CF. The effect of the assigned descriptors for phthalate esters on the characterization of their separation properties using the solvation parameter model.
J Chromatogr A 2023;
1707:464296. [PMID:
37595351 DOI:
10.1016/j.chroma.2023.464296]
[Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Revised descriptors are determined for fifteen phthalate esters for use in the solvation parameter model and form part of the Wayne State University (WSU) compound descriptor database. For thirteen phthalate esters a comparison is made with the same compounds in the Abraham descriptor database. Gas chromatographic retention factors on poly(methyloctylsiloxane), SPB-Octyl, and poly(cyanopropylphenyldimethylsiloxane), DB-225, stationary phases are used to facilitate an assessment of the contribution of cavity formation and dispersion interactions, L descriptor, and dipole-type interactions, S descriptor, to the experimental retention factors (log k) for the phthalate esters with minimum interference from competing intermolecular interactions. The results indicate a systematic overprediction of the cavity and dispersion interaction term and underprediction of dipole-type interactions for the Abraham descriptors compared with the WSU descriptors for the phthalate esters. The average absolute deviation (AAD) for 13 phthalate esters on SPB-Octyl is 0.039 (WSU descriptors) compared with 0.252 (Abraham descriptors) and for 9 phthalate esters on DB-225 0.030 (WSU descriptors) compared with 0.167 (Abraham descriptors). The results for dipole-type interactions are confirmed and extended to include the hydrogen-bond basicity of the phthalate esters, B descriptor, by evaluation of partition constants in aqueous biphasic systems and the n-heptane-2,2,2-trifluoroethanol biphasic system. Differences in the contribution of the hydrogen-bond basicity of the phthalate esters to the experimental partition constants are largely random with respect to database selection but important for the accurate prediction of the partition constants. The AAD for the partition constant for 15 phthalate esters is 0.063 (WSU descriptors) compared with 0.320 (Abraham descriptors) for the heptane-2,2,2-trifluoroethanol biphasic system and 0.13 (WSU descriptors) compared with 0.25 (Abraham descriptors) for 9 phthalate esters in the octanol-water biphasic system. The WSU descriptors for the phthalate esters exhibit a better fit with the experimental data for separation systems and are free of the extreme values predicted for the Abraham descriptors for several phthalate esters.
Collapse